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Abstract: For large-scale wireless sensor networks (WSNs) with a minority of anchor 
nodes, multi-hop localization is a popular scheme for determining the geographical 
positions of the normal nodes. However, in practice existing multi-hop localization 
methods suffer from various kinds of problems, such as poor adaptability to irregular 
topology, high computational complexity, low positioning accuracy, etc. To address these 
issues in this paper, we propose a novel Multi-hop Localization algorithm based on 
Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation 
are studied and a more realistic multi-hop localization model is constructed. Then, the 
feasible regions of the normal nodes are determined according to the intersection of 
bounding square rings. Finally, a verifiably good approximation scheme based on grid-
scanning is developed to estimate the coordinates of the normal nodes. Additionally, the 
positioning accuracy of the normal nodes can be improved through neighbors’ 
collaboration. Extensive simulations are performed in isotropic and anisotropic networks. 
The comparisons with some typical algorithms of node localization confirm the 
effectiveness and efficiency of our algorithm. 

Keywords: wireless sensor networks; multi-hop localization; feasible region; 
grid-scanning 
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1. Introduction 

Recent advances in the fields of wireless communication, micro-electro-mechanical systems 
(MEMS) and embedded processing have enabled the emergence of wireless sensor networks (WSNs). 
WSNs consist of a large number of low-cost, low-consumption, small-size, and multi-functional sensor 
nodes. Usually, they are randomly deployed (e.g., nodes are scattered from the air) in complex 
environments to execute a wide variety of tasks, such as environmental monitoring, bush fire 
surveillance, wildlife behavior studies, target tracking, battlefield spying, etc. ([1–3]). For these 
purposes, each sensor node needs to collaborate with others in sensing events of interest by 
exchanging acquired data. If the data sent by a node carries no or incorrect position information, they 
would be meaningless or even harmful. In addition, the positions of sensor nodes are in great demand 
for some location-aware network protocols, such as location-based routing, data aggregation, node 
querying, etc. Therefore, node localization is an important subject in WSNs. In recent years, various 
node localization schemes for WSNs have been proposed and a comprehensive survey is provided 
in [4–6] and the references therein. 

The task of WSN node localization is to determine the positions of sensor nodes without initial 
location information (normal or unknown nodes) based on the knowledge of sensor nodes with initial 
location information (anchor or beacon nodes) and inter-node distance or bearing measurements. Since 
anchor nodes usually obtain their coordinates from global positioning system (GPS) receivers or 
manual configuration in fixed places, raising the number of anchor nodes will significantly increase 
the cost of network deployment. They should therefore make up only a small proportion of nodes in 
large-scale WSNs. Thus, many normal nodes may fail to estimate their positions due to their 
short-range measurement. To solve this problem, three types of localization schemes are proposed, 
namely, centralized algorithms, recursive algorithms, and multi-hop algorithms. 

In centralized algorithms, a powerful processing node collects all inter-node measurements to 
produce a global topology map of the WSN and then distributes all the nodes’ location information to 
the network. Typical centralized algorithms include MDS-MAP [7], SDP [8], SA [9], etc. Centralized 
algorithms are likely to provide more accurate location estimates than others, but they are less 
energy-efficient. This is because shuttling every node’s measurement data to the central node would 
bring about high energy consumption and put too high a strain on nodes that are close to the central 
node. In addition, centralized algorithms have poor scalability and generally are not suitable for 
application in large-scale WSNs. Contrary to centralized algorithms, recursive and multi-hop 
algorithms are two distributed localization technologies. In recursive algorithms, the localization 
process propagates from an area that is close to the initial anchor nodes to an area where the initial 
anchor nodes are inaccessible. Any normal node that has estimated its position becomes a secondary 
anchor node, and broadcasts its coordinates to assist other nodes in estimating their locations. 
Recursive algorithms perform well in small-scale networks, but in large-scale WSNs, they suffer from 
the adverse effects of error propagation and accumulation. With the increased number of iterations, the 
localization errors would be progressively transmitted and amplified, eventually leading to unbounded 
errors. In multi-hop algorithms, the normal nodes are not necessarily the one-hop neighbors of anchor 
nodes. At any time, each node only exchanges its available estimates to anchor nodes acquired so far 
with its immediate neighbors. Based on the local information collected from neighbors, most normal 
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nodes could be localized simultaneously. Multi-hop algorithms could prevent the propagation of 
localization errors. They have better real-time performance and require less communication overhead. 
Therefore, multi-hop localization has received more and more attention in recent years. 

In this paper, we analyze the advantages and disadvantages of existing node localization schemes 
and propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS) for 
large-scale WSNs [10]. Our contributions can be summarized as follows: 

(1) To improve the topology adaptability and accuracy of multi-hop localization, we study the 
factors that influence the multi-hop distance estimation and give a quantitative rule for setting 
the weight of reference information, based on which a more realistic weighted constrained 
multi-hop localization model is constructed. 

(2) We come up with a novel approach to determine the scope of node coordinates. Due to the 
uncertainties in estimated distances, the normal nodes could not be localized in fixed points 
accurately. Usually, they could only be bounded in a certain region. In this paper, we define the 
feasible region as the intersection of bounding square rings. By computing the feasible region, 
we are able to restrict the candidates of node coordinates within a small scope. 

(3) We design a lightweight and local optimum-avoidable method for the estimation and 
refinement of node coordinates based on grid-scanning, which is very suitable to senor nodes 
of limited energy and computing power. Extensive simulations show that MLGS has higher 
localization accuracy and less computation cost than existing typical schemes, and can perform 
well, even in anisotropic networks.  

The remainder of the article is organized as follows. Section 2 discusses some of the previous works 
on WSN node localization. Section 3 formulates the multi-hop localization problems and introduces 
the necessary definitions. Section 4 presents in detailed the MLGS algorithm procedure. Section 5 
evaluates the performance of MLGS through experiments. Finally, Section 6 concludes this paper. 

2. Related Works 

2.1. Centralized Algorithms 

In the literature, there exist three main kinds of centralized localization algorithms [5]: 
multidimensional scaling (MDS), convex programming and stochastic optimization approaches. 
Shang et al. [7] proposed a centralized algorithm called MDS-MAP. By applying MDS technology to 
the matrix comprised by the distances or hop counts between all pairs of nodes, the relative positions 
of all nodes can be obtained. MDS-MAP is robust to measurement errors and only needs a small 
number of anchor nodes (three or more for 2D, four or more for 3D) to estimate the absolute 
coordinates of normal nodes. For a network that has n nodes, MDS-MAP needs to take O(n3) 
operations to compute all nodes’ coordinates. With the increase of network size, the operations of 
MDS-MAP increase dramatically. To make MDS-MAP more applicable to WSNs and have a better 
performance in irregularly-shaped networks, Shang et al. [11] improved MDS-MAP to a distributed 
fashion by using patches of relative maps, namely, MDS-MAP(P). The main idea of MDS-MAP(P) is 
to build a local map at each node of the immediate vicinity and then merge these maps together to 
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form a global map. Since a large number of iterations are required for MDS-MAP(P) to converge, the 
communication and computation cost in map-merging process is high. 

Doherty et al. [12] modeled the peer-to-peer communication of all nodes as a set of geometric 
constraints and yielded the global solutions of all unknown coordinates using convex optimization 
technology. They also gave a method for placing rectangular bounds around the possible positions for 
all normal nodes. Providing that the constraints are tight enough, the estimated values of this scheme 
are close to the actual positions of normal nodes. However, when the network density is small or the 
anchor nodes are not placed around the network boundary, the performance of this scheme would 
decrease significantly. Biswas et al. [8] formulated WSNs localization as a semi-definite programming 
(SDP) problem through relaxation. The optimization problem is set up so as to minimize the errors in 
sensor positions for fitting the distance measurements. Similar to MDS-MAP, SDP requires only a few 
anchor nodes to estimate the positions of all normal nodes in WSNs, but it still demands extensive 
storage and computation when the network size is large. 

