
Sensors 2011, 11, 4539-4561; doi:10.3390/s110504539 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Study on the Context-Aware Middleware for Ubiquitous 

Greenhouses Using Wireless Sensor Networks 

Jeonghwang Hwang and Hyun Yoe * 

School of Information and Communication Engineering, Sunchon National University, Maegok-dong, 

Suncheon-si, Jeollanam-do 540-742, Korea; E-Mail: jhwang@sunchon.ac.kr 

* Author to whom correspondence should be addressed; E-Mail: yhyun@sunchon.ac.kr;  

Tel.: +82-61-750-3591; Fax: +82-61-750-3590. 

Received: 20 February 2011; in revised form: 2 April 2011 / Accepted: 10 April 2011 /  

Published: 27 April 2011 

 

Abstract: Wireless Sensor Network (WSN) technology is one of the important 

technologies to implement the ubiquitous society, and it could increase productivity of 

agricultural and livestock products, and secure transparency of distribution channels if such 

a WSN technology were successfully applied to the agricultural sector. Middleware, which 

can connect WSN hardware, applications, and enterprise systems, is required to construct 

ubiquitous agriculture environment combining WSN technology with agricultural sector 

applications, but there have been insufficient studies in the field of WSN middleware in the 

agricultural environment, compared to other industries. This paper proposes a  

context-aware middleware to efficiently process data collected from ubiquitous 

greenhouses by applying WSN technology and used to implement combined services 

through organic connectivity of data. The proposed middleware abstracts heterogeneous 

sensor nodes to integrate different forms of data, and provides intelligent context-aware, 

event service, and filtering functions to maximize operability and scalability of the 

middleware. To evaluate the performance of the middleware, an integrated management 

system for ubiquitous greenhouses was implemented by applying the proposed middleware 

to an existing greenhouse, and it was tested by measuring the level of load through CPU 

usage and the response time for users’ requests when the system is working. 

Keywords: WSN; ubiquitous society; agriculture; context-aware; middleware; greenhouse 

 

OPEN ACCESS 



Sensors 2011, 11                            

 

 

4540 

1. Introduction 

Wireless Sensor Network (WSN) technology is one of the important technologies for implementing 

a ubiquitous society, and it is applied into various fields such as distribution, logistics, construction, 

transportation, agriculture, defense, medicine, etc. [1], and in particular, it can be applied to the 

agricultural environment, production management, distribution, etc. to increase the productivity of 

agricultural and livestock products and secure transparency of distribution channels in the agricultural 

sector [2,3]. 

Ubiquitous agriculture (u-Agriculture) is defined as a technology that increases agricultural added 

value and productivity by combining ubiquitous technologies such as WSNs with agricultural sector 

applications, and recently, various pilot projects and research projects involving the design and 

implementation of monitoring systems combining WSN technologies have been tried in various of 

agricultural and livestock production environments for product management and distribution in 

applications such as greenhouses and livestock barns, etc. [4-8]. 

In order to easily construct such a u-Agriculture environment, middleware is required to connect 

WSN hardware, applications, and enterprise systems [9,10]. It is said that middleware is a technology 

to filter a large volume of data collected from many heterogeneous WSNs, process event data, and then 

convert it into meaningful information, and furthermore, to transmit and process more efficiently a 

large number of contexts and data produced in a ubiquitous environment [11-16]. 

Recently, even though WSN middleware has been studied in various fields, there have been 

insufficient studies on middleware focused on application services in an agricultural environment 

where compared to other industries, IT technology has been inadequately applied [17]. Therefore, this 

paper would like to propose a context-aware middleware to efficiently process data collected from 

greenhouses by applying WSN technologies and to implement combined services through organic data 

connectivities. 

In greenhouses using WSN technologies, soil sensor and environmental sensor nodes are installed 

inside/outside the greenhouse in order to collect environmental information for monitoring the 

greenhouse crop growth, and these sensor nodes constitute a wireless sensor network to collect 

environmental and soil information in the greenhouse. 

In order to provide various services to users by using wireless sensor networks composed of 

heterogeneous sensors, WSN middleware should be capable of converting collected sensor data into a 

common form, reducing server loads by using some data filtering function(s), and providing intelligent 

context-aware and event service functions. 

The proposed context-aware middleware could maximize scalability and usability of the system by 

abstracting heterogeneous sensor nodes installed for collecting greenhouse environmental information, 

enabling data filtering, event processing and context-aware processing, and integrating different forms 

of data through this.  

The proposed context-aware middleware was applied to a ubiquitous greenhouse integrated 

management system, and we could thus maximize scalability and operability of the system and 

improve the productivity of greenhouse crops and user convenience. 

