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Abstract: Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile 

nodes without any fixed or preexisting infrastructure. The topology of these networks can 

change randomly due to the unpredictable mobility of nodes and their propagation 

characteristics. In most networks, including MANETs, each node needs a unique identifier 

to communicate. This work presents a distributed protocol for dynamic node IP address 

assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a 

record of IP address assignments in the entire network and detect any IP address leaks. The 

proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for 

synchronization and guarantees unique IP addresses under a variety of network conditions, 

including message losses and network partitioning. Simulation results show that the 

protocol incurs low latency and communication overhead for IP address assignment. 
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1. Introduction  

A Mobile Ad hoc NETwork (MANET) is a set of mobile nodes which communicate through 

wireless links. In contrast with conventional networks, a MANET does not need a previous 

infrastructure, since nodes rely on each other to operate themselves, forming what is called multi-hop 

communication. Such networks have several disadvantages that a conventional network does  

not present: the topology of this kind of network may change quickly and in an unpredictable way. 

Moreover, variations in the capacity of nodes and links, and frequent transmission errors and lack of 

security could occur. Finally, the limited energy resources of the nodes must be taken into account, 

since normally an ad hoc network will be formed by devices powered by batteries. 

To communicate with each other [1], the ad hoc nodes need to configure their interfaces with local 

addresses which are valid inside an ad hoc network. The ad hoc nodes may also need to set routing 

addresses globally to communicate with other devices on the Internet. From the perspective of the IP 

layer, an ad hoc network is presented as a multi-hop network of level 3 constituted by a collection  

of links. 

In an autonomous ad hoc mobile network the nodes can be uniquely identified by an IP address 

with the only premise that this address must be different from that any other node in the network. The 

configuration process is the set of steps through which a node obtains its IP address within the 

network. There are two mechanisms to set addresses: Stateless and Stateful.  

The Stateless address configuration proposes its own node to be the one in charge of generating its 

IP address. The address is obtained from the concatenation of a well-known network prefix and the 

theoretically unique number inside the network generated by the node. This mechanism may require 

the inclusion of a module responsible for verifying the uniqueness of the generated address called 

Duplicate Address Detection (DAD) [2-4]. 

On the other hand, Stateful address configuration is based on using servers which control and assign 

addresses to all the nodes of the network. The well known Dynamic Host Configuration Protocol 

(DHCP) [5] is an example of Stateful configuration. However, because of the multi-hop nature of 

mobile ad hoc networks, this protocol cannot be applied directly. 

This work proposes a Stateful-based auto-configuration protocol that guarantees the uniqueness of 

IP addresses under a wide variety of network conditions such as missing messages and network 

partitioning. This work is structured in five sections; the first one is the present Introduction. Section 2 

shows the obligated references in the auto-configuration protocol scope of Mobile Ad Hoc Networks. 

Section 3 contains an itemized specification of the so-called Distributed Dynamic Host Configuration 

Protocol (D2HCP), a proposal concerning IP addresses auto-configuration for MANETS. Section 4 

presents the D2HCP protocol simulations carried out in NS-3 [6]. Finally, Section 5 discusses the main 

advantages of the newly developed protocol as well as potential future extensions to the study. 
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2. Related Works 

Mobile Ad Hoc Networks (MANETS) present special features which must be born in mind when an 

address configuration protocol is implemented. There are many solutions for conventional networks 

(e.g., RFCs 3315 [5], 4861 [7], 4862 [8] and so on) but Mobile Ad Hoc Networks were not taken into 

account in their design. It is necessary, therefore, to provide support for multi-hop communication, 

dynamic topologies and the merging and partitioning of networks, events that are typical in Mobile  

Ad Hoc Networks. 

There are numerous works that present proposals for address configuration in a Mobile Ad Hoc 

Network using the Stateless and Stateful mechanism. Without doubt, the most representative are those 

described in [2,9-21]. Bernardos et al. [22-24] carried out a rigorous study of the problems of the  

auto-configuration in Mobile Ad Hoc Networks, presenting an itemized review of the more 

representative auto-configuration protocols. A comprehensive review of the main auto-configuration 

protocols can be found in [25].  

The Internet Engineering Task Force (IETF) [26] includes what is perhaps the best known work 

group in this field, the so-called Ad Hoc Network Autoconfiguration Work Group (Autoconf WG) [1] 

whose principal purpose is to describe the addressing model for ad hoc networks and how the nodes 

can set their addresses in these networks. It is essential that such models do not cause problems to 

other components of an ad hoc system such as standard applications which are executed in an ad hoc 

node or Internet nodes connected to the ad hoc nodes. The work of this group can include the 

development of new protocols if the existing IP auto-configuration mechanisms turn out to be 

inadequate. Nevertheless, the first task of this work group is to describe a practical addressing model 

for ad hoc networks. 