To solve the problem of flip ambiguity in WSNs localization, Kannan et al. [9] proposed a 
two-phase localization (SAL) algorithm based on simulated annealing, and it is still a centralized 
algorithm. Simulated annealing is a stochastic optimization technique that is robust against being 
trapped in local minima. In the first phase of SAL, simulated annealing is used to obtain the initial 
location estimation. Then, a second phase of optimization is performed only on those nodes that are 
likely to have flip ambiguity problems based on the neighborhood information of nodes. SAL gives 
better accuracy than SDP and does not propagate localization errors, but SAL may fail to identify the 
flipped node when the network density is low, and the computation and communication cost of SAL  
is higher. 

2.2. Iterative Algorithms 

Iterative localization schemes, such as the ad hoc localization system (AHLoS) [13], usually have a 
three-phase process. In the first phase, the normal nodes estimate the distances to their neighboring 
anchor nodes. In the second phase, the normal nodes compute their coordinates using the ranging 
information and the positions of their neighboring anchor nodes. In the third phase, any normal node that 
has estimated its position becomes an anchor node and assists other nodes in calculating their 
coordinates. This process iterates to estimate the positions of as many nodes as possible. Although 
iterative algorithms only need a small number of clustered anchors to localize the majority of normal 
nodes, they suffer from the propagation and accumulation of localization errors, especially in large-scale 
WSNs. 

Most recent research works on iterative localization are focus on how to minimize the jeopardy of 
accumulated errors. Liu et al. [14] studied some questions such as where localization error comes from 
and how it propagates from a node to another one, and then developed an error control mechanism 
based on the characterization of node uncertainty and the active selection strategy of anchor nodes. 
The error control mechanism uses only local knowledge and can mitigate the effect of error 
propagation for both range and directional sensors to a certain extent. Yu et al. [15] proposed a two-
stage localization scheme. First, localization starts from the nodes with the largest numbers of 
neighboring anchors and priority is always given to nodes with more neighboring anchors or localized 
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nodes. Then, the locations of all neighboring nodes are exploited to improve localization accuracy. 
During the localization process, a number of measures are also taken to ensure the reliability of each 
location estimate to avoid abnormal errors and reduce error propagation. Vemula et al. [16] formulated 
the sensor localization from a probabilistic point of view and proposed four schemes that incorporate 
anchor position uncertainty to estimate the distribution (mean and covariance) of node coordinates, 
including iterative least squares (LS) and Bayesian (BS) methods, Monte Carlo importance sampling 
(IS) and cost-based (CS) methods. These schemes above have relatively good performance in 
inhibiting the accumulation of localization errors, but the high computational complexity and increased 
communication cost limit their application in practice. 

2.3. Multi-Hop Algorithms 

By approximating the length of the shortest path to the Euclidean distance, multi-hop localization 
schemes can infer the distances between any pairs of non-neighboring nodes. Based on the idea of 
Distance Vector (DV) routing and GPS positioning, Niculescu et al. [17] proposed DV-distance 
(range-based) and DV-hop (range-free) algorithms. They are the origination of multi-hop localization 
schemes for WSNs. In both algorithms, each anchor node first broadcasts a message that carries its 
location information to its immediate neighbors. Then, the message is propagated in WSNs in a 
controlled flood manner that is similar with the distance vector routing. At the same time, each normal 
node estimates the lengths of shortest paths or minimum hop counts to anchor nodes. If a normal node 
obtains the estimates to at least three (for 2D) or four (for 3D) anchor nodes, its position can be 
calculated by using multilateration. DV-distance and DV-hop are low-cost localization solutions, but 
their accuracy is built on the assumption that the shortest path between a pair of nodes is close to a 
straight line, which may not always be achievable in anisotropic or sparse networks. 

Lim et al. [18] designed a proximity-distance map (PDM) to characterize the anisotropic features of 
WSNs. Actually, PDM is a semi-centralized algorithm. First, the anchor nodes derive an optimal linear 
transformation collaboratively to map the precise Euclidean distances and the proximities between 
pairwise anchors. Then, the map is sent to normal nodes to assist them in modifying their multi-hop 
distance estimations. The intuition of PDM is that the topology character of entire WSNs can be well 
represented by anchor nodes, but it is not the case in anchor clustered networks. Cheng et al. [19] 
investigated the effect of adverse placement and density of anchors on the accuracies of different 
algorithms, and developed an algorithm called hybrid localization (HyBloc) to provide reliable 
localization service with a limited number of clustered anchors. HyBloc combines two techniques, 
MDS-MAP and PDM. First, MDS-MAP is used to increase the number of anchor nodes in order to 
extend the anchor coverage of PDM. Then, the normal nodes are localized through PDM. HyBloc 
could give results as accurate as those of MDS-MAP and is less susceptible to the adverse effect of 
anchor placement, but it requires more communication and computation cost than PDM. 

Shang et al. [20] studied the effect of anchor selection on multi-hop localization of WSNs. The 
experimental results show that using only the four nearest anchor nodes could get better localization 
performance in most cases. In the rest of this paper, we denote this algorithm as 4-Multihop.  
Wong et al. [21] proposed a density-aware hop-count localization (DHL) algorithm. In DHL, node 
density is considered and an empirical range ratio (the ratio of expected hop distance to node’s 
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transmission range for a given local density) table is constructed to reduce the overestimation of  
multi-hop distances. Xiao et al. [22] proposed a novel scheme called reliable anchor-based localization 
(RAL) to eliminate the adverse impact of detoured paths from unreliable anchor nodes. Based on the 
theoretical analysis of the minimum hop length for uniformly distributed networks, a reliable minimal 
hop-length table that can help to judge whether a multi-hop path is severely detoured is constructed 
offline. At runtime, each node only utilizes the distance constraints obtained from reliable anchors to 
determine its position. Wang et al. [23] presented an improved multi-hop algorithm called i-Multihop 
to minimize the effect of erroneous multi-hop estimated distances on node localization. i-Multihop has 
higher computational complexity. First, the upper bound constraints are used to filter out the incorrect 
distance estimations and the estimated position is pinpointed to the intersection constrained by the 
correct distances. Second, the distance fitting is used to fit correct distance measurements, which 
makes the final estimated position is not affected by the layout of anchor nodes. Wan et al. [24] were 
concerned with the optimization problem for coordinate calculation in node localization and proposed 
three schemes based on least squares (LS) and multilateration, namely, Taylor-LS, weighted 
Taylor-based least squares (WLS) and constrained total least squares (CTLS). Moreover, a generalized 
Cramér-Rao lower bound (CRLB) is developed to theoretically analyze the performance of multi-hop 
localization approaches. Although these methods above can guarantee localization performance under 
certain conditions, most of them may expose certain problems in practice, which include: (1) lacking a 
local or global geometrical view of WSNs, they are vulnerable to irregular network topologies,  
(2) unreasonable to treat every reference information in a same priority, especially the one-hop 
information and the multi-hop one, their localization accuracy needs to be improved, (3) high 
computational complexity and easy to get stuck at local optimum. These problems inspire the work of 
this paper. 

