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Abstract: Because of the perceived lack of systematic analysis in illumination system 

design processes and a lack of criteria for design methods in vision detection a method  

for the design of a task-oriented illumination system is proposed. After detecting the  

micro-defects of a gyroscope pivot bearing with a high curvature glabrous surface and 

analyzing the characteristics of the surface detection and reflection model, a complex 

illumination system with coaxial and ring lights is proposed. The illumination system is 

then optimized based on the analysis of illuminance uniformity of target regions by 

simulation and grey scale uniformity and articulation that are calculated from grey 

imagery. Currently, in order to apply the Pulse Coupled Neural Network (PCNN) method, 

structural parameters must be tested and adjusted repeatedly. Therefore, this paper 

proposes the use of a particle swarm optimization (PSO) algorithm, in which the maximum 

between cluster variance rules is used as fitness function with a linearily reduced inertia 

factor. This algorithm is used to adaptively set PCNN connection coefficients and dynamic 

threshold, which avoids algorithmic precocity and local oscillations. The proposed method 

is used for pivot bearing defect image processing. The segmentation results of the 

maximum entropy and minimum error method and the one described in this paper are 

compared using buffer region matching, and the experimental results show that the method 

of this paper is effective. 

Keywords: illumination system; defect detection; pulse coupled neural network; particle 

swarm optimization; image segmentation  
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1. Introduction  

The gyroscope is the key part of an inertial navigation system, and its performance has a direct 

impact on the precision of the whole system. The gyroscope pivot bearing, whose diameter is only a 

few millimeters and its tolerance requirements are very strict, is a key part of a floating gyroscope, Its 

dimensions cannot be measured by contact methods after surface polishing. Any defects on the high 

curvature surface of the pivot bearing ball head are only a few microns in size and their shapes vary. 

As a result, it is difficult to measure dimensions and detect surface defects. 

At present, new detection techniques such as image-based detection techniques, have become an 

indispensable feature in modern industrial production. During mass industrial production operations, 

image-based detection ensures the consistency of product detection and helps implement data quality 

monitoring and process control, thereby increasing detection security, reliability, efficiency and precision, 

and reducing production costs. According to the different characteristics detected image-based 

detection applications are categorized as dimension measurement, surface quality detection, structural 

quality detection and system operating status monitoring [1]. Among these applications, dimension 

measurement and surface quality detection are the most commonly used. Dimension measurement 

mainly involves characteristics of a target such as appearance, shape and position. It is also used in 

other fields, such as detection of discontinuous arc roundness in the field of machining [2], assemblage 

clearance in the field of automotive industry [3], and excursion and deflection of chips in the field of 

electronics, such as in printed circuit board (PCB) production [4]. Surface detection mainly involves 

detection of defects that impact product surface quality, such as fovea, scratches, cracks, air bladders, 

holes, wear, roughness, texture, and burrs, such as in steel plate surface defect detection [5], surface 

roughness measurement [6], tunnel wall surface defect detection [7], welding seam defect detection [8], 

fabric surface defect detection [9], and wood defect detection [10].  

In this paper an image-based detection technique used for pivot bearing dimension measurement 

and surface defect detection is described. Illumination system design has a direct relationship with 

final imaging quality, and it is one of the keys for the success of any vision detection system. Improper 

illumination may give rise to many problems; for example, overexposure may hide true defects, 

shadows may cause edge false drops, and non-uniform illumination may cause image segmentation 

difficulties. As a result, illumination quality can directly impact image analysis results [11]. There are 

multiple methods for illumination system design; as an example of an optical path-based analysis,  

Lu [12] determined three color ring LED light source ray angles and light source geometric 

parameters, which were used for detecting circuit board weld defects; as a method based on 

optimization techniques, Sunil [13] studied the energy function of an optimum light source position, 

and calculated the minimum energy function and estimated light source position by a simulated 

annealing algorithm; for design based on ray directions, Nicolas [14] designed a light source with the 

same shape as a shower head, which enhances defect contrast and detects parts surface defects with 

random direction scratches; as an example of design based on dynamic illumination, Ng [15] designed 

a moving ring light source and judged surface defects by bright ring changes on a slippery surface for 

the purpose of defect detection of bearing surfaces, and in an example of designs based on imaging 

quality analysis, Wu [16] associated image quality with measurement precision, and adjusted light 

illuminance by analyzing image quality to get highest measurement precision. In a word, one needs to 
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study the light source optimization choice and design method combination for different detection tasks 

and work environments. 