The solutions described previously represent significant contributions to aid our comprehension of 

the problem, but we consider that all these approaches only handle a subset of the network conditions 

enumerated as follows: 

(1) Dynamic Topology: the nodes in the network can move arbitrarily and may join and leave the 

network dynamically. 

(2) Message loss and failure in the nodes: message loss can be quite frequent and can result in 

duplicate IP address allocation if it is not managed correctly. The nodes can abruptly depart 

from the network due to a link failure or an accident. 

(3) Partitioning and merging: the network can split into multiple networks and, later, join with  

others. During network merging it is possible to have duplicated IP addresses in the fused network.  

(4) Address concurrent requests: multiple nodes may want to join the network simultaneously. 

(5) Limited Energy and Bandwidth: the nodes in a Mobile Ad Hoc Network have limited energy 

and the links have a limited bandwidth, therefore, the communication overhead which is 

incurred should be low. 

In this work a solution similar to DAAP [27,28] and to the one given in [29] that guarantees 

uniqueness in the IP address allocation under a wide set of network conditions is proposed. In our 

approach, the majority of address allocations imply local communication, thus causing low 

communication overhead and low latency. 
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3. D2HCP (Distributed Dynamic Host Configuration Protocol) 

The Distributed Dynamic Host Configuration Protocol (D2HCP) is an auto-configuration protocol 

that manages the addition and departure of nodes in a MANET. The protocol makes the MANET 

nodes collaborate with each other to manage the assignment of unique and correct IP addresses in a 

distributed manner. All the network nodes have the same role; there is no special type of node that 

centralizes the management of the same. 

Nodes have a synchronization system based on the OLSR [30] routing protocol. Thanks to this 

mechanism, the synchronization is done passively, by monitoring the mentioned routing protocol, thus 

no network traffic overhead is generated compared to that generated by the OLSR protocol. 

Due to the fact that all the nodes are responsible for managing the addition of any new node to the 

network, this process can be done quickly. A node that wishes to join a network tries to contact any 

node still belonging to it, and may receive several responses from multiple nodes. This makes the 

chances of successfully joining the network high, because of the high availability and redundancy that 

distributed management provides. 

Here we introduce the D2HCP specification: it begins with the data structures used, continues with 

an explanation of the messages exchanged between nodes for joining and departing the network, and 

then details how synchronization takes place in the protocol. Finally, we explain the format of the 

messages exchanged during the auto-configuration process, detailing how to solve the problem of 

possible message loss in the network using appropriate timers and performing certain actions when 

they expire to restore the auto-configuration process, as well as state diagrams for each operation mode 

that a node can adopt. 

3.1. Data Structures 

The data structures of this protocol can be classified into those handling the auto-configuration 

mechanism and those belonging to the OLSR routing protocol. OLSR stores internally a routing table 

which is updated periodically. This table contains information about the route to each node, stored in 

the following fields: 

 R_dest_addr: IP address of the destination node. 

 R_next_addr: IP address of next hop in the route. 

 R_dist: Distance to the destination node. 

 R_iface_addr: IP address of the outgoing interface to the destination node. 

The structures necessary for auto-configuration mechanism are: 

 IP addresses of the node interfaces. 

 Netmask. 

 Free_IP_Blocks: A table of free block from each node in the network. It will have the  

following form: 
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IP Free_IP_blocks 

.1   .1–.64 

.128 .128–.254 

.65   .65–.127 

 

3.2. Joining and Departure of Nodes 

The protocol uses a specific message number for each operation. All the operations are defined 

seeking optimum operation and low latency. This section discusses how communication is established 

between the nodes and the messages transmitted during the joining and departure of nodes in the 

network. 

3.2.1. Node Joining 

The entry of a node to the network implies the need to locate a node acting as a server. Once found, 

it will facilitate the joining by providing an IP address block and a Free_IP_Blocks table representing 

the state of all the nodes in the network. Until the node has an assigned IP address, its communication 

with nodes which might act as servers will be through the MAC layer. The configuration mechanism 

uses four types of messages in most cases. If no nodes in range with free IP addresses are found six 

types of messages in total will be used. Figure 1 shows the exchanged message scheme as is explained 

below: 

Figure 1. The messages interchanged in the process of a node joining the network. 

 

1. SERVER_DISCOVERY: The client node wishing to join a network starts the process with a 

message of this type. It is transmitted by the MAC layer, with the broadcast address as its 

destination. The message indicates the IP address number which is required (equal to the 
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interface number). If the node has more than one network interface, the message is transmitted 

through all of them, using the ID field, thus the different interfaces are not confused with 

several nodes. 

