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Abstract: The real world phenomena being observed by sensors are generally  

non-stationary in nature. The classical linear techniques for analysis and modeling natural 

time-series observations are inefficient and should be replaced by non-linear techniques of 

whose theoretical aspects and performances are varied. In this manner adopting the most 

appropriate technique and strategy is essential in evaluating sensors‘ data. In this study, 

two different time-series analysis approaches, namely least squares spectral analysis 

(LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and 

wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level 

observations recorded by tide-gauge sensors, and the advantages and drawbacks of these 

methods are reviewed. The analyses were carried out using sea-level observations recorded 

at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level 

Monitoring System. In the analyses, the useful information hidden in the noisy signals was 

detected, and the common features between the two sea-level time series were clarified. 

The tide-gauge records have data gaps in time because of issues such as instrumental 

shortcomings and power outages. Concerning the difficulties of the time-frequency 

analysis of data with voids, the sea-level observations were preprocessed, and the missing 

parts were predicted using the neural network method prior to the analysis. In conclusion 

the merits and limitations of the techniques in evaluating non-stationary observations by 

means of tide-gauge sensors records were documented and an analysis strategy for the 

sequential sensors observations was presented. 

Keywords: tide-gauge sensors; sea level; time series; spectral analysis; time-frequency 

analysis; LSSA; neural networks; wavelet transform; cross wavelet transform; wavelet 

coherence 
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1. Introduction 

The surface of the sea deforms continuously. Its level, measured relative to an arbitrary datum, is 

called ‗sea level‘ and changes with time and is the most obvious indicator of ocean changes. Changes 

in sea level are greater in the shallow waters near a coast than in the open sea, and, because a large 

fraction of the human population resides in coastal areas, variations in sea level have aroused interest 

for a long time. Knowledge of the near-shore sea-level variations is of great importance for safe 

navigation, and sea-level observations provide valuable input to ocean science and to geodynamic and 

geoscience applications [1]. With these goals, sea-level data from tide gauges all over the world are 

archived and distributed by an international service, the Permanent Service for Mean Sea Level 

(PSMSL) [2] along with a history of the datum with respect to which the sea level was measured. As a 

member of this service, the Turkish National Sea-Level Monitoring System (TUSELS and its Turkish 

abbreviation is TUDES) provides data to PSMSL. 

Time-series analysis is a fundamental issue in evaluating sea-level observations and identifying the 

tidal components of sea-level changes, as in many other fields of empirical research [3,4]. Considering 

tide-gauge sensor records, one almost always faces a composite of numerous scales ranging from days 

to decades. On the considered time scales, sea-level changes are often non-stationary and time resolved 

methods are necessary for an insightful analysis of the data [5]. In the spectral analyses of sea-level 

variations, filtering the tides and other high-frequency oscillations out of the observations is required to 

obtain the seasonal sea-level cycle. This filtration is most easily achieved by averaging the hourly sea 

level over a month to obtain a ‗monthly sea level‘. Frequently, the sea-level records contain gaps and 

irregular sampling intervals originating from failures in the measuring/recording equipment or the 

upgrade of a tide gauge. These gaps introduce difficulties and uncertainties into the stages of data 

analysis and prediction. Therefore, either using a suitable method of analysis, which can evaluate 

unequally spaced, gappy data, or preprocessing the data to fill the missing data using an appropriate 

prediction algorithm is required. In this study, we aim to provide a methodological review for  

time-frequency analysis of non-stationary sensors observations using the least squares spectral analysis 

(LSSA) and wavelet analysis separately and clarifying superiorities and weaknesses of the 

experimented techniques. With this purpose we applied the techniques to estimate the spectra of the 

sea-level changes, employing the 19-year and 10-year data recorded at the Antalya-II and Erdek  

tide-gauge stations, respectively. The missing parts of the data were predicted using the neural network 

(NN) method. 

LSSA is a least squares estimation method for computing variance- and power-spectra and 

suggested by [6,7] as an alternative to classical Fourier spectral analysis (see, e.g., [8]). In this method, 

the optimization in the Euclidean sense offers numerous advantages over using the other classical 

spectral evaluation methods. Its most important advantage is that time series with unequally spaced 

values and gaps can be analyzed without preprocessing, which may corrupt or obligate useful 

information hidden in the series [9-11]. It has been applied in its original [7] or alternative forms by a 

number of researchers in many fields, such as geodetic science (e.g., [9,12-20]) and observational 

astronomy (e.g., [10,21,22]). 