3. Preliminaries 

3.1. Problem Formulation 

Figures 1 and 2 show two different types of WSNs. The solid dots ‘●’ and hollow dots ‘○’ represent 
anchor nodes and normal nodes, respectively. In Figure 1, all nodes are randomly scattered in a 
200 × 200 square area to form an isotropic network, while all nodes in Figure 2 are deployed in an 
H-shaped area to form an anisotropic network. In practice, the anisotropic characteristic results from 
certain unavoidable reasons, such as non-convex deployment region, node failure or movement, 
different node densities, obstacle interfering, etc. A typical example of anisotropic network is that 
WSNs are deployed in streets of urban areas where nodes may be separated from each other by 
buildings, which results in H-shape topology. Without loss of generality, we consider a network 
consisting of m anchor nodes and n normal nodes. The identities (IDs) of anchor nodes are from 1 to m 
and those of normal nodes are from m + 1 to m + n. Each node’s communication and ranging radius is 
R. The network graph can be defined as G = (VmU Vn, E), where Vm and Vn are respectively anchor 
node set and normal node set. E is measurable distance set of all pairs of neighboring vertexes (i, j), 
i, j ∈ VmU Vn. The objective of WSNs localization is to recover the coordinates of the vertexes in 
normal node set Vn under the constraints of edge set E and anchor node set Vn. The coordinates of 
node Np can be described by Xp = [xp, yp]T. The Euclidean distance from Np to its neighbor Nq is  
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dpq = ||Xp−Xq||2. The corresponding measurable distance is pq pq pqd d ε′ = + , where the ranging error 
( , )pq pq pqd dε α α∈ − . The ranging error factor α reflects the ranging capability of sensor nodes. 

Figure 1. Isotropic network. 

 

Figure 2. Anisotropic network (H shape). 

 

In multi-hop scenarios, through hop by hop dissemination of the estimated distances to anchor 
nodes in a controlled flooding manner [17], the normal node Na can estimate the distance aid ′  to the 
anchor node Ni. aid ′  includes three cases: 

(1) If Na and Ni are neighboring nodes, Na can measure the distance to Ni. Thus aid ′  is the 

measurable distance between Na and Ni. 
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(2) If Na and Ni are non-neighboring nodes, but Na does not exceed the TTL (time to live) field of 
Ni’s propagation packets, aid ′ can be approximated by the length of shortest path between Na and Ni. 

(3) If Na exceeds the TTL field of Ni’s packets, aid ′  can’t be estimated by multi-hop information 
transmission. Thus we denote aid ′ = ∞ . 

As shown in Figure 1, when Na gets enough estimated distances ( 1,2, , )aid i K′ = L  to anchor nodes, 

a system of Euclidean equations can be set up: 

2 2
1 1 1

2 2
2 2 2

2 2

( ) ( )

( ) ( )

( ) ( )

a a a

a a a

a K a K aK

x x y y d

x x y y d

x x y y d

⎧ ′− + − =
⎪
⎪ ′− + − =⎪
⎨
⎪
⎪ ′− + − =⎪⎩

M
 (1) 

where K represents the maximum number of estimated distances Na gets (in Figure 1, K = 6). In 2D 
scenarios, the node localization problem can be seen as solving an intersection point among several 
circles. In this case, at least three estimated distances are required to determine a normal node’s 
position. Similarly, in 3D scenarios, it requires at least four spheres to determine an intersection point, 
i.e., K should be no less than four. In our paper, we mainly consider the 2D localization problem. 

If aid ′  is accurate, solving (1) can obtain the true value of Na’s coordinates Xa = [xa, ya]T. However, 
due to ranging errors and approximations of multi-hop distances, aid ′  suffers from certain uncertainty 
which directly leads to the localization errors of sensor nodes. Especially in anisotropic networks, the 
shortest paths between pairs of non-neighboring nodes may be distorted by concave area and deviate 
far away from the Euclidean distances (e.g., the shortest path Pa1 between Na and N1 shown in 
Figure 2). In this case, approximating the lengths of shortest paths to Euclidean distances would give 
rise to erroneous localization results. How to mitigate the influence of irregular network topology on 
node localization and improve the localization accuracy is one topic of our study. 

Various optimization approaches have been proposed to solve the multilateration problems, among 
which nonlinear least squares solver (e.g., Levenberg-Marquardt method) and Taylor-series estimator 
are the most commonly used. However, most of these optimization methods are complex and  
resource-intensive and therefore usually not applicable to resource-limited sensor nodes. In addition, these 
methods contain an iterative operation procedure which usually converges to a local minimum close to the 
initial point. To get a better solution, they need an ideally initial point that is approaching to node’s 
actual position, but it is not an easy task to obtain such a point. Therefore, reducing the 
computational complexity and preventing the local optimum from emergence is another main topic 
of this paper. 

3.2. Definitions 

Before describing our MLGS algorithm, we introduce some necessary definitions: 

(1) Local density (LD) [21]: the number of neighboring nodes per node’s communication area. If 
Na has Ta neighboring nodes, we denote the local density of Na as LDa = Ta. Given a network 
consisting n nodes, its network connectivity is defined as the average value of n nodes’ local densities. 
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(2) Multi-hop density (MHD): if the shortest path P1K between node N1 and NK passes nodes  
{N1, N2, ··· , NK}, the sum of the K nodes’ local densities is defined as P1K’s multi-hop density. We 
denote that: 

1
1

K

K i
i

MHD LD
=

= ∑   (2)

(3) Multi-hop count (MHC): the minimal number of hops between a pair of non-neighboring nodes 
(also the number of line segments in a shortest path). If the shortest path P1K passes K nodes, P1K’s 
multi-hop count is MHC1K = K − 1. 

(4) Bounding square ring (BSR): the constraint region in the shape of square ring where a normal 
node is. Based on the estimated distance aid ′ , Na can obtain one of its bounding square rings, which is 
denoted as BSRai. 

(5) Feasible region (FR): the intersection area of Na’s all bounding square rings is defined as Na’s 
feasible region. In general, the smaller FRa is, the more accurately Na’s coordinates can be pinpointed. 
Therefore, the size of FRa can be regard as the criterion of reckoning the localization accuracy of  
node Na. 

The details of bounding square ring and feasible region will be discussed in Section 4.3.1. 
(6) Grid granularity (g): a normal node’s feasible region can be divided into some sub-grids of 

equal size, the size of a sub-grid is called grid granularity. It can be represented by the ratio of side 
length of a sub-grid to node’s communication radius. The details of grid granularity will be described 
in Section 4.3.2. 

4. MLGS Algorithm 

In this section, we describe the proposed MLGS algorithm for WSN node localization. In general, 
MLGS can be divided into four phases: network initialization, construction of multi-hop localization 
model, estimation of node coordinates, and localization refinement (an optional phase). The details of 
each phase are given in the following. 

4.1. Network Initialization 

Similar but not identical to the DHL algorithm proposed by Wong et al. [21], in MLGS, the 
network is initialized in a controlled flood manner that is aware of path-length (in distance) and multi-
hop density. We also set a TTL field for propagation packets to reduce the communication cost of 
sensor nodes. The steps of network initialization are shown as follows (see Figure 3): 

Step 1. Each node first broadcasts a challenge packet ‘I’m Np. Who is my neighbor?’. Any node that 
receives the challenge packet then sends a response packet ‘I’m Nq. I’m your neighbor.’ to the 
corresponding node. All nodes count the number of respond packets they receives to get their local 
densities. At the same time, all nodes measure the distances to their neighboring nodes. 

Step 2. Each anchor node Ni broadcasts a location information packet Fi = {i, Xi, MHCi, MHDi, id ′ } 
that contains its ID i and coordinates Xi. Here, MHDi is multi-hop density of the shortest path to Ni. Its 
initial value is Ni’s local density LDi. MHCi and id ′  are multi-hop count and length of the shortest path 
to Ni, respectively. Both initial values are set to 0. 
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Step 3. When node Np receives Fi that is directly transmitted by Ni (Np is Ni’s neighboring node), it 
upgrades Fi to {i, Xi, MHCi + 1, MHDi + LDp, i pid d′ ′+ }, then stores and forwards the new Fi. 