2. SERVER_OFFER: The network nodes receiving the SERVER_DISCOVERY message reply to 

this message, also using the MAC layer, in which an IP address number is offered. The number 

of addresses offered is half of the available range. The SERVER_DISCOVERY message 

includes a Count field indicating how many attempts have been made by the client. Depending 

on its value, the server nodes will behave as follows: 

 Count = 1: The server node will respond with a SERVER_OFFER if enough addresses are 

available and the fields R (Ready) and L (Local) have the value 1 (it can assign the 

addresses provided in the moment, and they are addresses from the node’s own block). 

 Count = 2: The node server will respond with a SERVER_OFFER if the fields can take the 

value R = 1 and L = 1. If not possible, it will still also respond if it is the case that there are 

enough addresses and R = 0, L = 1 (the server cannot assign addresses at the moment, but it 

has them). 

 Count > 2: If the node has addresses available and is in a state to do so, it will send a 

SERVER_OFFER with R = 1, L = 1. If it can, will send it with R = 0, L = 1. Finally, if it 

does not have enough free addresses, it will send the message with the fields R = 1,  

L = 0 (immediate availability of addresses, but the offered addresses are from another node 

in the network). 

3. SERVER_POLL: After a certain listening time, the client node will have received several 

SERVER_OFFER messages. If not, it will try again. It will sort received messages using the 

following criteria: 

 The servers which are not available are discarded, i.e., with R = 0. The SERVER_OFFER 

with R = 0 is not used to reply with a SERVER_POLL, but they have the function of 

informing the client that there is a server node in the network, although it cannot provide 

access to it at this moment. 

 Priority is given to local addresses: it will prefer messages with the field L = 1. 

 Finally, it is organized so that the offered addresses are ranked, from highest to lowest.  

According to this criteria for order preference, it will send a SERVER_POLL message to the 

first server (via the MAC layer, again) to let it know that the node has chosen this one to assign a 

free IP address block to it. 

4. IP_RANGE_REQUEST: If the addresses provided by the server node were not their own, but 

they were from a third node in the network, with this message there will be a formal request 

made to that node. Since there is communication between two nodes already configured 

correctly, it is performed at the IP layer. 

5. IP_RANGE_RETURN: The third network node authorizes the node that sends the message 

IP_RANGE_REQUEST to assign the address block indicated in this message to client nodes. It 

is also a message sent by IP. 

6. IP_ASSIGNED: After receiving the SERVER_POLL, if the provided addresses were from the 

server node’s own ones, or after an IP_RANGE_RETURN message if it was necessary to 
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request the address from a third node, the node server sends this message to the client. This 

message is transmitted by the MAC layer. In this message the free address block which is 

assigned to the client and Free_IP_Blocks table representing the network state are indicated. 

The table which is transmitted in this message does not reflect the joining of the client node. 

After this message exchange, the client node chooses the first one of the block which has been 

assigned as its IP address. In the case of having more than one network interface, it will use the first 

ones of block in order, and will be the first of all which use as the primary address that identify  

the node. 

3.2.2. Node Departure 

The node departure mechanism does not require the exchange of any messages. The node that wants 

to leave the network does not have to notify any other node of its departure, avoiding the overhead that 

these messages cause. The other nodes in the network will become aware of the departure node 

through the periodic route updates that the OLSR protocol performs every so often. They will note that 

they have lost the path to that node, and therefore they remove it from their Free_IP_Blocks table, 

adding its free address block to the corresponding node as explained in the previous section. 

3.3. Synchronization 

The synchronization is done by monitoring the routing table of the OLSR routing protocol [30]. The 

addition or departure of a node in the network is detected when OLSR adds a new route to its routing 

table, or deletes an existing one. By detecting the addition or departure of a node in the network, the 

Free_IP_Blocks table is updated locally, and without exchanging any messages. 

For this reason, the following rules are obeyed: 

 The responsibility of recovering the IP addresses that a node leaving the network makes 

available is one that can be attached to the right of the free block. This will not be possible 

when the block to be collected contains the lowest address of the network. In that case, the 

node that picks the block up is one that can add to it to the left. 

 By dividing the free addresses in two blocks to deliver one of them to a new node that joins the 

network, the node that acts as server delivers the sub-block, which does not contain its own  

IP address, to the client. 

When the node departure is detected, its entry must be removed, and an update of the corresponding 

node’s now available IP address must be recorded.  

By detecting the joining of a new node, a new entry is created for it in the table, and the free address 

block of the node which supplied its IP address will be updated. In order to identify the node who 

acted as a server, it is simply necessary to find out which node has the IP address of the new node in its 

free address block. 
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3.4. Message Format 

All the sent messages are packed in the protocol with the format shown in Figure 2. 

Figure 2. Packet from the D2HCP protocol. 

 

These messages will be encapsulated in turn with the headers corresponding to the MAC or TCP/IP, 

depending on the type of message to be included in the MESSAGE field. 

3.4.1. Packet Header 

The first row of the Figure 2 contains the fields of the packet header.  