This paper is organized as follows: Section 2 describes related studies, Section 3 explains design of 

the proposed context-aware middleware, Section 4 implements the proposed middleware and evaluates 



Sensors 2011, 11                            

 

 

4541 

its performance through applied examples, and finally, Section 5 concludes this paper by describing 

the conclusions and the future study topics. 

2. Related Research 

2.1. Wireless Sensor Networks Middleware 

WSN middleware is a software layer that exists physically between hardware such as sensor nodes, 

gateways, etc. and applications, that supports the flexible integration of hardware and applications. In 

addition, it could be defined as a software to help provide services such as distributed computing 

environments, remote procedure calls, messaging to users, regardless of the hardware, operating 

system, network, etc. used. The recently studied WSN middleware can be divided according to its 

location into in-network schemes to be installed at sensor nodes, server-side schemes installed at 

servers, and hybrid schemes combining two schemes [10]. 

2.1.1. In-Network Schemes 

Typical WSN in-network scheme middlewares, in which the middleware is installed at sensor nodes, 

are Mate developed at UC Berkeley, Impala developed at Princeton University, and Agilla developed 

at Washington University. 

Mate is a virtual machine based middleware developed for sensor networks. It works on sensor 

nodes by installing TinyOS, is equipped with its own byte code interpreter, and supports a mechanism 

to distribute new codes through a contagion model. The high-level interface of Mate makes a complex 

program very simple, and it minimizes the resources required to send a new execution module to 

sensor nodes [18]. 

Impala was begun as part of the ZebraNet project at Princeton University. ZebraNet is a project to 

study the movement and breeding of animals such as zebras using sensor network technologies. Impala 

focuses on modularization, adaptability, and restoration of applications; software updated in Impala is 

delivered to each sensor node via wireless networks, and each node could carry out updates under the 

condition that the system is working. In addition, it improves performance of software systems, energy 

efficiency, stability, and provides dynamic applied adaptability for various parameters and device 

failures, etc. [19]. 

Agilla is a mobile agent-based middleware to allow codes and states of sensor nodes to move using 

WSNs. Agilla controls ensure the flexible propagation of sensor node state information. Agilla works 

on TinyOS, and carries out agent’s function at each node. Agilla provides a neighbor list and double 

space resources at each node. The neighbor list that includes addresses of neighboring nodes is used to 

move and copy information of each node. The double space provides a decoupled-mode for 

communication between agents [20]. 

2.1.2. Server-Side Schemes 

Typical server-side WSN middleware schemes, in which the middleware is installed on servers, are 

Cougar developed at Cornell University, SINA developed at the University of Delaware, and MiLAN 

developed at the University of Rochester. 



Sensors 2011, 11                            

 

 

4542 

Cougar is a distributed data processing system for sensor networks studied by the database research 

team at Cornell University. Even though most sensor network applications recently studied employ a 

scheme in which a base node collects all the data and data is processed at the center, Cougar carries out 

all the data access and processing in a distributed form. Cougar uses declarative queries so that it also 

has a property that users are hidden from the physical properties of the networks. It was designed as a 

system that could adapt dynamically to network variation, has high flexibility and scalability, and has 

fault tolerance [21]. 

SINA considers sensor networks as a distributed database to access sensor network information 

using a query form. SINA includes not only a method to restrict re-transmission of similar information 

from sensor nodes distributed at geographically close locations but also a lower level mechanism to 

perform hierarchical grouping of sensors for efficient data fusion [22]. 

MiLAN is middleware for sensor networks that was developed at the University of Rochester for 

health management tasks at smart medical homes. It computes a measurement plan to minimize total 

energy consumption to satisfy the reliability demands of various types of medical data desired by users, 

activates the corresponding sensors according to the plan, and provides services to collect measured 

data and deliver it to users [23]. 

2.1.3. Hybrid Schemes 

Hybrid scheme WSN middleware combines two of the schemes mentioned earlier; typical WSN 

middleware of this type are COSMOS developed at ETRI, DSWare developed at Virginia University, 

and TinyDB developed at UC Berkeley. 

COSMOS, developed at ETRI, extracts core functions of middleware commonly required in various 

types of WSN application services, and brings about technology development and standardization for 

providing them as a standardized scheme. Major functions of COSMOS are supporting various types 

of queries involving massive simultaneous query processing for a large volume of sensor network 

environments, and supporting an abstraction function for heterogeneous sensor networks [24]. 

DSWare carries out data service functions by providing combined events defined by a certain 

pattern as a basic programming function, and has a feature of variously providing also real-time data 

service such as definition of deadlines for event reports and intervals for certain events, etc. [25]. 