Moreover, the small proportions of the target defects relative to the entire picture in a micrograph, 

uneven surface illumination for high curvature surfaces and natural metal textures all contribute to 

make contrast of defect regions and background regions small, and image segmentation comparatively 

difficult. PCNN has been widely used in every field of image processing, such as denoising [17], 

segmentation [18], fusion [19] and feature extraction [20], but the elementary PCNN model framework 

is complex, and there are multiple undetermined parameters such as attenuation constants, amplification 

coefficients and connect coefficients. Most parameters are configured by artificial tests, which affect 

PCNN image processing speed and make it difficult to implement automatic image processing. 

Richard [21] used a genetic algorithm for setting optimum PCNN parameters, yet the key of genetic 

algorithms is the accurate setting of parameters such as variation and cross operator, which, if not set 

properly, will destroy the developmental stability. Particle Swarm Optimization (PSO) is an efficient 

search strategy [22], which features quick convergence and requires less parameter settings. Chao [23] 

used a PSO to search for the best parameter value of a generalized diffusion coefficient function that 

was used for anisotropic diffusion defect detection in low-contrast surface images. The PSO algorithm 

is used to automatically set PCNN optimization key parameters by fitness function of maxima between 

cluster variances, which carries out automatic PCNN image processing. 

The paper is organized as follows: Section 2 introduces the structure of the gyroscope pivot bearing 

dimension measurement and surface detection system; Section 3 presents task-oriented illumination 

system design methods; Section 4 presents self-adaptive parameter settings obtained by integrating the 

PSO algorithm and PCNN; Section 5 describes experimental results and comparisons. Finally, some 

conclusions and future development are illustrated in Section 6. 

2. Detection System Design  

2.1. System Framework 

The shape of a gyroscope pivot bearing is shown in Figure 1. The dimensions of gyroscope pivot 

bearings are small and any defects of its high curvature surface are at a micron-level; therefore some 

sort of amplificatory vision system is required, as shown in Figure 2, where the microscope is set 

horizontally, with coaxial and ring light sources which comprise a combination illumination system. 

The undetermined detection pivot bearing is installed on the combination motion platform that is 

composed of a three-dimension motion platform and a two-dimension revolving platform, where the Y 

direction and Z direction platform motion will implement pivot bearing position adjustment, which 

ensures that the undetermined target will be in the center of the visual field of the camera. The distance 

between the pivot bearing and lens is adjusted by the X direction motion platform, and this makes the 

lens focus clear. The two-dimension revolving platform providing horizontal and vertical circumrotation 

ensures the local surface ordinal will be in the visual field. Consequently it can implement the 

detection of all undetermined regions. 
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Figure 1. Drawing of a gyroscope pivot bearing. 
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Figure 2. Gyroscope pivot bearing vision detection system. 
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2.2. Pivot Bearing Surface Detection Policy 

As shown in Figure 3, above the hemisphere of the pivot bearing there is an undetermined detection 

region, the B-B working face, that is detected when the rotation axis and primary optical axis overlap. 

The vertical revolving platform is turned 360° to detect a zone on the non-working face, when the 

horizontal revolving platform is turned and pivot bearing has a certain inclination angle. The vertical 

revolving platform is turned 360° to detect the the A-A working face, when rotation axis and primary 

optical axis are upright, so that the top hemisphere can be detected. 

Figure 3. Detection sketch map for different working faces of pivot bearing surface. 
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2.3. Dimension Measurements 

The whole pivot bearing figure cannot be observed in one vision field when amplified, that is, only 

a partial edge is present in the vision field. Therefore, for dimension measurement it is necessary to 

move the pivot bearing and shoot images at multiple edge positions. Edge point coordinates are 

obtained by image processing, and the value of the length gauge is recorded when the Z direction 

motion platform is moved. The two edge section distances are calculated based on the edge point and 

recorded length gauge value. Figure 4 shows the undetermined geometry parameters. As shown in 

Figure 1, axis diameter is measured by shooting images at positions 1, 2, 3 and 4; ball head diameter is 

measured by shooting images at positions 5 and 6. 