Wavelet analysis is another method that can be used to analyze time series that contain  

non-stationary powers at many different frequencies [23,24]. Recently, the wavelet-analysis method 
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has become a common way of analyzing localized power variations within a time series in various 

disciplines and applications such as climatology, atmospheric science and geoscience [25-34]. By 

decomposing a time series into a time-frequency space, the dominant modes of variability and the 

variation of those modes with time can be determined. Wavelet analysis overcomes the limitations of 

classical frequency-space analysis methods that assume that the underlying processes are stationary in 

time. There are two classes of wavelet analysis: the continuous wavelet transfrom (CWT) and its 

discrete counterpart. The discrete wavelet transform is a compact representation of the data and is 

particularly useful for noise reduction and data compression whereas the CWT is better for intuitive 

feature extraction purposes. When investigating the sea-level data, we are typically interested in 

extracting low signal-to-noise-ratio signals in the time series and apply CWT to the data. However, 

because analyzing the data using CWT requires equally spaced values, the gaps in the used data sets 

were filled using the multi-layer feedforward backpropagation neural network (MLFB-NN) method 

before the data analysis. The neural-network method can satisfactorily represent any arbitrary 

nonlinear function when a properly trained neural network is used. With this method, useful 

relationships among different inputs and outputs can be clarified. The MLFB algorithm is commonly 

used for training the neural networks in many applications. The performance of this algorithm is 

reported to be satisfactory in the prediction of the values in time series [18,35-38].  

Although CWT is a common tool for analyzing localized intermittent oscillations in time series, it is 

very often desirable to examine together two time series that are expected to be linked in some way. In 

particular, it may be useful to examine whether regions in time-frequency space with large common 

power have a consistent phase relationship and therefore are suggestive of causality between the time 

series [30]. From the CWTs of Erdek and Antalya-II tide-gauge records, we constructed the cross 

wavelet transform (XWT) which exposes the common power and relative phase of two sea-level data 

sets in time-frequency space, thus revealing the differences and similarities of the sea-level changes 

recorded in the open and semi-enclosed seas with respect to the locations of the Antalya-II and Erdek 

tide gauges. Another useful quantity in measuring the cross-correlation between two time series as a 

function of frequency is the wavelet coherence (WTC). WTC is defined as the square of the  

cross-spectrum normalized by the individual power spectra, and it allows the determination of high 

levels of significance even when the common power of the two series is low. For this reason, this 

wavelet tool has been called ―an accurate representation of the (normalized) covariance between the 

two time series‖ by [27,33]. Similar to XWT, we also generated the WTC of the two time series to 

inspect their common powers and the phase difference and compared the results from both  

wavelet tools. 

The results of this study confirmed the applicability of the employed techniques in analyzing and 

investigating the sea-level variations recorded by tide-gauge sensors. The LSSA is a very useful 

technique in spectral analysis for inspecting and clarifying periodic signals hidden in noisy time series 

with trends. In the prediction of the missing data in sea-level series, the neural-network method worked 

well, considering the quality measures of the prediction. Because natural series, like sea-level 

observations, are generally non-stationary, the ability of neural networks to model non-linear processes 

without any a-priori assumptions about the generating processes provides an advantage in prediction. 

The significant periodicities revealed by LSSA were confirmed in the results of the wavelet analysis. 

Furthermore, the correlation between the time series of the two tide gauges was explained using the 
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wavelet tools. Wavelet is a strong method for the time-frequency analysis of non-stationary sequential 

data and is suggested for investigating sea-level changes. 

2. Tide-Gauge Stations in Turkey 

TUSELS presently consists of a data center in Ankara and a series of operational tide gauges 

located along the surrounding Mediterranean-, Marmara-, Aegean- and Black-Sea coasts of Turkey 

(see Figure 1 for the current structure of TUSELS with active and planned tide gauges on the Turkish 

coast) [39-42].  

Figure 1. TUSELS tide-gauge stations in Turkey [42]. 

 

 

Sea-level monitoring studies in Turkey began in 1930s, and the General Command of Mapping 

(GCM) has the responsibility of establishing and operating the TUSELS tide gauges and distributing 

their data. The activities of transferring, quality control and analysis of tide gauge-data are carried out 

at the data center in Ankara. In 1998 and 1999, the tide gauges were modernized and all existing 

analogous floating type tide-gauge sensors in stilling wells were upgraded to digital and automatic 

devices by GCM in order to meet the GLOSS (Global Sea-level Observing System) standards [43]. 

Today, the stations are equipped with a measurement and data-collection unit with self-calibrating 

acoustic-ranging sea-level sensors (Aquatrak 4100 series) and meteorological sensors. Figure 2 shows 

the units of the sea-level sensor with its cable connections and an illustration of the sea-level 

measurement principles using the acoustic sensor [44]. The measurement principle of the Aquatrak 

sensor is as follows: a series of electrical pulses are transmitted from the controller unit to the 

transducer that converts them into acoustic pulses and sends them to the sea surface via a sounding 

tube. The sounding tube is a collective name for a calibration (Cal), ranging, trim and red-brass tube 

that each has a different function in transmitting the acoustic pulse. As the acoustic signal passes down 

through the tube an echo is produced that is returned to the controller receiver. When the pulse strikes 

the liquid surface another echo is produced, which is also returned to receiver. A special technique is 

based upon the comparison of a pulse time of travel within the known (through the calibration tube) to 

(Data Center) 

: Planned tide gauges 

: Existing tide gauges 
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an unknown distance to the liquid level (through the sounding tube). The controller initiates the drive 

pulse to the transducer, times and stores the calibration return echo and times and stores the liquid 

level return echo. An on-board microprocessor calculates the ratio, applies the offset values, performs 

the unit conversions and stores the data then transmits the sea-level value to the data logger (or PC) in 

directly readable ASCII units [44]. 