TinyDB is middleware studied at UC Berkeley. It is a query system to obtain information from 

sensor networks driven on TinyOS. In other words, TinyDB collects data from motes installed in the 

environment to filter and arranges it to for sending to outside PCs. TinyDB considers sensor networks 

as a virtual distributed database, and supports SQL-like query language and SRT. In addition, TinyDB 

provides a simple sensor API for making PC applications that could extract data from sensor networks 

through queries, and a query generator in GUI form and a program to display results that also uses this 

API. To use TinyDB, TinyDB components based on TinyOS should be installed on each sensor node 

in the sensor network [26]. 

2.2. Comparison with Other Middlewares 

Xiong and his colleagues have proposed an optimization of existing methods, called tuning adaptive 

margin failure detector (TAM FD), which significantly improves quality of service (QoS), especially 



Sensors 2011, 11                            

 

 

4543 

in the aggressive range and when the network is unstable [14]. In addition, he and his colleagues have 

proposed a novel and efficient distributed flow control scheme for multirate multicast (MR-M), based 

on the well known Proportional Integral and Derivative (PID) controllers [15]. 

Zhou and his colleagues have developed context-aware middleware for multimedia services in 

heterogeneous networks. This context-aware middleware system facilitates diverse multimedia 

services in such heterogeneous network environments by combining an adaptive service provisioning 

middleware framework with a context-aware multimedia middleware framework [16]. In addition, he 

and and his colleagues have developed fully distributed scheduling schemes with the goal of 

minimizing the video distortion and achieving certain fairness [17]. 

In this paper, we have studied context-aware middleware applied to the particular environment of a 

WSN based greenhouse. The proposed middleware has a different system structure from existing 

middlewares, and uses an ontology model for representation of context because ontology could define 

some information between concept and relationship, and handle new contexts easily by using  

rule-based reasoning functions. 

3. Design of the Proposed Context-Aware Middleware for a Ubiquitous Greenhouse 

3.1. Ubiquitous Greenhouse 

3.1.1. System Architecture 

The ubiquitous greenhouse (u-Greenhouse) is a system in which ubiquitous technology is applied to 

a greenhouse to control the environmental monitoring and control facilities of the greenhouse. The  

u-Greenhouse of this paper applies a WSN, which is a ubiquitous technology, as a basis system of the 

greenhouse [27]. 

In the u-Greenhouse of this paper, soil sensors and environmental sensors are installed 

inside/outside the greenhouse in order to collect environmental data relevant to the greenhouse’s crop 

growth such as illuminance, temperature, humidity, CO2 level, etc. and soil information like soil 

humidity, soil temperature, etc., and these sensors together constitute a wireless sensor network to 

collect environmental and soil information from the greenhouse. In addition, CCTVs are installed 

inside/outside the greenhouse to collect real time image information to provide additional greenhouse 

and crop image information and preventing dangers such as burglary and fire. 

Such collected environmental and image information is stored in a server via the gateway, provided 

to users in real time through various interfaces, and environmental control facilities in the greenhouse 

can be automatically or manually controlled to ensure an optimum growth environment for the 

cultivated crops based on the collected information. Figure 1 shows the system structure of the 

ubiquitous greenhouse. 

  



Sensors 2011, 11                            

 

 

4544 

Figure 1. System structure of a ubiquitous greenhouse. 

 

3.1.2. System Components 

The u-Greenhouse has installed ZigbeX 2.0 sensor nodes from Hanback Electronics and developed 

sensor nodes inside/outside the greenhouse in order to measure environmental information such as 

temperature, humidity, illuminance etc. in the greenhouse.  

Figure 2. ZigbeX 2.0 sensor node from Hanback Electronics. 

 

 

Figure 2 shows a ZigbeX 2.0 sensor node from Hanback Electronics. It is equipped with Atmel’s 

ATmega128L with 128 KB internal programmable RISC architecture as a MCU, and Chipcon’s 

CC2420 is used as a RF Transceiver. This ZigbeX unit outputs digital temperature/humidity data 



Sensors 2011, 11                            

 

 

4545 

through a 14-bit ADC containing SHT11 temperature/humidity sensor as a multi-sensor device, and 

includes a Cds illuminance sensor with the maximum sensitivity at 540 nm. For power it uses two 

rechargeable AA size batteries of between 2.7~3.6 VDC (1.2 rechargeable battery/1.5 Alkaline). The  

antenna for the RF Transmitter/Receiver is an F-type, which basically uses a PCB antenna with 

outdoor/indoor radius of 75 m~100 m/20 m~30 m, and a dipole antenna could be used as an option by 

users [28]. 

Figure 3 is a developed sensor node, which plays the role of receiving sensor data from the 

temperature/humidity sensor, processing data in the MSP430 MCU to send it to a relay node and a 

gateway via a CC2420 RF chip. In addition, the node is separated from the sensor in order to reduce 

the effects of any heat generated by the node on the sensor [29]. 