Figure 4. Sketch map of dimensions measurement. 

 

3. Illumination System Design 

3.1. Task-Orientated Illumination Design Method 

The vision detection illumination system design method in this paper can be summed up as follows: 

1. Design of the illumination mode: First, the spatial running environment of the system is 

analyzed, including the effective visual field of the lens and the distance between the lens and 

the illumination surface, which preliminarily determines the basic structure of the illumination 

system. Second, undetermined illumination surface characteristics are analyzed. Different 

illumination modes are used based on the shapes and surface characteristics, as illustrated in 

Figure 5. The relatively flat and crude surface at the top left corner does not need any special 

illumination mode, but the geometric structure and distribution of light sources will become 

complex when the undetermined detection surface becomes slick bend along with rightward 

and downward movement. 

2. Optic simulation assistance design: Uniformity is an important characteristic of light sources. 

Symmetrical illumination can give symmetrical gray scale images. Undetermined surface 

illuminance distribution may be impacted by light source structure, illumination distance and 

ray angles. Illumination system modeling is achieved using illumination optic theories and 

optic simulation software. Illuminated surface distribution is analyzed based on non-serial ray 

tracing of the model and the illumination effects of different illumination modes is simulated 

and compared. 
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3. Experimental research: Prepare enough testing samples, including undamaged samples, 

defective samples and exceptional samples; prepare standby testing light sources of different 

types and colors; use different types of light sources to beam on different positions of the target 

and observe the illumination effects. 

4. Image analysis: Image quality is analyzed according to the detection task, which helps to 

optimize illumination system design. Selecting appropriate image evaluation methods and 

guidelines is very important. The estimate function may be used to evaluate image quality and 

guide illuminance design according to airspace or frequency characteristics of the images. 

Figure 5. Relationship of light source selection and detected surface. 
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3.2. Gyroscope Pivot Bearing Illumination System Design  

3.2.1. Pivot Bearing Vision Detection System 

Transmission light illumination is used to measure the pivot bearing dimensions. As shown in 

Figure 2, a transmission light source with a condenser lens in front can enhance ray parallelism, and 

one can then obtain high contrast edge images. Surface detection illumination is comparatively 

complex, and it is the primary research content in this paper. 

The detection system used in the paper contains a Zoom 6000 series lens and a Mitutoyo 

amplification lens; objects can be amplified 25 times and the system depth of field is only 4 μm. Each 

effective visual field is limited and only the central region can be clearly imaged. The size of this region 

is about 0.085 mm × 0.085 mm, and the corresponding region in the image is about 240 × 240 pixels. 

Thereinafter this region will be called the target region. This paper designs a mechanical device 

composed of vertical and horizontal rotatory platforms (as shown in Figure 6), which can observe each 

region of ball surface by rotating the two platforms. 
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Figure 6. Framework map of the detection system. 

 

3.2.2. Reflection Model Analysis 

When rays reach an object there are three effects, reflection, transmission and absorption. Some 

geometric structure defects such as depressions, scratches and cracks can change the surface reflection. 

Surface property defects such as rust stains and blots may also cause changes in surface reflection and 

absorption. Any tiny structural region with defects induces regional roughness, which changes regional 

reflection characteristics. 

Nayar compared the Beckmann-Spizzochino physical optics models with the Torrance-Sparrow 

geometrical optics model and proposed a unified reflectance framework for smooth and rough  

surfaces [24]. As shown in Figure 7, i  is the angle of the incident rays,   is the direction of the 

camera, and r  is main specula direction. Reflectance rays near the lens reflectance direction include 

the specular lobe slI , specular spike ssI  and diffuse lobe dlI , as shown in Equation (1): 

im dl sl ssI I I I    (1)  

Figure 7. Reflection model. 
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The diffuse reflection component is represented by the Lambertian model, as shown in Equation (2)

where dlK  denotes the strength of the diffuse lobe and 
i  is the angle of the incident rays: 

cosdl dl iI K   (2) 

Specular reflection can be denoted by the Torrance-Sparrow model due to its simpler mathematical 

form, as shown in Equation (3), where slK  is the magnitude of the specular lobe, and kD  is the brae 

distributing function; F  is the Fresnel coefficient; the geometric attenuation factor G  describes the 

shadowing and masking effects of facets by adjacent facets: 

sl sl kI K D FG  (3) 

The specular spike component is a very sharp function which is approximated by the delta function, 

as shown in Equation (4), where ssK  is the strength of the specular spike component: 

( ) ( )ss ss i r rI K        (4) 

The main constituent of the surface reflection is judged by the relationship between the high 

standard deviation h  of the illuminated surface and the incident wavelength  , as shown in (5).  