Step 4. When node Np receives Fi that is forwarded by its neighboring node Nq (Np is not Ni’s 
neighboring node), it first examines whether it received Fi before. If not, same to step 3, Np updates Fi 
to {i, Xi, MHCi + 1, MHDi + LDp, i pqd d′ ′+ }, stores and forwards the new Fi. Otherwise, there are two 
cases: 

(1) If ( )i pq id d d old′ ′ ′+ < , where ( )id old′  is the multi-hop estimated distance Np has stored,  
Np updates Fi and stores it. When MHCi + 1 < TTL, Np forwards the new Fi. Otherwise, Np doesn’t 
forward it. 

(2) If ( )i pq id d d old′ ′ ′+ ≥ , Np discards the newly received Fi. 
Step 5. Repeat steps 3 and 4 until there is no message exchange in the network. Finally, the normal 

nodes can get the multi-hop counts, the multi-hop densities and the lengths of shortest paths to the 
anchor nodes that do not exceed the range of TTL. 

Figure 3. Network initialization procedure. 
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4.2. Construction of Multi-Hop Localization Model 
 

When normal node Na gets enough estimated distances ( 1,2, , )aid i K′ = L  to anchor nodes, a  
multi-hop localization model can be constructed based on the principle of weighted constrained least 
squares estimator: 

(0) 2
2

1

ˆ arg min ( )

subject to
a

K

a ai a i ai
i

a a

w d
=

′= − −

∈

∑X
X X X

X FR
 (3) 

where (0)ˆ
aX  is the estimative value of Na’s coordinates Xa. FRa is the feasible region of Na. The weight 

wai of reference information{ , }i aid ′X  is in inverse proportion to distance estimation error Δai. The 

bigger Δai is, the smaller wai is, i.e., wai∝(1/Δai). 
We mainly discuss the rules for setting wai in this sub-section. How to determine the feasible region 

FRa will be discussed in Section 4.3.1. Since the multi-hop distance estimation errors mainly arise 
from the approximations between the lengths of the shortest paths and the Euclidean distances, they 
are usually larger than the direct ranging errors. Consequently, the multi-hop reference information 
should be assigned to a smaller weight in multi-hop localization. According to multi-hop count MHCai, 
we set wai as follows: 

1 if 1
0 1 if 1 TTL

0 if TTL

ai

ai ai

ai

MHC
w p MHC

MHC

=⎧
⎪= < ≤ < ≤⎨
⎪ >⎩

 (4) 

When 1 < MHCai ≤ TTL, the value of p is complex. Each of the shortest paths should be assigned 
different weights according to the bending degrees of broken lines, i.e., a winding path should have 
smaller weight than a straight one. In the following, we analyze it in detail. 

Firstly, multi-hop density is an important parameter that affects the multi-hop estimated distance. 
As can be seen from Figure 4(a), in a dense network, an approximately straight multi-hop path is likely 
to exist between pairwise nodes.  

 
Figure 4. Impact of multi-hop density on multi-hop distance estimation. (a) High density. 
(b) Low density. (c) High and low density. 
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The length of the shortest path Pac between Na and Nc is close to their Euclidean distance. Smaller 
distance estimation error makes Pac a higher confidence level. In contrast, if nodes are sparsely 
deployed [see Figure 4(b)], it is difficult to find a direct multi-hop path between a pair of 
non-neighboring nodes. The shortest path Pac is generally more winding than that in Figure 4(a). 
Figure 4(c) is a combination of the two cases above. Nodes Na, Nb and Nc have lower local densities, 
the shortest path Pac is a winding broken line. However, nodes Nd and Ne have higher local densities, 
the shortest path Pce between Nc and Ne is close to a straight line. When we evaluate the bending 
degree of the shortest path Pae between Na and Ne, all nodes’ local densities in Pae should be 
considered together. Generally, the larger the multi-hop density is, the more accurate the multi-hop 
estimated distance is. Therefore, the weight wai should be proportional to MHDai.  

Secondly, with the increase of MHCai, the number of line segments in Pai rises, which reduces the 
probability that Pai is close to a straight line. In this case, approximating the length of Pai to the 
Euclidean distance dai between Na and Ni would bring larger localization errors. In order to mitigate 
the influence of the multi-hop distance estimation errors on node localization, we should lower the 
weight of multi-hop reference information. Therefore, wai should be in inverse proportion to MHCai. In 
addition, with the increase of ranging error factor α (i.e., nodes’ ranging capability declines), we 
should appropriately raise the confidence level of multi-hop reference information to weaken the 
impact of direct ranging results on node localization, since the weight of one-hop reference 
information remains a constant value of 1 in (4). Based on the analysis above and the results of 
numerous simulations, the weight wai of multi-hop reference information can be set as follows: 

( )1exp( )* * , 1,2,3,
( 1)

r t

ai
ai

ai ai a

MHDw r t
MHC MHC LD

α
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟+ ∗⎝ ⎠ ⎝ ⎠
L  (5) 

The base number in the third part of Equation (5) represents the ratio of all nodes’ average density 
to the target node’s local density. In most cases, Equation (5) could satisfy the requirement that the 
weight wai of multi-hop reference information is no more than 1. If extreme case of wai > 1 appears, we 
set wai = 1. To determine the optimal values of indexes r and t, we have done numerous simulations in 
various network environments. The results show that we could usually get more ideal localization 
accuracy when both r and t are set to 1. Taking the scenarios shown in Figures 1 and 2 as examples, 
we vary r and t from 1 to 10 and use classical weighted least squares estimator to compute the 
coordinates of normal nodes. The average localization errors in both scenarios are shown in Figures 5 
and 6, respectively. 

The change trend of average errors with varying r and t in isotropic network is nearly consistent to 
that in anisotropic network. And the minimum points in both figures usually appear in the lower-left 
corners of the curved surfaces where both r and t are equal to 1. 
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Figure 5. Average localization error as a function of r and t (isotropic network). 

 

Figure 6. Average localization error as a function of r and t (anisotropic network). 

 

4.3. Estimation of Node Coordinates  

To simplify the computational complexity of node localization and prevent getting stuck at local 
optimum, we propose a novel method to estimate the coordinates of normal nodes. First, the feasible 
regions of normal nodes are determined by calculating the intersection of bounding square rings. Then, 
the coordinates of normal nodes are estimated through a lightweight grid-scanning procedure. The 
details of this method are shown as follows. 

4.3.1. Determination of Feasible Region 

Since the size of feasible regions can reflect the localization accuracy of normal nodes, it is an 
important task to determine the range of FRa in model (3). In this part, we present how to calculate the 
feasible regions of normal nodes based on the intersection of bounding square rings. This scheme 
could restrict the candidates of node coordinates to a small scope. 
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Figure 7 shows two bounding square rings that are obtained according to the geometrical 
constraints between pairs of neighboring or non-neighboring nodes. The dashed circles represent 
sensor nodes’ communication ranges, and the shadow areas represent Na’s bounding square rings. 

Figure 7. Na’s bounding square rings. (a) Neighboring nodes. (b) Non-neighboring nodes. 