Figure 2. (a) the units of the digital acoustic tide-gauge sensor with cable connections  

(b) the illustration of the measurement system with acoustic tide-gauge sensor [44]. 

 

(a)       (b) 

Figure 3. The structure of a digital TUSELS tide-gauge station [39]. 

 

 

After modernization the tide-gauge stations, [42] reports that the datum connection between the 

analog and the digital and automatic sea-level measurement systems was achieved by first-order 

precise leveling and the datum of the new system (acoustic sea-level measurement device) being 

transformed to the old system‘s datum (analog floating sea-level measurement system with stilling 

well), thus providing data continuity of sea-level measurements. The hourly sea-level values for 18 years 

(1985–2003) of Antalya-II and 19 years (1984–2003) of Erdek tide gauges have been quality 

controlled by comparing them with the predicted values after removal of the datum shifts and time 

errors. Today, the hourly and daily sensor data of tide gauges are transferred to and analyzed in the 

Data Center (Figure 3 shows the structure of a modernized digital tide gauge of TUSELS and the data 

flow chart) [39,42]. Daily values are computed by applying a 119-point low-pass filter to the hourly  
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sea-level values, and monthly values are obtained from the daily values with a simple averaging and 

released to the users and researchers via the global data bank of PSMSL [2]. 

In the numerical tests in this investigation, the monthly data from the Antalya-II and Erdek tide 

gauges, downloaded from [2], were analyzed. The Erdek tide gauge was installed on the Marmara 

coast of Turkey (see Figure 1) at the end of 1984 and operated using analog sensors until its upgrade in  

April 1999. Now, its digital and automatic sensors are capable of providing high-quality sea-level data. 

The Antalya-II tide gauge is on the Mediterranean coast of Turkey (see Figure1) and was activated  

in 1985. Similar to the Erdek one, the Antalya-II tide gauge operated using the analog system  

until 1998, at which point its system was also upgraded with acoustic sensors [42]. The Antalya-II 

tide-gauge station has special importance as being the official zero-point of the Turkish National 

Vertical Datum. The specifications of both tide gauges are summarized in Table 1. The data used in 

this work span the years of 1986–2005 for Antalya-II and 1995–2005 for Erdek. The specified data 

intervals, considered in the analyses were determined by the data availability of the PSMSL data bank 

at the date of this study. The graphics in Figure 4 shows the monthly sea-level observations considered 

in the time-frequency analysis, and the autocorrelation and cross-correlation graphs of the tide-gauge 

records are shown in Figure 5.  

Table 1. Specifications of Antalya-II and Erdek tide gauges [2]. 

Specification Tide Gauges 

Station name Antalya-II Erdek 

Location (latitude, longitude) 3650‘N, 3037‘E 4023‘N, 2751‘E 

PSMLS country/station code 310/052 310/038 

Spanning of the used data 1986–2005 1995–2005 

Acoustic gauge sensor Aquatrak 4100 Aquatrak 4100 

New acoustic systems installation year 1998 1999 

Figure 4. The sea-level data of Antalya-II and Erdek tide gauges for the considered time 

span: (a, b) the entire data span, (c, d) the annual changes of sea level and their mean. 
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Figure 5. Plots of the autocorrelation functions of the sea-level observations for the  

(a) Antalya-II and (b) Erdek tide gauges and (c) the cross-correlation function between the 

time series (sea-level observations) of the Antalya-II and Erdek tide-gauges records. 

 

(a)     (b)     (c) 

 

The autocorrelation functions of sea-level observations recorded at Antalya-II and Erdek  

(see Figure 5(a,b)) reveal the presence of a periodicity. When the correlograms in the figures are 

considered, it is seen that the autocorrelation coefficient has peaks every 12 months—a time lag. 

Therefore, the highest period can be assumed to be 12 months for each time series. The graph of the 

cross-correlation functions between the time series of both tide-gauge sensors is shown in Figure 5(c). 

In this correlogram, the correlation between the sea-level signals at Antalya-II and Erdek with  

a 12-month time lag is seen. The correlation functions verify the existence of a periodicity in the time 

series; however, the following methods provide a more rigorous investigation of the sea-level changes 

in the period. 

In the results of the GCM‘s harmonic analysis [45] of the 1984–2003 monthly sea-level data from 

the tide gauges, the relative mean sea-level changes at Antalya-II and Erdek are reported to  

be 8.7 ± 0.8 mm/yr and 9.6 ± 0.9 mm/yr, respectively, and these values are reported to be much higher 

than the global sea-level rise estimates [42]. An investigation of these relative sea-level rises  

against episodic GPS observations and the precise leveling measurements revealed significant  

vertical-movement rates of −5.3 ± 1.8 mm/yr and −8.4 ± 3.0 mm/yr for Antalya-II and Erdek, 

respectively. Based on these findings, the relative sea-level changes at Antalya-II and Erdek tide gauges 

are purported to be caused by the local or regional subsidence of the crust in which those tide gauges 

are located [42]. These results by [42] emphasize the importance of studies investigating and clarifying 

the sea-level trends and periodicities for human life and future planning in the coastal areas of Turkey. 