1. Packet Length: Packet length, including the header (2 bytes). 

2. Packet Sequence Number: Sequence Number (2 bytes). In each different message which is sent 

by node, this field is increased by one. It helps in being able to detect duplicated packets. 

3.4.2. Message Header 

The second row of the Figure 2 is the header of each one of the protocol message: 

1. Message Type: It has 1 byte of size.  

2. S (Security): Reserved for security implementation (1 bit). 

3. Reserved: Reserved for functionality future extensions (7 bits).  

4. Message Size: It consists of 2 bytes. 

Next the format of each kind of message include in the MESSAGE field is shown. 

 SERVER_DISCOVERY 

Figure 3 shows the SERVER_DISCOVERY message format. 

Figure 3. SERVER_DISCOVERY message format. 
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ID: Node Identification (6 bytes).The node has to choose the MAC address from one of its interfaces, 

if it has more than one. This identity field has the same value for every SERVER_DISCOVERY and 

SERVER_POLL message emitted by the node, although it was doing from different interfaces. 

1. NIPs: Amount of IP addresses solicited by the node. It will be equal to the interface number of 

client node (1 byte).  

2. Count: Number of times that the SERVER_DISCOVERY petition has been tried (1 byte). 

 SERVER_OFFER 

Figure 4 shows the SERVER_OFFER message format. 

Figure 4. SERVER_OFFER message format. 

 

1. Range: Number of IP addresses offered (30 bits). 

2. Ready (R): It indicates whether the node that offers the IP addresses is ready to assign them or 

only communicates their existence but at this point cannot assign them (1 bit). 

3. Local (L): It indicates whether the range offered is from the sending node, or else be asked to 

turn to a third node (1 bit). 

 SERVER_POLL 

Figure 5 shows the SERVER_POLL message format. 

Figure 5. SERVER_POLL message format. 

 

1. ID: Node identification (6 bytes). It is the same identification as that elected in the 

SERVER_DISCOVERY message. 

2. Reserved: Reserved for future implementations (2 bytes). 

 IP_ASSIGNED 

Figure 6 shows the IP_ASSIGNED message format. 
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Figure 6. IP_ASSIGNED message format. 

 

1. First IP: IP address start of a free address block (4 bytes). 

2. Last IP: IP address end of free address block (4 bytes). 

3. Network Mask: It consists of 4 bytes. 

4. IP Node n, First IP Node n, Last IP Node n: This represents an entry on the free block table for 

all the nodes in the network. Each node is represented by these fields of 4 bytes, each one 

being: the node IP address, the initial IP address and the final from its free address block, 

respectively. 

 IP_RANGE_REQUEST 

Figure 7 shows the IP_RANGE_REQUEST message format. 

Figure 7. IP_RANGE_REQUEST message format. 

 

1. Server IP: Server address that requests the range for client (4 bytes). It can be different from  

the IP address of the sender message, by treating multi-hop networks. 

2. Client ID: Client node identification. It has the same value as the ID field of the 

SERVER_DISCOVERY and SERVER_POLL message (6 bytes). 

3. NIPs: Requested IP Address Number (2 bytes). 

 IP_RANGE_RETURN 



Sensors 2011, 11                            

 

 

4448 

Figure 8 shows the IP_RANGE_RETURN message format. 

Figure 8. IP_RANGE_RETURN message format. 

 

1. First IP: The initial IP address of the free address block (4 bytes). 

2. Last IP: The final IP address of the free address block (4 bytes). 

3.5. Timers 

The wireless and mobile nature of MANET means that there are situations in the networks where 

messages are lost, or delayed in getting to its destination more than the estimated time. Therefore, we 

expose below a series of timers used to solve such situations: 

 SERVER_DISCOVERY_TIMER: After sending the message, the client node will start this timer 

when it gets to the state WAITING_REPLY. During this time the node is waiting for 

SERVER_OFFER messaged of possible close by nodes belonging to a network.  

The longer the timer runs, the more time it will dedicate to receiving messages of this kind, thus 

there will be more to process and, therefore, it is easier to get an address block. But it also means 

increasing the latency to obtain an IP address. 

If this timer expires and the client node has not received any SERVER_OFFER, there has been a 

message loss, or perhaps there are no server nodes, it will send a new SERVER_DISCOVERY. This 

action is repeated a maximum number of times (SDISCOVERY_MAX_RETRY) and, if it goes on 

without receiving messages, it will initiate its own network.  

 SERVER_OFFER_TIMER: After the SERVER_OFFER message, the node goes into the 

WAITING_POLL state, and starts this timer. When it expires, the state will change to IDLE. 