           
(a)                                                 (b) 

In Figure 7(a), normal node Na and anchor node N1 are neighboring nodes. Na can measure the 
distance to N1. The measurable distance is denoted as 1ad ′ . As the ranging error 1 1 1( , )a a ad dε α α∈ − , the 
Euclidean distance da1 satisfies the following condition: 

1 1
11 1

a a
a

d dd
α α
′ ′

≤ ≤
+ −

 (6) 

We can infer that Na is in the circular ring Ca1 of which the outer radius is 1 1 / (1 )a aR d α′= −  and the 
inner radius is 1 1 / (1 )a ar d α′= + . The side lengths of the circumscribed and inscribed squares in Ca1 are 

respectively 1 12a aO R=  and 1 12a aI r= . The shadow area encircled by the circumscribed and inscribed 

squares is one of Na’s bounding square rings, and we denote it as: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1, , , ,
2 2 2 2 2 2 2 2a a a a a a a a ax O x O y O y O x I x I y I y I⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + × − + − − + × − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

BSR  (7) 

In Figure 7(b), Na and anchor node N2 are non-neighboring nodes, but Na can receive N2’s location 
information packet through multi-hop information transmission in the range of TTL. Without loss of 
generality, we take two hops for example. The shortest path Pa2 between Na and N2 passes normal node 
Nb. Since Na is not in the communication range of N2, the Euclidean distance da2 between them is 
bigger than R. Suppose the Euclidean and measurable distance between Na and Nb are dab and abd ′ , and 
those between Nb and N2 are db2 and 2bd ′ . Thus the estimated distance between Na and N2 is: 

2 2 2 2( ) ( )a ab b ab ab b bd d d d dε ε′ ′ ′= + = + + +  (8) 

Based on ab ab abd dα ε α− ≤ ≤  and 2 2 2b b bd dα ε α− ≤ ≤ , we can infer that: 

2 2 2(1 )( ) (1 )( )ab b a ab bd d d d dα α′− + ≤ ≤ + +  (9) 
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Further: 
2 2

21 1
a a

ab b
d dd d
α α
′ ′

≤ + ≤
+ −

 (10) 

According to da2>R and da2≤dab+db2, we have 2 2 / (1 )a aR d d α′< ≤ − . Therefore, Na is also in the 
circular ring Ca2 of which the outer radius and inner radius are 2 2 / (1 )a aR d α′= −  and ra2 = R, 

respectively. Using the same method above, we can get Na’s another bounding square ring BSRa2. 
Figure 8 is the integration of Figure 7(a,b). When Na gets all its bounding square rings  

BSRai(i = 1, 2, ··· , K), its feasible region FRa (grid area) can be obtained by calculating the 
intersection of bounding square rings: 

1

K

a ai
i=

=FR BSRI  (11) 

Details of computing FRa are provided in Appendix A. 

Figure 8. Intersection of bounding square rings. 

 

4.3.2. Search of Node Coordinates 

After obtaining the feasible region FRa, we can employ the classical constrained nonlinear 
programming solvers, such as sequential quadratic programming (SQP), to work out the optimal value 
of the objective function in model (3). However, the classical optimization approaches usually involve 
an iterative computation procedure. In each iterative computation, numbers of complex arithmetical 
operations (such as matrix inversion, matrix multiplication, eigenvalue determination, etc.) are 
required, which is a severe challenge to the resource-limited sensor nodes. As the number of reference 
information increases, the computation cost increases dramatically. In addition, the iterative procedure 
of these methods needs an initial point and easily converge to a local minimum close to the initial 
point, especially when there is much inaccurate reference information. To solve these problems, a 
lightweight grid-scanning method is proposed to search the close to optimal values of node coordinates. 

Suppose the grid granularity for coordinate estimation is g. The value of g is determined by some 
factors, such as range error factor, network connectivity, desired localization accuracy, etc. According 
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to g, FRa can be divided into a number of sub-grids of equal size (see Figure 8). Regarding the 
coordinates of all sub-grid’s centers as samples of Xa, we can get a sample set: 

{ }(1) (2) (3) ( ), , , , U
a a a a a=Ω S S S SL  (12) 

where ( )i
aS  is a sample of Xa and U is the total number of samples. If the area of FRa is Aa, we have  

U = Aa/(gR)2. 
In Appendix A, the computation of feasible region FRa is converted to the problem of calculating 

the intersection of rectangular sub-regions. As can be seen from Figure B in Appendix, the final output 
is FRa = Array_FRa, where Array_FRa is an array consisting of n rectangles. This means that the 
irregular feasible region is divided into several regular rectangles. We further divide each rectangle 
into sub-grids, so that samples for coordinate estimation can be easily exacted. 

After getting Ωa, an optimal sample that brings the objective function in model (3) to the smallest 
value can be found through scanning Ωa from beginning to end. The final output (0)ˆ

aX  of this search 

procedure is the close to optimal value of Xa. 
This grid-scanning approach only needs simple arithmetical and comparison operations. It not only 

has low computational complexity, but also can prevent getting stuck at local optimum. In addition, 
when the number of reference information increases, it only requires a modest increase in memory 
consumption and arithmetical operations over those of the classical optimization methods. Therefore, 
it is a lightweight and efficient method. And it is very suitable to sensor nodes with limited computing 
and storage capability. 

 
4.4. Localization Refinement 
 

After node Na gets its initial coordinates (0)ˆ
aX , it can optionally step into the phase of localization 

refinement through collaborating with its neighbors. The following are the refinement procedure.  
Step 1. Na first broadcasts its estimated coordinates and the total number U of samples it get in the 

previous phase. Then, a weighted refinement model for Na can be constructed based on the broadcast 
coordinates of Na’s neighbors and the measurable distances between Na and its neighbors: 

( 1) ( ) ( ) 2

21

ˆ ˆarg min ( )
a

J
t t t

a ab a b ab
b

v d+

=

′= − −∑X
X X X  (13) 

where ( )ˆ ( 1, 2, , )t
b b J=X L  is the broadcast coordinates of Na’s neighboring node Nb. J is the number of 

Na’s neighbors. ( )t
abd ′  is the measurable distance between Na and Nb. vab is the weight of reference 

information ( ) ( )ˆ{ , }t t
b abd ′X .And t is the iteration number of refinement, with an initial value of 0. 

Here, we briefly discuss how to set the value of weight vab. When Nb is an anchor node, we should 
set vab a bigger value. In contrast, if Nb is a normal node, vab should be set a smaller value according to 
the estimated accuracy of Nb’s coordinates. Since the localization accuracy of normal nodes can be 
evaluated by the size of feasible regions, vab should be in inverse proportion to the total number U of 
samples in 4.3.2. In collaborative refinement, this weighting mechanism not only contributes to the 
improvement of localization accuracy, but also helps to prevent the localization error from propagation. 
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Step 2. The grid-scanning scheme can also be used to seek the close to optimal value of model (13). 
As can be seen from Figure 9, a square of which the center coordinates and the size length are 
respectively ( ) ( ) ( )ˆ ˆ ˆ[ , ]t t t T

a a ax y=X  and L (generally no more than R) is regarded as Na’s feasible region for 

localization refinement, and it is denote as: 

( 1) ( ) ( ) ( ) ( )1 1 1 1ˆ ˆ ˆ ˆ[ , ] [ , ]
2 2 2 2

t t t t t
a a a a ax L x L y L y L+ = − + × − +FR  (14) 

Suppose the grid granularity for localization refinement is r (r ≤ g). According to ( 1)t
a
+FR , a sample 

set aΘ  can be obtained by dividing ( 1)t
a
+FR  into a number of sub-grids: 

{ }(1) (2) (3) ( ), , , , V
a a a a a=Θ S S S SL  (15) 

where the number of samples is V = L2/(rR)2. Through scanning aΘ , the close to optimal value of 

model (13) can be obtained, denoted as ( 1)ˆ t
a
+X . Na upgrades its estimated coordinates to ( 1)ˆ t

a
+X . 

 
Figure 9. Samples for localization refinement. 

 

 

Step 3. Na broadcasts its new coordinates. Set t = t + 1. Repeat steps 1 and 2 until the accuracy 
( ( 1) ( )

2
ˆ ˆ|| ||t t

a a r+ − ≤X X ) is satisfied or the maximum iteration number is reached, whichever comes earlier. 

