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Abstract: We have utilized immunity-based diagnosis to detect abnormal behavior of 

components on a motherboard. The immunity-based diagnostic model monitors voltages of 

some components, CPU temperatures, and fan speeds. We simulated abnormal behaviors 

of some components on the motherboard, and we utilized the immunity-based diagnostic 

model to evaluate motherboard sensors in two experiments. These experiments showed that 

the immunity-based diagnostic model was an effective method for detecting abnormal 

behavior of components on the motherboard. 
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1. Introduction  

The technology of cloud computing has become prevalent, and the demand for data centers that 

provide such cloud computing has increased. Each server in the data center must be highly available 

for data processing and data transmission. To maintain system availability, it is important to detect 

equipment abnormalities during their early stages, before system failure. The simplest way of 

diagnosing abnormalities consists of evaluating each component individually by comparing the output 

value of its sensor with a predetermined threshold value. However, it is difficult to identify the 

abnormal component using this method [1]. 
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Another method of diagnosis uses an immunity-based diagnostic model [2-7], which is derived 

primarily from the concept of an immune system [8]. In the biological immune systems, each immune 

cell can test other immune cells and can be tested by other immune cells, and protects against disease 

by identifying and eliminating nonself entities (i.e., pathogens). Similarly, in our diagnostic model, 

mutual tests are performed among nodes (i.e., sensors), and this protects against system failure by 

identifying abnormal nodes. The features of our diagnostic model are similar to the features of the 

biological immune systems, therefore, the diagnostic model is called the immunity-based diagnostic 

model. This diagnostic model has been applied to node fault diagnosis in processing plants [9], to  

self-monitoring/self-repairing in distributed intrusion detection systems [3], and to sensor-based 

diagnostics for automobile engines [4]. This paper reports on the use of an immunity-based diagnostic 

model for detecting the abnormal behavior of components on a motherboard, including CPUs, 

memories, chipsets and Fans. 

2. Embedded Sensors on the Motherboard 

Since a motherboard has multiple sensors, including voltage, temperature, and fan speed sensors, 

abnormalities on the motherboard can be detected by monitoring these sensors. We therefore used 

sensor output values for diagnosis of the motherboard. 

Table 1. Server specification. 

Motherboard Supermicro
®

 X7DVL-I 

OS Debian GUN/Linux 5.0 

Kernel 2.6.26-2-amd64 

Module lm-sensors version 3.0.2 with libesensors version 3.0.2 

CPU Intel
®

 Xeon E5410 2.33GHz×2 

Power supply Thermaltake Toughpower 700w 

Fan 
XFan model: RDM8025B×2, 

Gantle Typhoon D0925C12B2AP×2, ADDA CFX-120S 

Table 2. Sensors used for evaluation and the range of sensor output values. 

Sensor Component Range Mean 
Standard 

deviation 

CPU1 CPU temperature 11.00–48.00(°C) 18.68 4.550 

Core2 Core2 temperature 35.00–72.00(°C) 42.79 4.450 

VcoreA CoreA voltage 1.11–1.19(V) 1.121 0.007 

Vbat Internal battery voltage 3.23–3.26(V) 3.237 0.009 

Fan5 Fan speed 1,012–1,044(RPM) 1034 5.021 
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We collected sensor output values on a server from July 27th to September 18th. The specifications 

of the server are shown in Table 1. The average air temperature during that period was 25.3 °C, 

ranging from 20.1 °C to 32.8 °C. Data were collected using lm_sensors, a hardware health monitoring 

package for Linux that allows information to be obtained from temperature, voltage, and fan speed 

sensors. 

We collected the output values from all 29 sensors on the motherboard, from which we calculated 

the correlation coefficients of all sensors. The correlation coefficient C of a set of sensor data  

                          is given by the following equation: 

  
                
   

           
             

   

  
(1) 

where:  

   
 
 
   

 

   

    
 
 
   

 

   

 
(2) 

We observed correlations between five sensors (Table 2), and these five sensors are easy to assume 

that the test cases for evaluation. Therefore, we used these five sensors for evaluation.  