 SERVER_POLL_TIMER: As soon as the SERVER_POLL message is sent, the node client will 

wait for the IP_ASSIGNED message for the time that this timer should determine. If this 

message does not come, the SERVER_POLL will be re-transmitted up to a maximum number 

of attempts, defined as SPOLL_MAX_RETRY. If the maximum number of attempts is 

exceeded, it will begin the configuration process again. 

 IP_RANGE_REQUEST_TIMER: The server node who sends an IP_RANGE_REQUEST message  

to another node of the network initiates this timer at that moment. As with the 

SERVER_POLL_TIMER, if this timer expires, the IP_RANGE_REQUEST message will be 

forwarded up to a maximum number of attempts, given by RREQUEST _MAX_RETRY. 
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 ACCEPTED_OFFER_TIMER: This timer is activated after sending an IP_ASSIGNED message 

or an IP_RANGE_RETURN message. During this time, the server node cannot reply to requests 

of SERVER_POLL or IP_RANGE_REQUEST type. This restriction will arise after the timer 

expires (the offer expired without being accepted), or on having detected that a node with the 

first IP address of the offered ones has entered the network (the offered address block was 

accepted). It is necessary to bear in mind that although it could not assign IP address, the server 

node will keep on answering SERVER_DISCOVERY requests giving the value 0 to the field R 

(READY) in the SERVER_OFFER message. In this way, the node client is informed of the 

existence of the server, although it should not be capable of assigning IP address immediately. 

 NODE_DOWN_TIMER: When OLSR erases the route towards a node, it is not eliminated 

immediately from the Free_IP_Blocks table. In its place, this timer is initiated. If before the 

timer expires it manages to discover a route to the node, that means that it disappeared 

momentarily, but it did not leave the network. Therefore, the elimination is cancelled on the 

Free_IP_Blocks table. In case the timer expires and a route has not been recovered, the node is 

assumed to be lost and its entry is eliminated from the Free_IP_Blocks table, updating those 

who match. 

 INIT_TABLE_TIMER: On receiving the Free_IP_Blocks auto-configuration table in the 

IP_ASSIGNED message, the client node activates this timer. During that time, the table 

contains nodes so that OLSR does not have a well-known route yet. After the timer expires, the 

nodes from the Free_IP_Blocks table that do not have entries in the OLSR route table are 

verified: these nodes are eliminated (updating the corresponding entries), since they are nodes 

that belonged to the network on having received the table, and have left it before OLSR knew of 

its existence. 

 INIT_ASSIGN_TIMER: This timer is used as much by the node client as by the server when they 

have received or assigned an IP address block, respectively. That is to say, the server initiates it, 

on having verified the node entry with the first IP address of the block offered in the 

IP_ASSIGNED message, and the client initiates it after receiving the IP_ASSIGNED message 

and to configure its address. Thus there has been time for the whole network to update its 

Free_IP_Blocks table before more changes take place. During that time, they will ignore 

SERVER_POLL or IP_RANGE_REQUEST messages, although they will reply to the 

SERVER_DISCOVERY. 

 NODE_DOWN_ASSIGN_TIMER: When an already configured node detects the departure of 

another one, and it verifies that it is its turn to gather the IP address that remains free, it starts its 

timer. More concretely, the timer will be activated when the elimination of the OLSR routing 

table is detected, that is to say, it will be activated at the same time as the 

NODE_DOWN_TIMER timer.  

Until it does not expire, the node will ignore the SERVER_POLL and IP_RANGE_REQ requests. 

This way, a margin of time will happen to ensure that all the nodes in the network detect the mentioned 

departure and update their Free_IP_Blocks table, before assigning them to some another new node. 

Therefore, the duration of this timer must be greater than that of the NODE_DOWN_TIMER to make 

sure that the rest of nodes in the network not only detect the elimination of a route but they have 
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eliminated it from the Free_IP_Blocks table. The node will keep on replying to the 

SERVER_DISCOVERY messages fixing the value 0 in the R field from the SERVER_OFFER 

message. 

 SLEEP_TIMER: Timer used by a client node when it detects nearby nodes belonging to some 

network, but that are not in a position to assign IP addresses at this moment. This way, it gives a 

margin of time to allow the processes to end preventing them from assigning address. 

3.6. State Diagrams 

Depending on whether they are in the process of joining the network, or if they already belong to one, 

two types of nodes are differentiated: client and server. In the following paragraphs the state diagrams 

that govern the behavior of both types of nodes are shown and explained. The state, in which the node is 

found, changes when sending or receptions of messages ocurrs, or when determined timers expire. 

3.6.1. Server Node 

We call all the nodes in the network that are configured correctly server nodes, that is to say, they 

possess a valid IP address with which they can communicate with the rest of nodes, and a free  

IP address block. With this free address block they facilitate access to the new nodes, which we will 

call clients. Figure 9 shows the state diagram. As we can see, two types of states exist: the ones 

represented with rounded and clear rectangles, and those enclosed in somewhat darker rectangles with 

corners. We will call them states of the type ready or not_ready, respectively. 