The final ( 1)ˆ t
a
+X  is the refinement coordinates of Na. 

 
5. Performance Evaluation 

 

In this section, we conduct extensive simulations to study the performance of MLGS algorithm in 
the isotropic network shown in Figure 1 and the anisotropic network (H-shape) shown in Figure 2. All 
simulations are run in MatLab R2010a. To reduce the influence of outliers, we run each simulation 
100 times and take the average results as the final data points. The default parameters of WSNs are 
shown in Table 1. Unless specified, we use the default parameters in simulations. We mainly discuss 
the localization performances of the following four algorithms: 

(1) The proposed algorithm without refinement phase, denoted as MLGS, in which the grid 
granularity g for coordinate estimation is defaulted as 0.1R. 

(2) The proposed algorithm with refinement phase, denoted as MLGS(R), in which the grid 
granularity r for localization refinement is defaulted as 0.05R. 
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(3) The 4-Multihop algorithm proposed by Shang et al [20], in which only the four nearest anchor 
nodes get involved in coordinate estimation. The optimization method employed in 4-Multihop is 
Taylor-series estimator. 

(4) The i-Multihop algorithm proposed by Wang et al. [23], which combines upper bound and 
distance consistency, and has higher computational complexity. In i-Multihop, the sequential quadratic 
programming method is used to solve the constrained nonlinear optimization problem. 

 
Table 1. Default parameters of WSNs. 

Parameters Isotropic network Anisotropic network 
Network deployment area (m) 200 × 200 200 × 200 

Network holes (m) No apparent hole 66.7 × 66.7 (×2) 
Number of nodes 200 200 

TTL 5 5 
Percentage of anchor nodes 10% 10% 

Node’s communication radius (m) 25.6 24.2 
Network connectivity 9 9 
Ranging error factor 0.1 0.1 

 
5.1. Distribution of Node Localization Errors 

 
First, we analyze the distribution of node localization errors in the default environments. The 

localization errors are represented by the ratio of the Euclidean distances between estimated 
coordinates and actual coordinates to node’s communication radius. Figures 10 and 11 present the 
distribution boxplots for isotropic and anisotropic networks, respectively. The y-axis of both figures is 
drawn in log-scale. In isotropic network, 4-Multihop gives the worst performance. Its average and 
median errors are respectively 23.24% and 13.36%, and its maximum outlier is even close to 800%. 
The average and median errors of i-Multihop are almost the same as those of MLGS. But the errors of 
i-Multihop are more scattered. The maximum outlier of i-Multihop reaches 200.50% (compared with 
103.29% of MLGS). MLGS(R) has an average error of 7.17% and a median error of 4.08%, which is a 
significant improvement in localization accuracy. In anisotropic network, 4-Multihop is less affected 
by irregular shape because it only uses the four nearest anchor nodes in calculating the coordinates of 
normal nodes. Compared with Figure 10, we can see that the accuracy of i-Multihop declines vastly. 
The average error of i-Multihop reaches 21.67%, but it is still lower than that of 4-Multihop (26.53%). 
MLGS and MLGS(R) are robust to irregular topologies. Their average errors, median errors and 
maximum outliers in anisotropic network are almost the same as those in isotropic network, and much 
smaller than those of 4-Multihop and i-Multihop. 
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Figure 10. Distribution boxplots of node localization errors (isotropic network). 

 

Figure 11. Distribution boxplots of node localization errors (anisotropic network). 

 

5.2. Impact of TTL 

Figures 12 and 13 show the comparison results of average localization errors and localization 
coverage rates with various TTL. With the increase of TTL, the normal nodes could get more and 
more reference information for their localization, so the localization coverage rates of four algorithms 
grow gradually. When TTL reaches 5, the coverage rates in both networks are approaching to 100%. 
Since raising TTL could increase the communication cost in localization, we try to keep TTL a smaller 
value in the premise of localizing most nodes. That is the reason why we set the default value of TTL 
to 5 in simulations. 



Sensors 2011, 11                            
 

 

3927

Figure 12. Average localization error versus TTL (isotropic network). 

 

Figure 13. Average localization error versus TTL (anisotropic network). 

 

In isotropic network, 4-Multihop performs the worst. Its average error varies significantly when 
TTL ≤ 5 and remains generally stable (about 23%) after TTL > 5. The localization accuracies of 
MLGS, MLGS(R) and i-Multihop are less affected by TTL and are always better than that of  
4-Multihop. Among them, MLGS(R) gives the smallest localization error of about 10%. Through the 
accuracy of i-Multihop slightly exceeds that of MLGS when TTL ≥ 6, but it is always lower than that 
of MLGS(R). In anisotropic network, 4-Multihop still has the lowest accuracy. i-Multihop is greatly 
affected by irregular network, and its average error is about 5% higher than that of MLGS when  
TTL ≤ 5. With the increase of TTL, the number of distance constraints in i-Multihop rises, and the 
accuracy of i-Multihop is gradually near to that of MLGS. Through refinement, MLGS(R) can 
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increase the localization accuracy by more than 5%. And in most cases, its average error is less than 
10% of the communication radius of sensor nodes.  

5.3. Impact of Network Connectivity 

In this part, we vary the communication radius of sensor nodes and get the accuracy comparisons of 
four algorithms under different network connectivity, ranging from 6 to 15 (see Figures 14 and 15). In 
general, the probability that a shortest path between pairwise nodes is close to a straight line grows as 
network connectivity increases, which directly results in the improvement of multi-hop localization 
accuracy. In isotropic network, the performance of MLGS(R) is better than those of three other 
algorithms. It gives an average error of less than 3.5% for high network connectivity (no less than 12). 
When network connectivity is smaller than 9, the accuracy of i-Multihop is higher than that of MLGS. 
However, the average localization error of i-Multihop gradually converges to about 11% and exceeds 
those of MLGS and 4-Multihop. In anisotropic network, the variation trend of average localization 
errors of four algorithms is similar to that in isotropic network, but the gap among the four algorithms 
becomes more evident. The localization accuracies of MLGS and MLGS(R) are always better than 
those of i-Multihop and 4-Multihop. When network connectivity is 6, the average error of MLGS is 
less than 40%, above which the localization error will significantly affect the application performance 
of WSNs [25]. When network connectivity reaches 10, the average error of MLGS is below 10% and it 
can be further reduced to less than 5% through refinement, while the two other algorithms give larger 
average errors of more than 20%. 

Figure 14. Average Localization error versus network connectivity (isotropic network). 
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Figure 15. Average localization error versus network connectivity (anisotropic network). 

 

5.4. Impact of Ranging Error 

Figures 16 and 17 show the statistics for performance of four algorithms with different ranging 
error factors. With the increase of ranging errors, the accuracies of four multi-hop algorithms drop 
gradually. Among them, i-Multihop is the most sensitive to ranging errors. In isotropic network, the 
average error of i-Multihop is near to 10% when α < 0.1, while that of MLGS is about 12%. However, 
when α increases to 0.1, the two algorithms produce similar results. And after that, the average error of  
i-Multihop increases substantially and even exceeds that of 4-Multihop when α = 0.35.  

Figure 16. Average localization error versus ranging error factor (isotropic network). 
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Figure 17. Average localization error versus ranging error factor (anisotropic network). 

 

As can be seen from Figure 16, we can infer that MLGS and MLGS(R) are robust with respect to 
high ranging errors. When α increases to 0.5, the average localization error of MLGS is still smaller 
than 40% of node’s communication radius. Through refinement, the average error can be further 
reduced to 30%. In anisotropic network, MLGS and MLGS(R) perform consistently better than 
4-Multihop and i-Multihop under all ranging error factors considered. Compared with the latter two 
algorithms, MLGS can improve localization accuracy by 10%~20%, and further increase by 5% after 
refinement. When α = 0.25, the average errors of 4-Multihop and i-Multihop are more than 30%, while 
those of MLGS and MLGS(R) are only less than 18%. 