Figure 3. Environmental sensor node. 

 

 

The MSP430 used in the sensor node is a 16-bit RISC, which has 48 Kbyte of program memory and 

10 Kbyte RAM inside [30], so that it can process sensor data at high speed, and the CC2420 is a RF 

chip supporting ZigBee, which in turn supports 2,400~2,483.5 MHz band, works as a DDDS scheme, 

and supports O-QPSK modulation scheme and has a 250 Kbps data rate so that low-power real-time 

wireless communication is possible [31]. 

SHT71 is used as an integrated temperature/humidity sensor. Operating power (2.4 V~5.5 V) is 

relatively low and power consumption is also low, with an average value of 28 µA. It has a 

compensating memory, 14-bit A/D converter, digital 2-wire interface inside, and it can measure 

temperatures from −40 to 120 °C and has an accuracy error of ±0.5 °C. In addition, humidity is 

measured between 0 and 100%, with an accuracy error of 3.5%. 3.3 V of operating voltage is 

connected to the sensor node, and digital 2-wire is connected with circuits of MSP430 to process the 

greenhouse temperature and humidity information [32]. 

Figure 4 shows a sensor node used to measure soil information such as soil temperature, soil 

humidity, etc. in the greenhouse. The soil sensor can store data by date using a downloading program 

without a data logger when connected with a computer via a relay. It can measure soil moisture from 0 



Sensors 2011, 11                            

 

 

4546 

to 99.9%, and the error rate is ±3%. Soil temperature can be measured from 0 to 60 °C, and the error 

rate is ±0.5 °C, so that its performance is excellent. 

Figure 4. Soil sensor node. 

 

 

To control greenhouse environment parameters influencing crop growth such as illuminance, 

temperature, humidity, CO2, etc. based on information collected from the environmental sensors and 

the soil sensor mentioned above, environment control facilities such as a ventilation and heating 

system, heat insulation system for reducing energy, shading curtain system following external 

brightness, circulating fan system regulating air flow in the facility, temperature control system of hot 

water/heating water, and artificial light source control system following external brightness and 

biometric information etc. are constructed in the greenhouse, and each environment control facility is 

controlled through a PLC. Figure 5 shows the environment control facilities and the PLC installed in 

the greenhouse. 

Figure 5. Environment control facilities and PLC.  

 

  



Sensors 2011, 11                            

 

 

4547 

Figure 5. Cont. 

 

3.2. Design of the Proposed Context-Aware Middleware 

The context aware u-Greenhouse middleware is designed aimed at a system to smoothly 

interconnect two layers between the wireless sensor network basically composed of heterogeneous 

sensors and the system to provide various services to users, and to process data to effectively provide 

intelligent service functions that could recognize contexts based on sensor data. 

3.2.1. Requirements Analysis 

Requirements for the middleware analyzed in this paper could be divided into three parts: sensor 

network interface, data process, and application service interface, according to the location of each 

function. The sensor interface carries out data abstracting functions, and the data process provides data 

filtering, various query processing functions for sensor data, and real-time management functions for 

sensor information. In addition, the application service interface supports connections with the outside 

through query processing, context aware services, and event services. 

The data abstracting function solves the dependency of sensor nodes by recognizing sensors and 

converting collected sensor data into a common form after registering heterogeneous sensor nodes, 

which are ported on each other’s platform, to the middleware in advance. 

The data filtering function is to avoid storing duplicated data to reduce the server’s load for data 

sent in real time, and the context aware service is a function that specifies numerical values for certain 

data and decides contexts intelligently, to autonomically control greenhouse facilities appropriately for 



Sensors 2011, 11                            

 

 

4548 

an optimum crop growth environment in the greenhouse. The event service prevents unexpected 

accidents by sending an urgent message to producers or managers if greenhouse environmental data, 

which is collected from sensors in real time, corresponds to a some configured event value.  

3.2.2. Middleware Scenario 

Figure 6 represents the functional demand analysis of the middleware system as a use case diagram. 

Producers or managers use the two context aware service and event processing service functions, and 

can control the greenhouse control facilities automatically or manually. 

Figure 6. Use case diagram of the ubiquitous greenhouse system. 

 

 

Figure 7 shows the process whereby the context aware service is carried out. If sensor data is 

entered from sensors, this data is sent to the middleware to perform the analysis and filtering process, 

and the autonomous context aware service is performed if it corresponds to a configured value of the 

context aware service. 



Sensors 2011, 11                            

 

 

4549 

Figure 7. Sequence diagram of context aware service. 