From any state, the server node is in expectation of SERVER_DISCOVERY messages. It will 

always reply with a SERVER_OFFER message, but depending on whether the current state of the 

node is of ready or not_ready type, it will answer giving to the field R (READY) the value 1 or 0. This 

way, a node always announces its presence, although at this precise moment it should not be capable of 

assigning IP addresses to a client. This is indicated in the state diagram with the any state state. 

 Any state (ready): From any state of ready type, the server node will respond to a 

SERVER_DISCOVERY message with one of SERVER_OFFER type (R field with value 1). 

That will ensure that the server goes to the state Wait SERVER_POLL. A node can reply 

SERVER_DISCOVERY at the same time to requests from different nodes, and be awaiting 

any of the corresponding SERVER_POLL messages. Also they will answer messages of type 

IP_RANGE_REQUEST with one of the type IP_RANGE_RETURN. This means that whether 

the node is in any ready state, it will be give half of its free address blocks to any other node in 

the network without proper addresses and that it needs to facilitate the joining to a client. 

 Any state (not_ready): Whilst the node is in a not_ready state, it will reply to the 

SERVER_DISCOVERY messages with a SERVER_OFFER message giving the value 0 to the 

field R. 

 Wait SERVER_POLL: In this state the node waits for a time determined by the 

SERVER_OFFER_TIMER timer to receive a SERVER_POLL message. This message 

indicates that the client, the one who sent the SERVER_OFFER has chosen as its server for the 

process of auto-configuration. After the reception of the message, the node will send a 
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IP_ASSIGNED message to the client in the case of having available addresses locally (the field 

L of the message SERVER_OFFER had value 1); and it will pass to the Wait IP_Assigned 

state resolve. If the addresses that it offered were not local, it will have to ask for them from a 

node in the network with the IP_RANGE_REQUEST message; and it will pass into the state 

Wait IP_RReturn. In case any SERVER_OFFER messages are not received before the timer 

expires, the node will pass to be in the IDLE state. 

 Wait IP_ASSIGNED resolved: In this state, of type not_ready, the node is waiting to find out if 

the client node correctly received the address block offered by an IP_ASSIGNED message, or 

through an IP_RANGE_RETURN message and an intermediary. The result can be that the client 

has been configured, or that it has not received the address block. The above-mentioned can take 

place for several reasons, since they can be problems with interferences in the message reception, 

movement of the client node out of the coverage range, and so on. If a new node appears in the 

network using the first IP address from the block offered in the message IP_ASSIGNED or 

IP_RANGE_RETURN, it means that the client node stopped being configured. In this moment 

the server node changes its state to Init steal window. If the node was not capable of finishing the 

auto-configuration process, the ACCEPTED_OFFER_TIMER timer will expire. In this case the 

node passes to the IDLE state. 

 Init time window: This state serves to give a time margin that allows all the nodes in the 

network to be capable of detecting the joining of the recently configured client, before dividing 

again their own IP free address blocks. If this margin did not exist, and new requests would be 

attended immediately, synchronization problems might happen if other nodes were detecting 

the new incorporations to the network in an incorrect order. 

 Wait IP_return: In this state the node is waiting for the reception of an IP_RANGE_RETURN 

message. When it receives this message, in which a node in the network indicates it has a block that 

it can offer the client in waiting; it will send an IP_ASSIGNED message to the client. After this, the 

node will have ended its function as server, and will pass to the IDLE state. If the 

IP_RANGE_RETURN message is not received before the timer IP_RANGE_REQUEST_TIMER 

expires, it will turn to try the request sending again an IP_RANGE_REQUEST message a 

maximum number of times RREQUEST_MAX_RETRY. These successive attempts are sent in 

every occasion to a different node. If the limit of attempts is exceeded, then the node will desist and 

change its state to IDLE. 

 IDLE: This is the state of rest, or the one in which the node is idle. When it is in this state, the 

node does not undergo any operation related to the auto-configuration process. It is therefore 

treated as a waiting state. 

 Node down time window: This node provides a time margin when the node must gather the IP 

address from a node that has left the network. More precisely, the node changes to this state on 

having detected that it has lost the route towards a node of whose address block it is 

responsible. This transition is done from any other state, be it of type ready or not_ready. After 

the time determined by the timer NODE_DOWN_ASSIGN_TIMER, the node will return to the 

state of rest IDLE. This timer is not to be confused with the NODE_DOWN_TIMER. Although 

they begin at the same time on having detected the same event, the processes involved are 

independent. 
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Figure 9. Server Node State Diagram. 

 

3.6.2. Client Node 

The procedure that a node that wants to gain access to a network follows is described in Figure 10. 
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Figure 10. Client Node State Diagram. 