3. Time-Series Analysis 

A set of observations or results obtained from a physical process, arranged in a specific manner, is 

called a data series. If the data series has a chronological ordering, it constitutes a time series [20]. 

There are two basic approaches to analyzing time series: the time domain and the frequency domain. In 

time-domain analysis, the relationship of an observation at time t to the observations at previous time 

points is examined and modeled. In the frequency-domain approach, the sinusoidal components across 

the series are examined using spectral analysis. The time series can be characterized equivalently in 
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terms of the auto-covariance function in the time-domain or in terms of the spectral-density function in 

the frequency domain. 

Spectral analysis techniques permit the identification of periodicities or hystereses in the time-series 

and their decomposition into periodic signals. In the cases of measurements of small amplitudes and 

high noise-to-signal ratios, reflecting the superposition of different signals, spectral-analysis 

techniques provide the best results [16,46]. Using a special algorithm, least squares spectral analysis, 

even unequally sampled and gappy data, such as the sea-level time series, can be analyzed. The 

appropriate analysis of the time series of the sea-level observations with mathematical and statistical 

methods will clarify the magnitude and periodicity of the sea-level changes, and identify their  

tidal components. 

However, the frequency-domain analysis with traditional spectral techniques assumes that the 

underlying processes are stationary in time, but many natural signals are non-stationary because of 

their irregular or time-limited features. In this case, linear analysis approaches, such as Fourier 

transforms, may not be practical and efficient for analyzing these signals. Therefore, non-linear 

analysis approaches should be adopted to study non-stationary real-world phenomena. Currently, many 

advanced analysis techniques, such as wavelet transforms, are widely used to study non-linear 

behavior of time series [5]. Wavelet transforms, which expand time series into time-frequency space, 

are a powerful tool for the detection of localized and quasi-periodic fluctuations. Their extensions, the 

XWT and WTC, are also very useful for examining the phase relationship and the common power 

between the two time series [30,33,34,47,48]. 

From an application point of view, unlike the LSSA method, the wavelet transforms accept 

regularly sampled continuous data as an input for efficient analysis and reliable results. Therefore an 

unequally sampled time series with data voids requires pre-processing before analysis with  

wavelet-transform algorithms. In this study, the neural-network method was used to predict the 

missing values in sea-level signals from the tide-gauge-sensors records (see the missing data in the 

time-series plots in Figure4(a,b)). This artificial-intelligence-inspired computation algorithm can 

satisfactorily represent any arbitrary nonlinear function and can find useful relationships between 

different inputs and outputs when a sufficient and properly trained neural network is used. This method 

has been widely used for multidisciplinary applications, such as the prediction of the earth-rotation 

parameters [37], geoid modeling [49], rainfall-runoff modeling [50], prediction of the distribution of 

vegetation [51], testing integrated environmental models [52], and recently sea-level investigations as 

well [4,18,53-56]. The multi-layer feedforward backpropagation method (MLFB), which is commonly 

preferred for training neural networks in these applications, was used for training the algorithm in the 

study (e.g., [35]). The theoretical backgrounds of the employed analysis and prediction techniques in 

this investigation are summarized as follows. 

3.1. Least Squares Spectral Analysis Technique (LSSA) 

In LSSA, an observed time series is considered to be a function of time ti and is represented by  

f = f(t) = fi, i = 1, 2,…, n. Detecting periodic signals in f, especially in the presence of both random 

and systematic noise, is the main objective of LSSA. To this end, f can be modeled with function g  

as follows: 
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g x   (1)  

where  is a matrix of known base functions and x is a vector of unknown parameters. Here, the time 

series are not required to have an equal sampling rate. However, the observations fi are assumed to 

possess a fully populated covariance matrix Cf. To estimate the model parameters x, the standard  

least-squares method (e.g., [57]) is used, in which the difference between g and f is minimized in the 

least squares sense. The estimate of the model parameters can be obtained as follows: 

        
           

    (2)  

              
           

    (3)  

In the least-squares method, the model parameters are determined to minimize the difference 

between    and f. Using the standard least squares [58], the following is obtained: 

                
           

    (4)  

In the projection theorem,       , meaning that f has been decomposed into a signal    and noise    

(residuals). Thus, to describe how    represents f, a fractional measure s as the ratio of the length of this 

orthogonal projection to the length of f is used: 
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  (5)  

In spectral analysis, the hidden periodicities, which are expressed in terms of cosine and sine base 

functions, are inspected. Therefore, if a set of spectral frequencies (i, i = 1, 2,…, m) are specified, 

then the signals can be expressed as: 

                                  (6)  

Let                   
  and                   .    can then be determined with the Equation (2). 

For different frequencies i, i = 1, 2,…, m, different spectral values are obtained. The least squares 

spectrum is then expressed as: 

 
 1

1

ˆC
, 1, 2,...,

C

T

f i

i T

f

f g
s i m

f f







   (7)  

Equation (7) describes the least-squares spectrum. Obviously, the least-squares spectrum of f is the 

collection of the spectral values for all desired frequencies i, i  1, 2,…, m. The greater the spectral 

value at a frequency i, the more powerful f is at this frequency [11,16,17,59]. Given Equation (7), 

statistically significant spectral peaks satisfy the following inequality: 

 
1

,2,1
2

i v

v
s F 



 
  
 

 (8)  

It is obvious from Equation (8) that the least-squares spectrum follows the Fisher distribution with v 

degrees of freedom and  level of significance [16]. 