 

 

Figure 8 shows the process whereby the event service is carried out. Like the context aware service, 

it analyzes and processes data, which is sent to the middleware, to perform the event service if the data 

corresponds to a configured value of the event service. 

Figure 8. Sequence diagram of event service. 

 

 

Figure 9 represents a process that requests greenhouse data and image information stored in the 

database (DB), and the requested data is received. If the application manager accesses the middleware 

to request greenhouse information, the middleware requests the greenhouse information stored in the 

DB to be sent, and sends the received information to the application to make the greenhouse 

information monitoring possible. 



Sensors 2011, 11                            

 

 

4550 

Figure 9. Sequence diagram of the greenhouse information search service. 

 

3.2.3. Middleware Design 

The context aware middleware for u-Greenhouses is composed of a sensor network interface layer, 

data process layer, and application service layer, and Figure 10 shows an hierarchical diagram of the 

proposed middleware. 

Figure 10. Hierarchical diagram of the proposed middleware. 

 



Sensors 2011, 11                            

 

 

4551 

The sensor network interface layer is aimed at providing common interface functions to various 

multiple heterogeneous sensor networks, continuous monitoring and control functions for the states of 

various sensor networks. 

The data process layer plays the role of providing various query processing functions for sensor data 

collected from the WSN infra and real-time management functions of sensor information. In addition, 

a sensor data management component is placed in the data processing layer to filter sensing data and 

support various forms of queries. 

The application service interface layer, which is the top layer of middleware, plays the role of 

providing context aware and event processing services, and supports connections with the outside 

through query processing. 

Figure 11 represents the structure and data flow chart of the proposed middleware. Figure 11 shows 

functions for each module of the middleware and a structural flow with the sensors, gateway, and 

monitoring system. 

Figure 11. Structure and data flow chart of the proposed middleware. 

 

 

The sensor network interface stores the different data forms of the heterogeneous sensor nodes in 

advance to make sure all the data ported in the heterogeneous sensor network environment can be 

recognized. The most ideal situation is to have an integrated transducer to convert into a common form 

all the data obtained from any heterogeneous sensor, however, since a standard for sensor node’s data 



Sensors 2011, 11                            

 

 

4552 

forms is not established yet, this paper describes the conversion of two forms of data in the narrow 

concept into a specified common form. 

The data filtering does not store data delivered from the sensor network interface in the DB if the 

data is a duplicate, or stores data only when the data is changed. In addition, it makes context 

awareness possible by comparing with the data value configured in advance by the application to 

notify the context aware management module if it is identical or exceeds some threshold valued. 

Figure 12 shows the structure and working process of the context aware management module. 

Figure 12. Structure and working process of the context aware management module 

 

 

In addition, if the data entered has the same value as the level requested by an application, it notifies 

the event processing service module to make the event service possible. The usual sensing data not 

corresponding to such a process is delivered to the DB controller for storage in the DB. 

The context-aware management module carries out the autonomous context-aware service to 

control the environmental control facilities in the greenhouse such as maintaining an optimum growth 

environment for the crops in the greenhouse depending on the data values based on data delivered 

from the data filtering. Action_Value and Data_Value are stored in the DB after the context-aware 

service. 

The event service provides event services demanded by applications based on filtered data. It is a 

service to perform events specified by an application when receiving data corresponding to certain 

range of data values requested in advance. External intrusions and notifications of dangerous situations 

etc. correspond to this scenario. Action_Value and Data_Value are stored in the DB after the event 

service. The DB controller plays the role of sensing values delivered from the data filtering in the DB. 

The application service interface plays the role of delivering and configuring a range of context 

aware services and event services configured by an application. And, it could search and store data in 

the database for items demanded by an application. In addition, it supports various queries to ensure 

flexible connections between applications and hardware are achieved. 



Sensors 2011, 11                            

 

 

4553 

4. Implementation of the Proposed Context-Aware Middleware for an Ubiquitous Greenhouse 

4.1. Implementation Environment 

The environment to implement the context-aware u-Greenhouse middleware is divided into 

hardware and software environments, and the details are as follows: the hardware environment to 

develop the proposed context-aware middleware is the server-side PC development environment, and 

the details are shown in Table 1. 

Table 1. Hardware Environment. 

 Type Details 

Server PC Environment 

CPU Intel Xeon 3.2 Ghz 

RAM 1 GB 

OS Microsoft Windows XP 

 

In the hardware environment, the PC development environment corresponding to a server is 

implemented as the general PC environment, and the sensor node environment in charge of sensing is 

constructed as the environment suitable to use Zigbee sensors. 