 

The diagram is provided with not_ready type states, explained in the state diagram of the server 

node and represented with the same style of rectangles. As if it were an already configured node, the 

node that is in process of configuration of its IP address replies to SERVER_DISCOVERY requests 

with SERVER_OFFER messages. In these messages the value 0 is given to the R field, since the node 

is not in a position to assign IP addresses, and only tries to announce its presence. 
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 Initial state: in which the auto-configuration process begins. If the number of attempts  

is less than the maximum, SDISCOVERY_MAX_RETRY, then the node emits a 

SERVER_DISCOVERY message for each of its network interfaces which are going to use the 

MANET network. It changes its state to Receive SERVER_OFFER. If it has gone over at the 

limit of attempts, then the node desists from his intention from finding a network to join and 

creates a new one. It will become a node server, beginning in the IDLE state of the server state 

diagram. 

 Receive SERVER_OFFER: It is treated as a state of waiting, during which the SERVER_OFFER 

messages of other possible nodes are gathered. On having ended the waiting period, determined 

by the timer SERVER_DISCOVERY_TIMER, the responses are processed. If no 

SERVER_OFFER response has been received, it is returned to the initial state. If there is some 

offers, the number of them with the value 1 in the field R is verified. If among the offers none 

had the bit R set to 1, it means that there are nearby nodes belonging to a network, but at the 

moment they are not capable of assigning IP addresses. Therefore, the node passes to the 

Sleeping state.  

If there was some offer with the bit R set to 1, the servers are sorted by preference and a 

SERVER_POLL message is sent to the first one of them. In this case the node changes its state to Wait 

IP_ASSIGNED. This state is not one of the types explained in the state diagram of a client node. This 

means that it does not reply to SERVER_DISCOVERY messages, since at the moment it does not 

know if there is any network nearby which to join. 

 Sleeping: The node interrupts its attempts to join the network during the time  

determined by the SLEEP_TIMER timer. This is like that because there have been received 

SERVER_OFFER messages of nearby nodes that at the moment are not capable of assigning 

IP addresses, and what is claimed that after this time they are already capable of facilitating the 

join to the network. After the timer expires, the node will return to the initial state. 

 Wait IP_ASSIGNED: In this state, the client is in expectation of an IP_ASSIGNED message on 

the part of the server to whom the message SERVER_POLL was sent. If the awaited message 

does not come, the SERVER_POLL_TIMER timer expires. In this case, it will turn to try to 

send a SERVER_POLL to the following server of the list generated after the end of the 

SERVER_DISCOVERY_TIMER timer. If the list of servers is ended, or it goes over the limit 

of attempts SPOLL_MAX_RETRY, the node returns to the initial state. On having received the 

IP_ASSIGNED message, the node configures its address (or addresses, in case of having 

several network interfaces). At this moment, it already takes part normally in the network, and 

passes to be a node server. The state with the one begins its behaviour as server is the Init time 

window. 

4. Simulations and Results 

Since in these networks nodes numbers that form the network are unpredictable, the protocol 

scalability is one of the main issues to consider. Therefore, it is essential to evaluate the impact of 

increasing the nodes number in the network in distinct parameters such as latency in address 



Sensors 2011, 11                            

 

 

4455 

assignment, the overhead because of control traffic or delay in the synchronization. Besides the nodes 

number in the network, it is necessary to take into account the frequency of the input and output nodes 

in the network. When a node leaves the network, the free address tables free in the network have been 

updated. If this is not done quickly, the network nodes cannot deal with requests for new entries in the 

network to interpret that the network does not have free addresses. 

To evaluate the D2HCP protocol performance has been used Network Simulator Network Simulator 

3 (NS-3) [6]. Different scenarios of MANET networks were simulated to evaluate performance under 

different circumstances. 

4.1. Simulation Scenarios 

Table 1 summarizes the main parameters used during simulations. When performing these 

simulations has been remained constant the entries number in the network per unit time. This factor is 

important, particularly in high density networks. 

Table 1. Simulation Parameters. 

Parameter Value 

Simulation Area 1,500 m × 1,500 m 

Mobile Node Number 50 to 1,600 

Mobility Pattern Random Waypoint (setdest) 

Routing Protocol OLSR 

Node Range or Coverage 125 m 

Simulation Number 10 

Simulation Area 1,500 m × 1,500 m 

4.2. Results 

Firstly the latency in the process of assigning addresses. Figures 11 and 12 show the evolution of 

the latency value depending on the nodes number in the network. Figure 11 shows the values using 

IPv4 addresses from class C, i.e., with 254 available addresses. Figure 12 uses IPv4 addresses from 

Class B, providing 65534 addresses. Figure 11 shows that the increase in time address allocation 

begins to grow more quickly from the 125 nodes. However, using addresses from class B (Figure 12), 

the time experiences a very slight growth up to 1,600 nodes which were simulated. 