3. Immunity-Based Diagnostic Model 

The immunity-based diagnostic model has the features of a dynamic network [7], in which 

diagnoses are performed by mutually testing nodes, i.e., sensors, and by dynamically propagating their 

active states. In this paper, the targets of the immunity-based diagnosis are components with a sensor 

embedded on a motherboard. Each sensor can test linked sensors and can be tested by linked sensors. 

Each sensor is assigned a state variable    indicating its credibility.  

The initial value of credibility   (0) is 1. The aim of the diagnosis is to decrease the credibility of 

all the abnormal sensors. If the credibility of a sensor is less than a threshold value, the sensor is 

considered abnormal in this model.  

When the value of credibility    is between 0 and 1, the model is called a gray model, reflecting the 

ambiguous nature of credibility. The gray model is formulized by the equation:   
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where: 
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Equation (3) controls the commitment of the node by determining the variable   (t) based on the 

evaluations to and from the node i and the active/inactive state of the evaluating and being evaluated 

nodes j. In the right-hand side of Equation (3), the first term is the sum of evaluations from other nodes 

for node i. The second term is an inhibition term that maintains ambiguous states of credibility. 

Activeness of each node i will be expressed by a continuous time dependent variable            or 

its normalization                  for fully active (                       ). 

In this model, equilibrium points satisfy the equation   (t) =    
       . Thus    monotonically 

reflects the value of     
       . If     

        is close to 0, then    is close to 0.5. The balance 

formulas are shown in Table 3. We determined the balance formulas by calculating the relationships of 

the output value of the sensors by trial and error. The flowchart of the diagnostic model is shown in 

Figure 1.  

Table 3. Balance formulas between sensors. 

Sensor Balance formula 

CPU1-Core2 |CPU1-Core2| 26 

CPU1-VCoreA |CPU1-VCoreA × 25| 20 

CPU1-Vbat |CPU1-Vbat × 9| 18 

CPU1-Fan5 |CPU1-Fan5/34| 18 

Core2-VCoreA |Core2-VcoreA × 45.5| 28 

Core2-Vbat |Core2-Vbat × 16| 20 

Core2-Fan5 |Core2-Fan5/19| 21 

VCoreA-Vbat |VCoreA-Vbat/2.8| 0.05 

VCoreA-Fan5 |VCoreA-Fan5/893| 0.07 

Vbat-Fan5 |Vbat-Fan5/316| 0.07 

Figure 1. Flowchart of the diagnostic model. 
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4. Evaluations of Immunity-Based Diagnosis of the Motherboard 

We evaluated the immunity-based diagnostic model for motherboard sensors in two experiments. In 

the first experiment, we compared two diagnostic models: a standalone diagnostic model and a mutual 

diagnostic model, i.e., an immunity-based diagnostic model. In the second experiment, we compared 

two networks in the immunity-based diagnostic model: a fully-connected network and a  

correlation-based network. We determined the normal ranges by calculating the balance formulas. 

Table 4 shows the normal ranges. Each evaluation was based on the four test cases shown in Table 5, 

and the value of test cases was based on the range of sensor output values shown in Table 2 and the 

normal ranges shown in Table 4.  

The test cases in 1 and 2 assumed that the speed of Fan5 was largely out of the range shown in 

Table 2. A significant decrease in fan speed would therefore cause the CPU temperature to rise, with 

the overheated CPU causing the server to crash. Conversely, a significant increase in fan speed would 

waste power and decrease the life span of the fan. In addition, the output values of the sensors were 

largely out of the range shown in Table 4. Therefore, we determined that the test cases of 1 and 2  

are abnormal.  

The test cases of 3 and 4 assumed that the output values of the sensors were slightly out of the range 

shown in Table 2. The test case of 3 assumed that the speed of Fan5 was slightly higher than that of 

Table 2, but that Fan5 was not abnormal. The test case of 4 assumed that the temperature of CPU1 was 

slightly higher than that of Table 2, but that CPU1 was not abnormal. Temperatures outside the range 

are not always abnormal, because these temperatures depend on room temperature. For example, 

maximum of temperature differences is 12.7 °C. In addition, the output values of the sensors were 

inside of the range shown in Table 4. Therefore, we determined that the test cases of 3 and 4 are normal.  

Table 4. Normal ranges derived from the balance formulas. 