In summary, the observed time series may include trigonometric base functions (see Equation (6)) to 

describe the periodic components of the series, along with random-walk and auto-regressive 

components. When the calculation of the least-squares spectrum is carried out, there will be a 
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simultaneous least-squares solution for the parameters of the process. This approach is represented as a 

rigorous approach to the problem of hidden periodicities, where the parameters of the assumed linear 

system driven by noise are determined simultaneously with the amplitudes and phase of the periodic 

components and with other parameters that describe systematic noise [16,60,61]. 

The sea-level observations were analyzed using LSSA, and the hidden periodicities of the sea-level 

changes in the investigated span were clarified. The periods, frequencies (cycle/year), amplitudes and 

phases with their root-mean square-errors and percentage variance levels (%var: a ratio indicating how 

much of the signal    is contained in the observed time series f, see Equation (7)) are outputs of LSSA. 

The findings from the analysis of the sea-level data are summarized in Table 2. In the results, the 

annual, semiannual and terannual periodic signals were revealed in the sea-level variations recorded at 

Antalya-II. As recognized in the graphs in Figure4(b,d) and the correlogram in Figure5(b), the  

sea-level data recorded at Erdek is relatively noisy and has a short span. In the LSSA of the Erdek data, 

annual and semiannual significant frequencies were revealed. The amplitudes of the periodic signals 

are higher in Antalya-II records than in those for Erdek (see Table2). The variance levels versus the 

frequencies are graphed in Figure 6, where the significance level (thin dashed line) and the significant 

periods are indicated. The annual periods of the sea-level changes in Antalya-II and Erdek are shown 

in Figure 6(a,b), and the higher-frequency signals, which were clarified by suppressing the signal with 

a 12-month period in the analysis, are shown in Figure6(c,d). 

Table 2. The LSSA results of the sea-level data of Antalya-II and Erdek tide gauges. 

DESCRIPTION 

ANTALYA II 
Name 

PERIOD 

(year) 

AMPLITUDE 

(m) 

SIGMA 

(m) 

PHASE 

(DEG) 

SIGMA 

(DEG) 

SIGNIF 

99% 

Periodic constituent ANNUAL 1.000 0.089 0.004 95.853 0.255 YES 

Periodic constituent SEMI-ANNUAL 0.500 0.024 0.004 326.282 0.249 YES 

Periodic constituent TER-ANNUAL 0.333 0.018 0.004 358.778 0.250 YES 
 

DESCRIPTION 

ERDEK 
Name 

PERIOD 

(year) 

AMPLITUDE 

(m) 

SIGMA 

(m) 

PHASE 

(DEG) 

SIGMA 

(DEG) 

SIGNIF 

99% 

Periodic constituent ANNUAL 1.000 0.050 0.005 113.433 0.286 YES 

Periodic constituent SEMI-ANNUAL 0.500 0.019 0.005 245.112 0.284 YES 

Periodic constituent TER-ANNUAL - - - - - - 

Figure 6. (a,b) LSSA spectra of the sea-level observations and (c,d) LSSA spectra of the 

observations after the removal of the signal with the highest period. 
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Figure 6. Cont. 

 

(c)       (d) 

 

Figure 7 compares the modeled time series after LSSA to the original observations and shows the 

trend of the sea-level variations in addition to the revealed residuals in the LSSA results for Antalya-II  

and Erdek. 

Figure 7. Original sea-level data (f) vs. the modeled time series after LSSA (g) with the 

trend (modeled) and the residuals (v) for the (a) Antalya-II and (b) Erdek tide gauges. 

 

(a)       (b) 

3.2. Neural-Network Method for Sea-Level Data Predictions 

The neural-network method, based on learning events using available samples x(t) and thus 

generating proper responses to new samples y(t), is widely used in time-series predictions, most often 

as feedforward backpropagation networks that employ a sliding window over the input sequence (see 

Figure 8). The time series prediction of closer y(t) and further y(t + d) values from the n time steps 

back from time t and using neural networks is formally depicted as: 

        

          

1 , 2 , ...,

, 1 , 2 , ...,

y t F x t x t x t n

y t d F x t x t x t x t n

   

    
 (9a)  

where d is the horizon of prediction. The prediction in a time series with known period T is as 

        

          

, 2 , ...,

, , 2 , ...,

y t F x t T x t T x t nT

y t dT F x t x t T x t T x t nT

   

    
 (9b)  
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Figure 8. Example of neural network applications to time series predictions (e.g., using a 

(4-4-1)-multi-layer with four input neurons for observations x(t), x(t – 1), x(t − 2), x(t − 3), 

four hidden neurons, one output neuron for x(t + 1), and three layers of 20 trainable 

weights) [38]. 

 

Table 3. Summary of the adopted parameters in the NN prediction of the sea-level time series. 