These results indicate that the parameter that further determines the latency is the percentage of 

occupied addresses. When this percentage is nearly 50% the node number that do not have addresses to 

offer increases in direct proportion way. This does not allow a local assignment to be done and it is 

necessary to request the address from another node, increasing the time needed to complete the 

process. Anyway the average latency in the address assignment process is low. 

Against auto-configuration protocols based on auto duplicate address detection (DAD), the protocol 

D2HCP also presents a great reduction in the overhead of control packets in the network.  

In fact, in most cases, the configuration is performed locally, i.e., a neighbor will assign address to 

the new node. This involves the sending of four control packets which do not spread to the rest of the 

network. In the case where no local address may be assigned, a unicast transmission is performed with 
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the chosen server, which causes much less overhead than a broadcast sending. The probability that 

cannot be assigned addresses locally depends on the relationship between the node number in the 

network and the available address number. 

Figure 11. Latency in the IPv4 address assignment of a network from Class C. 

 

Figure 12. Latency in the IPv4 address assignment of a network from Class B. 

 

 

In Figure 13 we can see the average number of control packets involved in each address 

configuration process. In the simulations have been used IP addresses from Class C, thus we have  

254 network addresses. In Figure 13, you can see that when there are few nodes in the network, the 

required control message number to carry out auto-configuration is near the minimum, since in most 

cases the configuration can be performed locally. 

However, when the free address number is close to 0, no configuration can be performed locally 

and remote nodes must use to perform such configuration, increasing the sent message number. 
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Figure 13. Control message average number sent in each address configuration. 

 

Figure 14 shows the evolution of the necessary control message number to assign an address based 

on the request number per second. In the case of the pink line the simulation was carried out in a 

scenario with 250 nodes. In the case of the blue line a scenario with similar characteristics has been 

used, but with 225 nodes. The used frequency of node departures in the network is similar to the 

frequency of node joins to hold the address availability. 

As shown in Figure 14 in the case of a network with 225 nodes (about 90% occupancy) the required 

control messages number is practically independent from the request number per second, which means 

that the protocol efficiently supports the network scalability.  

Only in the limit (around 100% occupancy) the protocol reduces its performance in terms of 

overhead. In fact, the main performance problem found is given in the situation that reflects the pink 

line in Figure 14. In situations where errors occur in the choice of the remote server, the latency 

increases in direct proportion to the control message number sent. However, this increase in overhead 

is acceptable, since it is still lower than the overhead incurred by the DAD algorithms. 

Figure 14. Control message number against to number of requests per second. 
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4.3. D2HCP versus the Thoppian and Prakash Protocol 

Figure 15 shows a comparison of the latency of D2HCP versus the Thoppian and Prakash Protocol. 

It is noted that in the first case the latency is lower than the second and it is very regular too (in 

Thoppian and Prakash the latency grows exponentially when the number of nodes is high) allowing us 

to conclude that D2HCP improves the results of its predecessor. 

Figure 15. Latency D2HCP versus Thoppian and Prakash Protocol. 

 

5. Conclusions and Future Work 

An auto-configuration protocol for Mobile Ad Hoc Networks called D2HCP Distributed Dynamic 

Host Configuration Protocol (D2HCP) has been designed. This protocol is classified as a stateful 

protocol. This is an IPv4 address auto-configuration protocol for isolated Mobile Ad Hoc Networks. 

In this protocol each node is responsible for managing a range of addresses. When a new node 

wants to begin participating in the network, one of the nodes within the network gives half of its 

address range to the new node. In the case of any adjacent node not having free addresses, but free 

addresses do exists, a request to a network node that has free addresses is done. In this operation mode 

is based on distributed nature of the protocol. 

To keep updated information about free addresses owned by each node, the traffic of control 

packets from OLSR protocol. Such protocol at each node tries to keep updated knowledge of the whole 

topology from the network. This protocol has been designed to work together with OLSR; although it 

could operate with any proactive protocol by the flexibility of its design. 

D2HCP warrants uniqueness for IP addresses in a wide variety of network conditions including 

message loss, concurrent requests and network partition. The simulation results show that the protocol 

has low latency and overhead. Worth noting is the protocol scalability features compared to other 

proposals in the literature, its flexibility that facilitates the protocol extension with new features, as 

well as synchronization process introduces null overhead. 

Possible future work can be identified as follows: 

 Detection of the merging to allow reassigning addresses that enters in conflict (something 

relatively easy since it would introduce a new message). 
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 Extension of the protocol to subordinate networks with access to the Internet or other  

networks, for which it should take into account the network topology to perform address  

auto-configuration process. 

 Study protocol performance in cooperation with other proactive routing protocols (the first 

version D2HCP is designed to work together with OLSR). 

 Add a security module that protects against different attackers to proportionate a safe  

auto-configuration. 
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