Sensor Normal range 

CPU1 4.75–78.16(°C) 

Core2 31.68–73.34(°C) 

VcoreA 0.99–1.31(V) 

Vbat 2.52–3.96(V) 

Fan5 821.56–1,232.34(RPM) 

Table 5. Test cases. 

Case 
Sensor output value 

State 
CPU1 Core2 VcoreA Vbat Fan5 

1 Fan speed is very low. 70 65 1.12 3.23 200 Abnormal 

2 Fan speed is very high. 9 35 1.12 3.23 2,000 Abnormal 

3 Fan speed is slightly high. 14 35 1.12 3.23 1,050 Normal 

4 CPU temperature is slightly high. 50 60 1.12 3.23 1,020 Normal 
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4.1. Stand Alone vs. Mutual Diagnosis 

We evaluated a standalone diagnosis and a mutual diagnosis. According to the standalone 

diagnosis, a component is considered abnormal if the sensor output value is outside the range shown in 

Table 2. In contrast, mutual diagnosis uses the immunity-based diagnostic model. 

Tables 6 and 7 show the results of the standalone and mutual diagnoses, respectively. In Table 6, a 

credibility of 0 indicates that the output value was not within range, i.e., it was abnormal, whereas a 

credibility of 1 indicates that the output value was within range, i.e., it was normal. In Table 7 the 

credibility corresponds to    of Equation (2), i.e., it expresses the probability that component   is 

normal. We assumed that a component on the motherboard was abnormal if its credibility was less 

than 0.1. This threshold value is an empirical value by trial and error. A diagnosis of “X” indicates an 

abnormality, whereas a diagnosis of “O” indicates an absence of abnormality. An accuracy of “O” 

indicates a correct decision, an accuracy of “X” indicates an incorrect decision, and an accuracy of “P” 

indicates that the diagnostic model could not identify the abnormal component, although it detected 

multiple abnormalities. 

Table 6. Results of the stand alone diagnosis. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0 1 1 1 0 X P 

2 0 1 1 1 0 X P 

3 1 1 1 1 0 X X 

4 0 1 1 1 1 X X 

Table 7. Results of the mutual diagnosis. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.00 0.83 0.78 0.78 0.00 X P 

2 0.73 0.99 0.99 0.73 0.00 X O 

3 0.99 0.91 0.99 0.99 0.99 O O 

4 0.00 1.00 1.00 1.00 1.00 X X 
 

The standalone diagnostic model detected abnormalities in all test cases, because all test cases have 

values out of the range. In test cases 1 and 2, the standalone diagnostic model failed to identify the 

abnormal component. This model also misdiagnosed test cases 3 and 4, judging them abnormal since 

the output values were slightly out of the range. In contrast, the mutual diagnosis model identified the 

abnormal Fan in test case 2 since only the credibility of Fan5 was 0.00. In test case 3, the mutual 

diagnosis made a correct decision. Consequently, the mutual diagnosis model is more accurate than the 

standalone diagnosis model. 

4.2. Fully-Connected Network vs. Correlation-Based Network 

The immunity-based diagnostic model contains a network for mutually testing the credibility of 

nodes. In the above section, the network of the immunity-based diagnostic model was fully-connected, 



Sensors 2011, 11                            

 

 

4468 

with each sensor connected to all other sensors, and each sensor mutually tested by all other sensors. A 

fully-connected network can include some connections between sensors with weakly correlated output 

values. These connections may be unreliable for mutually testing the credibility of their sensors. 

Therefore, we removed such connections from a fully-connected network, forming a correlation-based 

network. 

We used the immunity-based diagnostic model to evaluate two network models, a fully-connected 

network and a correlation-based network. Figure 2 shows the correlation coefficients among  

the 5 sensors in Table 2. Any pair of sensors with a correlation greater than a threshold value was 

defined as connected. In this experiment, we built correlation-based networks for all the thresholds, 

using the correlation coefficients shown in Figure 2. Typical correlation-based networks are shown in 

Figure 3.  