The software environment to develop the proposed context-aware middleware is as outlined in 

Table 2. In the software environment, the PC development environment uses a Microsoft Windows 

series operating system, Java and C# as programming language the and database is implemented with 

MySQL. The sensor node environment responsible for sensing is constructed as a Linux environment 

in the Windows environment with Cygwin, and it uses TinyOS as the operating system to produce the 

sensor program with NesC. 

Table 2. Software Environment. 

 Type Details 

PC Development 

Environment 

OS Microsoft Windows XP 

Programming 

Languages 
JAVA (JDK 6), C# 

RDBMS MySQL 5.0 

Sensor Node 

Environment 

OS TinyOS 1.0 

Linux Environment Cygwin 

Sensor Programming 

Languages 
NesC 

JAVA JDK 1.4.1 

4.2. Implementation of the Proposed Context-Aware Middleware 

4.2.1. Middleware Algorithms 

Figure 13 is the algorithm that processes data which is delivered from the gateway in the 

implemented middleware, to store it in the DB. 

  



Sensors 2011, 11                            

 

 

4554 

Figure 13. Middleware Algorithm. 

 

 

Data of Da(n), Db(n), and Ds(n) obtained from the heterogeneous sensor networks are divided into 

each form in the data sorting module to send to each decoder. Each decoder converts Da(n), Db(n), 

and Ds(n) into the common form CD(n), and sends to the data integrating module to integrate it as 

CD(n) and CD(n + 1) in order. 

Data integrated as the common form is not sent to the DB controller module and dropped if it is 

duplicated data by comparing CD(n) and CD(n + 1) continuously entered through the data filtering 

module. 



Sensors 2011, 11                            

 

 

4555 

In addition, when data identical to the data range configured in advance by the  

context-aware and event service module is sent, it goes to the context-aware and event service, 

respectively, to make them perform the corresponding action. The remaining values are sent to the DB 

controller module to store in the DB. 

4.2.2. Sensor Data Structure and Data Conversion 

The data obtained from heterogeneous sensor networks with sensors measuring illuminance, 

temperature, humidity, EC, pH, soil humidity, etc. is converted into a common form for use. This is 

possible by converting the data structure in the packet units into the specified common form. 

Figure 14 shows the structure of the message (TOS_Msg msg[],) which sends data defined already 

for abstraction converting into the common form, and data structure int8_t 

data[TOSH_DATA_LENGTH] containing the corresponding data. 

Figure 14. Sending message structure and data conversion. 

 

4.2.3. Implementation of Ontology for Context-Aware Service 

To provide context-aware service, an ontology is constructed as shown in Figure 15; the ontology 

design uses Protege [33]. The ontology of this paper has six higher classes. Network represents 

information of sensor networks, and Sensor, Node, Location, and Context represent sensor, node, 

location, and context information, respectively, and Service represents services that users could be 

provided in the u-Greenhouse. Such information is written as OWL [34] documents and used with 

JENA [35]. 



Sensors 2011, 11                            

 

 

4556 

Figure 15. Class hierarchies of ontology. 

 

4.3. Application of the Proposed Middleware 

The proposed middleware in this paper was applied to an existing u-Greenhouse to implement the 

u-Greenhouse integrated management system. Figure 16 shows the UI of u-Greenhouse integrated 

management system applying the proposed middleware. The system UI displays information such as 

illuminance, temperature, humidity, CO2, etc. collected from the environmental and soil sensors 

installed in the greenhouse as a text form, enabling real-time image information of the greenhouse and 

also controlling the CCTV, and allowing notification of the working state of the greenhouse 

environmental control facilities and their control. In addition, it was implemented so as to  

allow managers to directly set a range of context-aware and event services so that it could provide  



Sensors 2011, 11                            

 

 

4557 

context-aware serviced such as automatic control of the greenhouse environment, etc. and the SMS 

notification service for dangerous situations. 

Figure 16. u-Greenhouse integrated management system GUI. 

 

 

Figures 17 and 18 are screens that set a range of context-aware and event services. 

Figure 17. Context-aware service GUI. 

 



Sensors 2011, 11                            

 

 

4558 

Figure 18. Event service GUI. 

 

4.4. Performance Evaluation of the Proposed Middleware 

This paper confirmed the proposed middleware’s operability by measuring the server’s load level 

and the response time for user's queries. To indirectly compare and measure the load level when 

integrating and processing data generated from lots of sensors, we used an application offered by 

Microsoft Windows. It is shown that CPU usage was about 20~30% on average when processing 

sensing data without middleware, and about 30~40% on average when processing data with the 

proposed middleware, as seen in Figure 19. Even though the value using the middleware is a little 

higher than the existing method processing data without middleware, it does not exceed 50% on 

average and considering that context-aware service, which it is not provided in the existing system, is 

added, therefore it could be confirmed that it is useful in terms of system usability. 