5.5. Impact of Grid Granularity on MLGS Algorithm 

From previous investigations, we draw a conclusion that MLGS produces better results in most 
cases. Here, we discuss the impact of grid granularity g on localization accuracy of MLGS under 
various ranging error factors (see Figures 18 and 19). In both figures, the decimals in the legends 
represent the values of grid granularity g for coordinate estimation. Generally, the localization 
accuracy of MLGS improves with grid granularity g declining. However, when g reduces to a certain 
extent, any further decrease of g does not yield any significant improvement in accuracy. In isotropic 
network, the average localization error with α = 0.1 can be reduced by 4.97% as g decreases from 0.4 
to 0.2, while only 3.23% as g decreases from 0.2 to 0.1. In anisotropic network, the corresponding 
descents of average errors with α = 0.1 are 5.64% and 2.06%, respectively. In addition, with the 
increase of α, the impact of grid granularity g on localization accuracy drops gradually. For example, 
MLGS(0.1) and MLGS(0.2) nearly have the equivalent performance when α = 0.4. In the phase of 
coordinate estimation, there is U ∝ (1/g2), where U represents the number of samples. Thus, reducing g 
would make U grow significantly, which further leads to the increase of computation cost required in 
localization. The quantitative analysis of computation cost will be present in Section 5.6. In practice, 
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we should determine the optimal grid granularity g based on the trade-off of localization accuracy and 
computation cost. 

Figure 18. Average localization error versus grid granularity (isotropic network). 

 

Figure 19. Average localization error versus grid granularity (anisotropic network). 

 

5.6. Comparisons of Computation Cost 

In this part, we discuss the computation cost of 4-Multihop, i-Multihop and MLGS with the metric 
of total computation time for calculating the coordinates of all normal nodes under different degrees of 
network connectivity (see Figures 20 and 21). As i-Multihop employs the complex constrained 
nonlinear programming solver to estimate the coordinates of normal nodes, its computation cost is 
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more than 30 times of those of 4-Multihop and MLGS. When network connectivity is low, the 
computation cost of MLGS(0.1) (no more than 0.35 s in both scenarios) is slightly smaller than that of 
4-Multihop (0.4 s and 0.45 s in isotropic and anisotropic networks, respectively). 

Figure 20. Computation cost versus network connectivity (isotropic network). 

 

Figure 21. Computation cost versus network connectivity (anisotropic network). 

 

However, with the increase of network connectivity, MLGS(0.1) performs faster and faster, while 
4-Multihop keeps a constant computation time. That is because higher network connectivity would 
enhance the constraints of sensor nodes and diminish the feasible regions of normal nodes in MLGS. 
For MLGS, reducing grid granularity g could lower the computation cost evidently in sparse networks. 
For example, in isotropic network with connectivity of 6, the computation time of MLGS(0.1) is 
0.33 s, that of MLGS(0.2) is 0.14 s and that of MLGS(0.4) is only 0.06 s. But in networks with high 
connectivity, with the increase of g, the variety of computation cost is not so obvious. When network 



Sensors 2011, 11                            
 

 

3933

connectivity reaches 10, the computation cost of MLGS in different g drops to below 0.2 s. It is worth 
noting that MLGS(0.2) and MLGS(0.4) nearly have a constant computation time in various network 
connectivity.  

5.7. Performance Comparisons of MLGS, MDS-MAP and Iterative Algorithms 

Finally, we evaluate the performance of the MLGS by comparing it with MDS-MAP [7] and the 
improved iterative algorithm with error control mechanism similar to [14]. The comparison results are 
shown in Figures 22–24, in which the circles represent true positions of nodes (solid circles for anchor 
nodes and empty circles for normal nodes), the triangles represent estimation positions of normal 
nodes, and the lines represent localization errors. For MLGS and Iterative algorithms, if a normal node 
can’t get enough reference information to computing its coordinates, a square will be drawn around it. 
Table 2 gives the average localization errors of three algorithms in isotropic and anisotropic networks. 

In isotropic network, MLGS has the best localization performance. Its average error is below 15% 
and the error distribution is uniform. One unlocalized node and a few normal nodes with bigger 
localization errors are mainly concentrated in the upper-left corner, where fewer anchor nodes exist. 
MDS-MAP has an average error of 23.1% and a localization coverage rate of 100%. The localization 
accuracies of edge nodes are worse than those of middle nodes. The iterative algorithm with average 
error of 25.8% and localization coverage rate of 91.7% performs the worst. The iterative process stops 
at the lower-right corner where sensor nodes are sparsely deployed. Furthermore, the impact of error 
accumulation is not totally eliminated in the improved iterative algorithm. As can be seen from the 
Figures 22 and 24, the localization accuracy of MLGS and iterative algorithm is not obviously affected 
by network topology. In anisotropic network, the average errors of both algorithms are 12.7% and 
26.1%, respectively, which are close to those in isotropic network. However, the average error of 
MDS-MAP (62.1%) is much larger than that in isotropic network. That is because MDS-MAP needs to 
approximate the lengths of shortest paths to Euclidean distances between all pairs of non-neighboring 
nodes. Irregular network topology would make the approximation large errors, especially between 
pairwise nodes that are far apart. 

Figure 22. Localization results of MLGS. (a) Isotropic network. (b) Anisotropic network. 

    
(a)                                                   (b) 
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Figure 23. Localization results of MDS-MAP. (a) Isotropic network. (b) Anisotropic network. 

   
(a)                                                   (b) 

Figure 24. Localization results of iterative algorithm. (a) Isotropic network. (b) Anisotropic network. 

   
(a)                                                             (b) 

Table 2. Average errors of MLGS, MDS-MAP and iterative algorithms. 

Algorithms Isotropic network Anisotropic network 
MLGS 13.4% 12.7% 

MDS-MAP 23.1% 62.1% 
Iterative algorithm 25.8% 26.1% 

6. Conclusions 

In this paper, we present a novel multi-hop localization algorithm called MLGS, which is shown to 
be able to enhance the adaptability to irregular network topology, improve the positioning accuracy, as 
well as reduce computational cost for multi-hop localization in large-scale WSNs. We first analyze the 
factors that influence the multi-hop distance estimation and give a quantitative rule for setting the 
weight of reference information. Then, the close to optimal values of node coordinates are efficiently 
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searched and obtained in the feasible regions of normal nodes through a lightweight grid-scanning 
scheme, which avoids solving the complex constrained nonlinear programming and prevents getting 
stuck at local optimum. MLGS is very suitable for sensor nodes of limited energy and computing 
power. Through extensive simulations in isotropic and anisotropy networks, we demonstrate that 
MLGS outperforms the typical multi-hop localization schemes in many aspects. Compared with 
MDS-MAP and iterative algorithm, MLGS can also do better in localization accuracy and topology 
adaptability. In most cases, MLGS could achieve better performance, even without refinement phase. 
Therefore, the phase of node collaboration refinement is optional. Reducing the grid granularity g in 
the phase of coordinate estimation can improve the localization accuracy of MLGS. However, when g 
reduces to a certain extent, the improvement of accuracy becomes more and more marginal as g further 
decreases. On the contrary, it raises the computation cost of sensor nodes. Empirically, MLGS could 
get good performance when the grid granularity g is set to 0.1~0.2. In the future, we would like to 
extend MLGS to 3D WSNs and implement it on experimental WSNs prototypes to verify 
its practicability. 