Figure 2. Correlation coefficients among five sensors. 
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Figure 3. Correlation-based networks for thresholds of (a) 0.01, (b) 0.40, (c) 0.52,  

(d) 0.55, (e) 0.62, and (f) 0.90.  
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All test cases were the same as those in Table 5. Table 8 shows the results of correlation-based 

networks. A network with a threshold less than 0.01 was identical to a fully-connected network, 

whereas a network with a threshold greater than 0.90 had no connection between any pair of sensors, 
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i.e., a diagnostic model with a threshold greater than 0.90 was identical to a stand alone diagnostic 

model. These diagnostic models were evaluated in the previous section. 

Table 8. (A) Results of a correlation-based network with a threshold of 0.01. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.00 0.97 0.87 0.87 0.00 X P 

2 0.96 0.98 0.98 0.12 0.00 X O 

3 0.99 0.99 0.98 0.51 0.98 O O 

4 0.00 0.98 0.99 0.98 0.99 X X 

(B) Results of a correlation-based network with a threshold of 0.40. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.00 0.97 0.87 0.87 0.00 X P 

2 0.00 0.98 0.98 0.12 0.00 X P 

3 0.99 0.99 0.98 0.73 0.73 O O 

4 0.00 0.99 0.88 0.98 0.98 X X 

(C) Results of a correlation-based network with a threshold of 0.52. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.34 0.67 0.50 0.34 0.01 X O 

2 0.81 0.61 0.50 0.81 0.00 X O 

3 0.99 0.99 0.50 0.73 0.73 O O 

4 0.00 0.98 0.50 0.98 0.98 X X 

(D) Results of a correlation-based network with a threshold of 0.55. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.87 0.97 0.50 0.87 0.00 X O 

2 0.87 0.97 0.50 0.87 0.00 X O 

3 0.98 0.99 0.50 0.88 0.98 O O 

4 0.67 0.95 0.50 0.87 0.67 O O 

(E) Results of a correlation-based network with a threshold of 0.62. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.84 0.84 0.50 0.50 0.00 X O 

2 0.84 0.84 0.50 0.50 0.00 X O 

3 0.61 0.81 0.50 0.50 0.81 O O 

4 0.81 0.61 0.50 0.50 0.81 O O 

 



Sensors 2011, 11                            

 

 

4470 

Table 8. Cont.  

(F) Results of a correlation-based network with a threshold of 0.90. 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.84 0.84 0.50 0.50 0.50 O X 

2 0.84 0.84 0.50 0.50 0.50 O X 

3 0.84 0.84 0.50 0.50 0.50 O O 

4 0.84 0.84 0.50 0.50 0.50 O O 

In Table 8(A) the diagnostic models with thresholds of 0.01 misidentified the normal CPU1 in test 

cases 1 and 4. In Table 8(B), the diagnostic models with thresholds of 0.40 misidentified the normal 

CPU1 in test cases 1, 2 and 4. In Table 8(C), the diagnostic model with a threshold of 0.52 identified 

the abnormal Fan in test cases 1 and 2, and did not falsely identify an abnormality in test case 3, but 

misidentified the abnormal CPU1 in test case 4 as normal. In Table 8(D,E), the diagnostic models with 

thresholds of 0.55 and 0.62 correctly identified the abnormal Fan in test cases 1 and 2 and did not 

falsely identify abnormalities in test cases 3 and 4. In Table 8(F), the diagnostic model with a threshold 

of 0.90 identified only test case 3, because the abnormal sensor of Fan5 was isolated from the 

correlation-based network. This diagnostic model could not diagnose the isolated sensors, because the 

credibility of each was always 0.50. 

Figure 4. Example of a hybrid diagnostic model with a threshold of 0.55. 
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Even networks with the best thresholds, of 0.55 and 0.62, have isolated sensors of VcoreA and 

Vbat. The sensor output values of VcoreA and Vbat were approximately constant over time, i.e., their 

standard deviations were very small (Table 2), such that the standalone diagnostic model would 

correctly detect their abnormalities. Therefore, we applied standalone diagnosis only to these isolated 

sensors (Figure 4). In other words, we use a hybrid diagnosis model, using both standalone and 

immunity-based diagnosis. Sensors on the correlation network were diagnosed by the immunity-based 

diagnostic model, and isolated sensors were diagnosed by the stand alone diagnostic model. 