Figure 19. Usage of CPU. 

 

In addition, in order to measure average response time for user's requests the time required to obtain 

requested data from the server was simulated 50 times, and the result is as seen in Figure 20. 



Sensors 2011, 11                            

 

 

4559 

Figure 20. Average response time for user’s requests. 

 

As seen in the figure, the response speed for user’s requests was 0.58 s on average before using the 

middleware, and after applying the proposed middleware the average response speed was 0.47 s, 

therefore, it could be seen that there was an improvement in terms of response speed. 

5. Conclusions 

This paper proposed and developed a context-aware middleware to efficiently process data 

collected from a u-Greenhouse applying WSN technologies and to implement combined services 

through organic connections of data. In order to solve the problem of dependence on certain hardware 

and operating systeme, which is a disadvantage of the existing middleware products, a novel 

middleware integrating different forms of data was suggested, and operability and scalability of the 

middleware was maximized by adding intelligent context-aware, event service, and filtering functions. 

In addition, to evaluate the performance of the proposed middleware, it was applied to an existing  

u-Greenhouse to implement a u-Greenhouse integrated management system, and it could be confirmed 

that it was useful in terms of usability by comparing the CPU usage load level with that of the existing 

system and the response time for user’s requests when operating the system. In future studies, the 

integrated middleware supporting abstraction between heterogeneous middleware for system’s 

scalability by applying the future Web service should be studied, and expansion of ontology is needed 

for more accurate intelligent services. If such studies are reflected in the future versions of the 

middleware, it is expected that utilization of middleware would be increased. 

Acknowledgements 

This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the 

ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT 

Industry Promotion Agency)” (NIPA-2011-(C1090-1121-0009)). 

 

References 

 

1. Pyo, C.-S.; Chea, J.-S. Next-Generation RFID/USN Technology Development Prospects. Korea 

Inf. Commun. Soc. 2007, 24, 7-13. 

2. Lee, M.-H.; Shin, C.-S.; Jo, Y.-Y.; Yoe, H. Implementation of Green House Integrated 

Management System in Ubiquitous Agricultural Environments. J. KIISE 2009, 27, 21-26. 



Sensors 2011, 11                            

 

 

4560 

3. Shin, Y.-S. A Study on Informatization Model for Agriculture in Ubiquitous Era; MKE Research 

Report; National IT Industry Promotion Agency: Seoul, Korea, 2006. 

4. Jeong, B.-M. Foreign u-Farm Service Model Casebook; NCA V-RER-06005; Issues and Analysis 

Report of Korea National Information Society Agency: Seoul, Korea, October 2006. 

5. Kwon, O.-B.; Kim, J.-H. A Basic Direction for Building Agricultural Radio Frequency 

Identification Logistics Information System; Korea Rural Economics Institute: Seoul, Korea, 

December 2007. 

6. Brandt Tracks Its Beef. Available online: http://www.rfidjournal.com/article/articleview/2229/1/1/ 

(accessed on 6 December 2010). 

7. Kim, M.S.; Lee, Y.J.; Park, J.H. Trends of USN Middleware Technology; ETRI Electronic 

Communications Trend Report; Electronics and Telecommunications Research Institute: Daejeon, 

Korea, June 2007; Volume 22, pp. 67-79. 

8. Hwang, J.H.; Yoe, H. Study of the Ubiquitous Hog Farm System Using Wireless Sensor 

Networks for Environmental Monitoring and Facilities Control. Sensors 2010, 10, 10752-10777 

9. Hwang, J.H.; Shin, C.S.; Yoe, H. Study on an Agricultural Environment Monitoring Server 

System using Wireless Sensor Networks. Sensors 2010, 10, 11189-11211 

10. Kim, Y.-M.; Han, J.I. Middleware Technology for Ubiquitous Sensor Network. J. KIISE 2007, 25, 

35-48.  

11. Lee, K.W.; Kwon, H.E. Middleware Platform Technology for USN Environment. In Proceeding 

of 2008 Spring Conference Korean Institute of Intelligent Systems, Chungju, Korea, April 2008; 

Volume 18, pp. 85-86. 

12. Hwang, J.G.; Cheong, T.S.; Kim, Y.I.; Lee, Y.J. Trends of RFID Middleware Technology and Its 

Applications; ETRI Electronic Communications Trend Report; Electronics and Telecommunications 

Research Institute: Daejeon, Korea, June 2005; Volume 20, pp. 81-91. 

13. Xiong, N.; Vasilakos, A.V.; Yang, L.T.; Song, L.; Pan, Y.; Kannan, R.; Li, Y. Comparative 

Analysis of Quality of Service and Memory Usage for Adaptive Failure Detectors in Healthcare 

Systems. IEEE J. Sel. Areas Commun. 2009, 27, 495-509. 