Acknowledgements 

The authors would like to thank the anonymous reviewers for their comments. This work is 
supported by the National Natural Science Foundation of China under Grant No. 60873240,  
No. 60974121 and No. 61001138. 

References 

1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. 
Comput. Netw. 2002, 38, 393–422. 

2. Raghavendra, C.S.; Sivalingam, K.M.; Znati, T. Wireless Sensor Networks; Springer: New York, 
NY, USA, 2004. 

3. Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks 
technology and evolution. Sensors 2009, 9, 6869–6896.  

4. Boukerche, A.; Oliveira, H.A.B.F.; Nakamura, E.F.; Loureiro, A.A.F. Localization systems for 
wireless sensor networks. IEEE Wirel. Commun. 2007, 14, 6–12. 

5. Mao, G.Q.; Fidan, B.; Anderson, B.D.O. Wireless sensor network localization techniques. 
Comput. Netw. 2007, 51, 2529–2533. 

6. Franceschini, F.; Galetto, M.; Maisano, D.; Mastrogiacomo, L. A review of localization 
algorithms for distributed wireless sensor networks in manufacturing. Int. J. Comput. Integr. 
Manuf. 2009, 22, 698–716. 

7. Shang, Y.; Ruml, W.; Zhang, Y.; Fromherz, M.P.J. Localization from Mere Connectivity. In 
Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing, 
Annapolis, MD, USA, 1–3 June 2003; pp. 201–212. 

8. Biswas, P.; Ye, Y. Semidefinite Programming for Ad Hoc Wireless Sensor Network Localization. 
In Proceedings of the Third International Symposium on Information Processing in Sensor 
Networks, Berkeley, CA, USA, 26–27 April 2004; pp. 46–54. 



Sensors 2011, 11                            
 

 

3936

9. Kannan, A.A.; Mao, G.; Vucetic B. Simulated Annealing Based Wireless Sensor Network 
Localization with Flip Ambiguity Mitigation. In Proceedings of IEEE Vehicular Technology 
Conference, Melbourne, VIC, Australia, 7–10 May 2006; pp. 1022–1026.  

10. Guo, X.L; Yu, N.; Feng, R.J.; Wu, Y.F.; Wan, J.W. Grid-Scan-Based Multi-hop Localization 
Algorithm for Wireless Sensor Networks. In Proceedings of IEEE Sensors Conference, Waikoloa, 
HI, USA, 1–4 November 2010; pp. 668–672.  

11. Shang, Y.; Ruml, W. Improved MDS-Based Localization. In Proceedings of IEEE INFOCOM, 
Hong Kong, 7–11 March 2004; pp. 2640–2651. 

12. Doherty, L.; Pister, K.S.J.; Ghaoui, L.E. Convex Position Estimation in Wireless Sensor 
Networks. In Proceedings of IEEE INFOCOM, Anchorage, AK, USA, 22–26 April 2001;  
pp. 1655–1663. 

13. Savvides, A.; Han, C.C.; Strivastava, M.B. Dynamic Fine-Grained Localization in Ad Hoc 
Networks of Sensors. In Proceedings of the Annual International Conference on Mobile 
Computing and Networking, Rome, Italy, 16–21 July 2001; pp. 166–179. 

14. Liu, J.; Zhang, Y. Error control in distributed node self-localization. EURASIP J. Adv. Signal 
Process. 2008, 2008, doi:10.1155/2008/162587. 

15. Yu, K.; Guo, Y.J.; Hedley, M. TOA-based distributed localization with unknown internal delays 
and clock frequency offsets in wireless sensor networks. IET Signal Process. 2009, 3, 106–118. 

16. Vemula, M.; Bugallo, M.F.; Djurić, P.M. Sensor self-localization with beacon position 
uncertainty. Signal Process. 2009, 89, 1144–1154. 

17. Niculescu, D.; Nath, B. DV based positioning in ad hoc networks. Telecommun. Syst. 2003, 22, 
267–280. 

18. Lim, H.; Hou, J.C. Localization for Anisotropic Sensor Networks. In Proceedings of IEEE 
INFOCOM, Miami, FL, USA, 13–17 March 2005; pp. 138–149. 

19. Cheng, K.Y.; Lui, K.S.; Tam, V. HyBloc: Localization in sensor networks with adverse anchor 
placement. Sensors 2009, 9, 253–280. 

20. Shang, Y.; Shi, H.; Ahmed, A.A. Performance Study of Localization Methods for Ad-Hoc Sensor 
Networks. In Proceedings of IEEE International Conference on Mobile Ad-Hoc and Sensor 
Systems, Fort Lauderdale, FL, USA, 24–27 October 2004; pp. 184–193.  

21. Wong, S.Y.; Lim, J.G.; Rao, S.V.; Seah, W.K.G. Multihop Localization with Density and Path 
Length Awareness in Non-Uniform Wireless Sensor Networks. In Proceedings of IEEE Vehicular 
Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; pp. 2551–2555. 

22. Xiao, B.; Chen, L.; Xiao, Q.J.; Li, M. Reliable anchor-based sensor localization in irregular areas. 
IEEE. Trans. Mob. Comput. 2009, 9, 60–72. 

23. Wang, C.; Xiao, L. Sensor localization in concave environments. ACM Trans. Sens. Netw. 2008, 4, 
3:1–3:31. 

24. Wan, J.W.; Yu, N.; Feng, R.J.; Wu, Y.F.; Su, C.M. Localization refinement for wireless sensor 
networks. Comput. Commun. 2009, 32, 1515–1524. 

25. He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T. Range-Free Localization 
Schemes for Large Scale Sensor Networks. In Proceedings of the Annual International 
Conference on Mobile Computing and Networking, San Diego, CA, USA, 14–19 September 
2003; pp. 81–95. 



Sensors 2011, 11                            
 

 

3937

Appendix  

Computation of Feasible Region FRa 

As shown in Figure A, the bounding square ring BSRai can be divided into four rectangular 
sub-regions, which are denoted as ( ) ( 1, 2,3,4)k

ai k =SR . Then, the feasible region FRa can be obtained 

through the procedure of which the pseudo-codes are shown in Figure B. 

Figure A. Division of bounding square ring. 

 

Figure B. Pseudo-codes of determining FRa. 

Input: BSRai;                                        Output: FRa; 
Array_FRa    ← the array composed of all FRa’s sub-regions; 
Num               ← the number of FRa’s sub-regions; 
T, n, i, j          ← temporary variables; 
SL                  ← the side length of deployed area (constant); 
1:   SET Array_FRa=[0, SL]×[0, SL]; 
2:   SET Num=1; 
3:   for each bounding square ring BSRai 

4:       SET T=null, n=0; 
5:       for each element Array_FRa(j) in Array_FRa 

6:           SET [xl1, xu1]=bound of x-coordinate in Array_FRa(j); 
7:           SET [yl1, yu1]=bound of y-coordinate in Array_FRa(j); 
8:           for each ( )k

aiSR  in BSRai 
9:               SET [xl2, xu2]=bound of x-coordinate in ( )k

aiSR ; 
10:             SET [yl2, yu2]=bound of y-coordinate in ( )k

aiSR ; 

11:             if (xl2−xu1)*(xu2−xl1)<=0 && (yl2−yu1)*(yu2−yl1)<=0     //Do they have intersection? 
12:                 SET n=n+1; 
13:                 SET T[n]=[max(xl1, xl2, 0), min(xu1, xu2, SL)]×[max(yl1, yl2, 0), min(yu1, yu2, SL)]; 
14:             end if 
15:         end for 



Sensors 2011, 11                            
 

 

3938

Figure B. Cont.  

16:     end for 
17:     SET Num=n; 
18:     SET Array_FRa=T; 
19:  end for 
20:  SET FRa=Array_FRa; 
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