Matlab function : newff Feed-forward backpropagation network 

 

Network type : feed-forward Each layer only receives inputs from previous layers 

 

Learning method : supervised (trainlm) Changes in a network‘s weights and biases are due to 

the intervention of Levenberg-Marquardt algorithm 

 

Learning algorithm : backpropagation weights and biases are adjusted by error-derivative 

vectors backpropagated through the network 

 

Transfer function : tansig Function that maps a neuron‘s (or layer‘s) net output n 

to its actual output ɑ. 

Hyperbolic tangent sigmoid transfer function 

 
 

                 

 
 

        
   

 

Performance function : mse Mean Square Error (MSE=ETE/N, RMSE=sqrt(MSE)) 

 

In the heuristic algorithm of this method, the basic element of a neural network is a processing node 

(Figure 8), and each processing node receives and sums a set of weighted input values and passes the 

summation value through an activation (transfer) function providing the output value of the node, 

which in turn forms one of the inputs to a processing node in the next layer of the neural network. 

Although transfer functions are used to decrease the number of iterations, they introduce nonlinearity 
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into the network [49]. Thus, they increase the performance of the network. A tangent sigmoid function 

(Equation (10)) is one of the most frequently used transfer functions in the literature (see also Table3): 

 
 2( )

2
( ) 1

1 net
f net tansig net

e
  


 (10)  

where net is the summation of the weighted input values to the processing node. 

The processing nodes constitute a set of fully interconnected layers, except that there are no 

interconnections between nodes within the same layer in the standard feed-forward back-propagation 

algorithm. The structure of a typical MLFB-NN includes three types of layers: input, hidden and 

output (as seen in Figure 8). The input layer introduces the data for each group to the neural network. 

The output layer is the final processing layer that provides the output value. The hidden layers between 

the input and output layers, of which there may be only one, perform the basic calculations [36,49]. 

Each connection between the nodes has an associated weight, which is usually chosen randomly at the 

beginning of the training process. A value passes through an inter-connection and is multiplied by the 

associated weight of the connection [62]. 

The output of the model (y) with a single hidden and output neuron can be represented by: 

  , ,j k i j iy f w f w x    (11)  

where w is the weight between the layers, x is the input and f is the transfer function. 

A learning algorithm is the most critical part of a neural-network method. Among a number of 

learning strategies, the feed-forward back-propagation learning algorithm, introduced by [63], is 

popular. Iterative gradient-descent and Levenberg-Marquardt training procedures are the most 

commonly used methods in this algorithm (in this study, the Levenberg-Marquardt (LM) training 

procedure was used: see Table 3 for the adopted data-prediction parameters for this investigation). The 

backpropagation algorithm is applied in two stages: (i) the network weights are randomly initialized, 

and the input data are presented to the network and propagated forward to estimate the output value for 

each training pattern set in the first stage, (ii) the difference (i.e., errorE=output-observation) between 

the observation and the NN-output is fed backward through the network, and the weights associated 

with the nodes are changed in such a way that the differences between the actual and the desired 

outputs is minimized, in the second stage. The process is continued until achieving a minimal error or 

one lower than a given threshold value. 

When training with the LM method, the increment of weights w can be obtained as follows: 

1
T Tw J J I J E



      (12)  

where J is the Jacobian matrix and  is the learning rate that is to be updated using  depending on the 

output. In particular,  is multiplied by the decay rate  (0 <  < 1) whenever the performance function 

MSE decreases, whereas  is divided by  whenever MSE increases in a new iteration step [64]. 

The performance of the neural-network model is evaluated in terms of the correlation coefficient R 

and the root-mean-square error RMSE, computed as: 
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  

   

1

2 2

1 1

N

i i

i

N N

i i

i i

x x y y

R

x x y y



 

 



 



 

 (13)  

 
2

1

N

i i

i

y x

RMSE MSE
N





 


 
(14)  

where xi is the observation, yi is the NN output, N is the number of samples,    is the mean value of the 

observations and    is the mean value of the outputs. 

Prior to the wavelet analysis of sea-level data, the missing data in the time series (see Figure 4(a,b)) 

were predicted using the MLFB-NN algorithm to obtain more reliable analysis results. In the study, 

three-layer feedforward networks with a hyperbolic-tangent sigmoid transfer function in the hidden 

and output layers were employed. The prediction results are satisfactory with correlation coefficients 

of 0.85 and 0.90, and root-mean-square errors of 35 mm and 44 mm, for the Erdek and Antalya-II data. 

Figure 9 shows the filled time series of the tide gauges and its linear trend. The scatter plots of the 

correlations between the target (observations) and MLFB-NN outputs for Antalya-II and Erdek tide 

gauges are given in Figure 10. 

Figure 9. Time series of Antalya-II and Erdek tide gauges by fill by MLFB-NN method. 
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Figure 10. Scatter plots of target and output data: the correlations between the observations 

and NN outputs for the (a) Antalya-II and (b) Erdek tide gauges. 