4.3. Discussions of Multiple Diagnostic Networks 

We hypothesized that utilizing multiple diagnostic networks, in which isolated nodes are connected 

to a network or another isolated node, would improve diagnostic accuracy. All combinations of the 
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multiple networks used for immunity-based diagnosis are shown in Figure 5. Each evaluation was 

based on the four test cases shown in Table 5. The diagnostic accuracy of all multiple networks is 

shown in Table 9. In Table 9, a diagnostic accuracy of “P” indicates that the diagnostic model could 

not identify the abnormal component, although it detected multiple abnormalities.  

Figure 5. Multiple diagnostic networks. 
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Table 9. Diagnostic accuracy of multiple networks. 

Test case (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) 

1 O X O X X O O X P X 

2 O X O X X O O O X X 

3 O O O O O O O X O O 

4 O X O O O O O O X O 

 

We found that diagnostic models (A), (C), (F) and (G) made correct decisions, whereas the other 

diagnostic models made incorrect decisions. In test cases 1, 2 and 3, each of the diagnostic networks 

(A), (C), (F) and (G) consisted of 3 sensors including Fan5. In contrast, the other diagnostic networks 

either consisted of 2 sensors including Fan5 or were weakly correlated networks. In test case 4, all 

diagnostic networks other than (B) and (I) showed results similar to those of CPU1.  
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For example, Table 10 shows the successful results of diagnostic network (C), and Table 11 shows 

the unsuccessful results of diagnostic network (I). 

Table 10. Results of diagnostic model (C). 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.640 0.640 0.659 0.659 0.021 X O 

2 0.640 0.640 0.659 0.659 0.021 X O 

3 0.844 0.844 0.659 0.659 0.844 O O 

4 0.385 0.683 0.659 0.659 0.385 O O 

Table 11. Results of diagnostic model (I). 

Test case 
Credibility 

Decision Accuracy 
CPU1 Core2 VcoreA Vbat Fan5 

1 0.021 0.293 0.640 0.640 0.293 X P 

2 0.385 0.293 0.683 0.385 0.293 O X 

3 0.844 0.659 0.844 0.844 0.659 O O 

4 0.021 0.659 0.640 0.640 0.659 X X 

 

The diagnostic model in Table 11 misidentified the abnormal Fan5 in test case 2 and test case 3. 

These results indicate that the diagnostic network consisting of 3 sensors is more accurate than the 

diagnostic network consisting of two sensors. In test case 4 of Table 11, the diagnostic network 

misidentified the normal CPU1 due to a weak correlation network shown in Figure 2, although CPU1 

belongs to the diagnostic network consisting of three sensors. These results indicate that the strong 

correlated diagnostic network is more accurate than the strong weakly correlated diagnostic network. 

Therefore, these experiments showed that diagnostic accuracy depends on the number of sensors in the 

diagnostic network (i.e., the size of diagnostic network) and the correlation between sensors  

of network. 

5. Conclusions 

We have applied immunity-based diagnosis to the detection of abnormal behaviors of components 

on a motherboard. We simulated the abnormal behaviors of some components on the motherboard, and 

we evaluated the ability of this model to diagnose abnormalities of components of motherboard 

sensors by two experiments. In the first experiment, which compared an immunity-based with a  

stand-alone diagnostic model, we found that the immunity-based diagnostic model outperformed the 

standalone diagnostic model. In the second experiment, which compared a fully-connected network 

with a correlation-based network for mutually testing the credibility of sensors, and we found that the 

correlation-based network improved the diagnosis accuracy in all test cases. In addition, we evaluated 

all the combinations of the diagnostic networks, and we showed that diagnostic accuracy depends on 

the size of the network and the correlation between nodes of the network. At the same time, we 

showed that the immunity-based diagnostic model with multiple diagnostic networks was an effective 

method for detecting abnormal behavior of components on the motherboard. 



Sensors 2011, 11                            

 

 

4473 

In addition, we utilized a hybrid model, consisting of the standalone and immunity-based diagnostic 

models, to diagnose nodes connected to the network, as well as nodes isolated from the network. The 

accuracy of hybrid diagnosis, however, depends on the stand alone diagnosis for the isolated nodes. In 

future, we will attempt to improve the accuracy of diagnosis of isolated nodes. 
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