14. Xiong, N.; Jia, X.; Yang, L.T.; Vasilakos, A.V.; Pan, Y.; Li, Y. A Distributed Efficient Flow 

Control Scheme for Multi-Rate Multicast Networks. IEEE Trans. Parall. Distrib. Syst. 2010, 21, 

1254-1266. 

15. Zhou, L.; Xiong, N.; Shu, L.; Vasilakos, A.; Yeo, S.-S. Context-Aware Multimedia Service in 

Heterogeneous Networks. IEEE Intell. Syst. 2010, 25, 40-47. 

16. Zhou, L.; Wang, X.; Tu, W.; Mutean, G.; Geller, B. Distributed Scheduling Scheme for Video 

Streaming over Multi-Channel Multi-Radio Multi-Hop Wireless Networks. IEEE J. Sel. Areas 

Commun. 2010, 28, 409-419. 

17. Kung, S.H. The Design of Fungus Cultivating System based on USN. J. Korean Inst. Inf. Technol. 

2007, 5, 34-41.  

18. Levis, P.; Culler, D. Mate: A Virtual Machine for Tiny Networked Sensors. In Proceedings of 

ACM Conf. Architectural Support for Programming Languages and Operating Systems, San Jose, 

CA, USA, October 2002. 



Sensors 2011, 11                            

 

 

4561 

19. Liu, T.; Martonosi, M. Impala: A Middleware System for Managing Autonomic, Parallel Sensor 

Systems. In Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel 

Programming, New York, NY, USA, June 2003; pp. 107-118.  

20. Fok, C.-L.; Roman, G.-C.; Lu, C.Y. Mobile Agent Middleware for Sensor Networks: An 

Application Case Study. In Proceedings of the 4th International Conference on Information 

Processing in Sensor Networks (IPSN’05), Los Angeles, CA, USA, April 2005; pp. 382-387,  

21. Yao, Y.; Gehrke, J. The Cougar Approach to In‐Network Query Processing in Sensor Networks. 

SIGMOD Record 2002, 31, 9-18. 

22. Shen, C.; Srisathapornphat, C.; Jaikeo, C. Sensor Information Networking Architecture and 

Applications. IEEE Personal Commun. 2001, 8, 52‐59. 

23. Heinzelman, W.B.; Murphy, A.L.; Carvalho, H.S.; Perillo, M.A. Middleware to Support Sensor 

Network Applications. IEEE Netw. 2004, 18, 6-14, 

24. Kim, M.; Lee, J.W.; Lee, Y.J.; Ryou, J.C. COSMOS: A Middleware for Integrated Data 

Processing over Heterogeneous Sensor Networks. ETRI J. 2008, 30, 696-706. 

25. Li, S.; Son, S.; Stankovic, J. Event Detection Services Using Data Service Middleware in 

Distributed Sensor Networks. In Proceedings of International Workshop on Information 

Processing in Sensor Networks (IPSN’03), Palo Alto, CA, USA, April 2003. 

26. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M. TinyDB: An Acquisitional Query Processing 

System for Sensor Networks. ACM TODS 2005, 30, 122-173. 

27. Hwang, J.H.; Shin, C.S.; Yoe, H. A Wireless Sensor Network-Based Ubiquitous Paprika Growth 

Management System. Sensors 2010, 10, 11566-11589 

28. Hanback ZigbeX II. Available online: http://www.hanback.co.kr/products/view/96 (accessed on 

16 March 2011). 

29. Park, D.-H.; Kang, B.-J.; Cho, K.-R.; Shin, C.-S.; Cho, S.-E.; Park, J.-W.; Yang, W.-M. A Study 

on Greenhouse Automatic Control System Based on Wireless Sensor Network. Wireless Pers. 

Commun. 2009, doi: 10.1007/s11277-009-9881-2. 

30. MSP430 Mixed Signal Microcontroller. Available online: http://www.alldatasheet.com (accessed 

on 16 March 2011). 

31. CC2420 2.4 GHz IEEE 802.15.4/Zigbee RF Transceiver. Available online: 

http://www.alldatasheet.com (accessed on 16 March 2011). 

32. SHT71 Humidity & Temperature Sensor. Available online: http://www.alldatasheet.com 

(accessed on 16 March 2011). 

33. Protégé. Available online: http://protege.stanford.edu (accessed on 16 March 2011). 

34. OWL. Available online: http://www.w3.org/TR/owl-features (accessed on 16 March 2011). 

35. JENA, A Semantic Web Framework for Java. Available online: http://jena.sourceforge.net  

(accessed on 16 March 2011).     

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