 

(a)        (b) 

3.3. Wavelet Analysis 

Wavelet analysis involves a transform from a one-dimensional time series to a diffuse  

two-dimensional time-frequency image for detecting localized and quasi-periodic fluctuations using 

the limited time span of the data [3,5,26,29,30,34]. In this study, we applied CWT, and this wavelet 

transform is successful in clarifying high-power regions in a time series. Particularly, in some cases it 

is desirable to examine together two time series that are expected to be linked in some way and in such 

cases it has also advantage of deciding whether regions in time-frequency space with large common 

power have a consistent phase relationship. However, the CWT has edge artifacts because the wavelet 

is not completely localized in time. Therefore, the introduction of a cone of influence (COI) is 

suggested in which the transform suffers from these edge effects. The COI is defined so that the 

wavelet power for a discontinuity at the edges decreases by a factor e
−2

 and ensures that the edge 

effects are negligible beyond this point [5,26,30]. 

The CWT of a time series is its convolution with the local basis functions, or wavelets, which can 

be stretched and translated with flexible resolution in both frequency and time. The CWT of the time 

series X(t) with respect to the wavelet  is defined as: 

      , 0, * ,XW s t X t s t   (15)  

where t is time and  is the wavelet at the scale s (which is linearly related to the characteristic period 

of the wavelet). The wavelet power is defined as |WX,|
2
. The complex argument of WX, can be 

interpreted as the local phase [30]. One particular wavelet, the Morlet, is defined as: 

 
2

0

1

1 4 2
0

i
e e


   


  (16)  
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where ω0 is the dimensionless frequency and η is the dimensionless time. In this study, we employed 

the Morlet wavelet (with ω0 = 6) (see Figure 11) because it is quite well localized in both time and 

frequency space [5,30]. The statistical significance of CWT power was estimated against a red-noise 

model [26]. For other wavelet functions, [26], [29] and [65] can be referred. 

The XWT spectrum of two time series (X and Y) with wavelet transforms (WX and WY) for the 

analysis of the covariance of two time series is defined by [26] as: 

     *, , ,XY X YW s t W s t W s t  (17)  

where the asterisk denotes complex conjugation. Furthermore, the power is defined as |WXY(s,t)|. The 

phase angle of WXY (its complex argument, arg(WXY)), describes the phase relationship between X and 

Y in time-frequency space. The statistical significance is estimated against a red-noise model [26,29,30]. 

Figure 11. Morlet wavelet function, depending on the changes in translation (t) and 

dilation (s-scale) parameters [66]. 

 

 

The WTC is a measure of the intensity of the covariance of the two series in time-frequency space, 

unlike the XWT power, which reveals areas with high common power. The WTC of two time series is 

defined by [27] as: 

 
  

     

2
1

2

2 21 1

,
,

, ,

XY

X Y

S s W s t
R s t

S s W s t S s W s t



 
  (18)  

where S is a smoothing operator, which is essential in coherence analysis. Otherwise, the ratio R
2
(s,t) 

would be equal to one. Values derived using the WTC vary between 0 and 1.The closer the WTC is 

to1, the more coherencies there are between the time series [26]. The smoothing operator S is defined as: 

     ,scale timeS W S S W s t  (19)  

 

Morlet wavelet function 
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where Sscale is the smoothing along the wavelet-scale axis and Stime is the smoothing in time. For the 

Morlet wavelet, a suitable smoothing operator is given as [30]: 

   
2

22
1, *

t
s

time s

s

S W W t s c e
 

  
 

 (20a)  

      2, * 0.6scale t t
S W W t s c s   (20b)  

where c1 and c2 are normalization constants and  is the rectangle function. The factor of 0.6 is the 

empirically determined scale decorrelation length for the Morlet wavelet [26]. In this study, the  

Monte-Carlo method with red noise was used to determine the 5% statistical significance level of  

the coherence. 

The time-series data filled by the NN prediction (see in Figure 9) were analyzed using wavelet 

transform techniques. The CWTs of the sea-level variations recorded at the Antalya-II and Erdek tide 

gauges are displayed in Figure 12, which show that both time series present a large scale periodicity  

(12 months, annual cycle) with high power and a confidence level above 95%. The smaller scale 

periodicities (6 months, semiannual and 4 months, terannual) are also recognized as high-power 

regions with the stated confidence level. The clarified periodicities in the CWT results verify the  

LSSA results. 

Figure 12. CWT power spectra of the monthly sea-level observations at the Antalya-II and 

Erdek tide gauges. The thick black contours indicate the 95% confidence level, and the 

region below the thin solid line indicates the cone of influence (COI), beyond which edge 

effects may distort the picture. 
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The XWT of the two time series, Antalya-II and Erdek, is displayed in Figure 13(a), in which the 

areas with the high common spectral power of the time series, located at the annual cycle periodic belt 

in full span and partially at the semiannual cycle, are clear. In the figure, the relative phase 

relationships are shown as arrows (with in-phase pointing right, anti-phase pointing left). According to 

the plot, the sea-level changes recorded at the Antalya-II tide gauge lead the sea-level changes 

recorded at the Erdek tide gauge by a 20 up-pointing arrow (nearly in-phase). 

Similar to that exploited by the XWT, an alternate way of investigating the phase difference of  

sea-level variations between the two tide-gauge records was explored through WTC. Regarding 

applications, whereas the XWT power reveals the areas with high common power of CWTs of two 

time series, the WTC can show the degree of coherence of the XWT in the time-frequency space. The 

WTC of the sea-level data sets is shown in Figure 13(b). The results obtained from WTC confirm the 

results given by XWT, but WTC was more suitable for finding coherent oscillations of the two time 

series than was XWT. 

Figure 13. (a) XWT of the monthly sea-level observations at the Antalya-II and Erdek tide 

gauges. (b) WTC of the monthly sea-level observations recorded at the Erdek and  

Antalya-II tide gauges. In both plots, the thick black contours indicate the 95% confidence 

level and the region below the thin line indicates the COI. 

 

(a)       (b) 

4. Conclusions 

In this study, we applied LSSA and various wavelet-transform techniques, namely CWT, XWT and 

WTC, to time-frequency analyses of monthly sea-level variations recorded at the Antalya-II  

(36.8N, 30.6E) and Erdek (40.4N, 27.8E) tide gauges of TUSELS. The LSSA results clarify the 

amplitudes, phases, and percentage variance levels of the hidden periodicities. In the LSSA results,  

the 19-year sea-level observations at Antalya-II reveal significant annual (period of T = 12 month  

with 8.9  0.4 cm amplitude), semiannual (period of T = 6 month with 2.4  0.4 cm amplitude) and 

terannual (period of T = 4 month with 1.8  0.4 cm amplitudes) cycles. The spectral analysis of  

the 10 year-tide gauge records at Erdek shows that the sea-level variations have significant annual 

(with an amplitude of 5.0  0.5 cm) and semiannual cycles (with an amplitude of 1.9  0.5 cm). The 

relative mean sea-level changes at Antalya-II and Erdek are found 7.9 ± 1.1 mm/yr and 2.8 ± 0.9 mm/yr, 

respectively, from the LSSA. Whereas the trend calculated for Antalya-II confirms the harmonic-analysis 
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results of GCM reported by [42], different results were found for the Erdek tide gauge. The cause of 

this inconsistency between the results is the relatively short data span of the Erdek data used in this 

investigation. 

The neural-network method was used to preprocess the sea-level data sets, and the missing parts in 

the time series were predicted with a feed-forward back-propagation algorithm. In the end, the quality 

of the prediction, as evaluated versus actual sea-level observations, is characterized by a correlation 

coefficient of the order R = 0.85 − 0.90 and a root-mean-square errors of RMSE = 35 mm − 44 mm for 

the time series of Erdek and Antalya-II. Considering these satisfying results, even for the relatively 

short Erdek sea-level data (R = 0.85, RMSE = 35 mm), we report that the MLFB-NN method is 

successful and useful in the prediction of the time series. 

The time series preprocessed with the neural network were analyzed with wavelet transforms to 

observe the localized intermittent periodicities as high-power regions in the spectra with CWT by 

expanding the time series into time-frequency space and to inspect the common power and relative 

phase of the two time series in time-frequency space using XWT. We also used WTC between two 

CWTs to find significant coherence in the parts having low common power between the time series. 

The CWTs of the sea-level data sets reveal annual, semiannual and terannual periodic cycles for 

Antalya-II and Erdek. In the CWT images, the large-scale periodicities (annual cycles) are recognized 

as the full data span, whereas the smaller-scale oscillations (semiannual and terannual cycles) are 

partly along the spectra. The results from the CWTs of the sea-level variations confirm the  

LSSA findings. 

The XWT of the two CWTs shows that the Antalya-II and Erdek time series has a high common 

spectral power at the annual-cycle periodic belt in full span and partly at the semiannual cycle. 

Considering the relative phase relationships derived from the XWT, the sea-level changes recorded at 

the Antalya-II tide gauge lead the sea-level changes recorded at the Erdek tide gauge by 20 pointing 

straight-up arrow (nearly in-phase). These results on the coherence of the Antalya-II and Erdek  

sea-level variations were confirmed and strengthened by the WTC results. 

In the results of this study, we see that the LSSA has strong features in the frequency-domain 

analysis of the time series, especially in evaluating unequally spaced data with gaps, spikes, datum 

shifts and trends, such as sea-level observations. However, when series preprocessing is required for 

analysis in other methods (such as the wavelet-transform methods here) the neural-network method 

works well for predictions. As a principle advantage of the neural-network method that it is capable of 

approximating any continuous function, so adopting a hypothesis about the underlying structure is not 

required [67]. Therefore, the prediction of the time series using neural networks does not corrupt or 

obliterate the useful information hidden in the series. This method can provide satisfying results even 

for the prediction of relatively short time series. In the time-frequency analysis of the series and 

inspection of the coherence between two time series, the wavelet tools CWT, XWT and WTC are very 

useful and practical. In terms of the comprehensive and reliable investigation of the time series with 

quality and reliability measures of their results, each analysis method introduced in this study is 

suggested for analyzing serial sensors data to understand the non-stationary changes in nature. 

However, the availability of sufficiently long, dense and continuous time-series data in analysis would 

provide more efficient results. 
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