Franz [25] considered that the specular spike effect can be ignored when E is greater than 1.5. 

Therefore, the specular reflection is the major component for rough surfaces, and the specular spike 

can be ignored; for smooth or defective surfaces, the specular spike is the main factor considered: 

hE



  (5)  

The surface roughness class is 13 (Ra < 0.025 μm) after a pivot bearing surface is polished; then: 

6

9

0.025 10
0.045 1.5

555 10






 


 (6)  

Therefore, this provides a specular spike model for pivot bearing regions with no defects, but 

roughness increases for a region with defects where specular reflection applies. 

3.2.3. Pivot Bearing Illumination Mode Research 

Rays pass half reflection and half pellicle mirrors in the lens, where coaxial light is sent up from 

and reaches the illuminated surface, as shown in Figure 8(a). Rays from the lens center reach the 

illuminated surface vertically, and the rays can be reflected to the lens, but non-primary optic axis 

incident rays cannot be reflected to the lens as incidence angles becoming bigger because of the curved 

illuminated surface. As a result, the brightness of the illuminated surface center is higher and decreases 

gradually on the surrounding surface when only coaxial light is used. 

A ring light is installed on the lense when it is used as a light source, as shown in Figure 8(b), and 

there is a hole with diameter r1 in the light source center. Ray 1 beams on point A of the illuminated 

surface and the angle of incidence is α, which comes into the entrance pupil of the lens by surface 

reflection. The incidence angle is greater than α when rays except ray 1 beam on the arc AB, and the 

rays cannot come into the entrance pupil of lens by surface reflection. The rays (like ray 2) within  

ray 1 have smaller incidence angles for arc AB, but these rays cannot reach the illuminated surface 

because they are sheltered by segment MN of the lens. Although incident rays can reach arc AB, the 
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angle of incidence is smaller than the critical angle α. As a result, no rays can come into the lens, that 

is, the ball crown corresponding to arc AB is always dark. When the rays (like ray 3) except ray 1 

reach arc AB, some rays can come into entrance pupil of the lens when the incidence angle changes. 

Moreover incidence angle β decreases gradually along with point C being apart from the main coaxial 

O1O. Consequently, the reflected rays that come into lens increase gradually when the rays are apart 

from the main coaxial. Coaxial light and ring light form a complex illumination system, as shown in 

Figure 6, which balances the target region illumination. 

Figure 8. Light source design. (a) Coaxial light, (b) Ring light source. 
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3.3. Emulation and Experimental Research 

3.3.1. Illuminance Uniformity Emulation 

The LightTools software can be used for computer-aided design of the illumination system by 

illumination optics. LightTools was used to emulate and analyze surface illuminance uniformity by 

using the coaxial and ring light that form the complex illumination system described in this paper. The 

illuminated object is a ball whose diameter is 0.5 mm when the system model is built, the distance of 

the emergent surface of coaxial light and illumination surface is 20 mm, and the illuminated surface 

has specular reflection. The diameter of the ring light is equal to the lens inside diameter r1 = 30 mm, 

and the outside diameter is 90 mm. Twenty thousand rays are used to trace when only coaxial light is 

used. The illuminance diagram is shown in Figure 9(a), where the view on the left is a two dimensional 

grating diagram, with x-coordinates and y-coordinates denoting object size. The view on the right is a 

histogram, where different colors denote different illuminance classes. Illuminance of target center is 

higher as shown in the figure, and the further from the center the lower the illuminance.  

One hundred thousand rays are used to trace when only the ring light is used. The distance of the 

ring light and illuminated surface is limited at 35 to 45 mm because of space limitations of the vision 

system. Assume that the distances are 35 mm, 40 mm and 45 mm. The illuminance diagram is shown 

in Figure 9(b–d). The illuminance of the target center is low; therefore, the further from the center the 

higher the illuminance. The illuminance diagram is shown in Figure 9(e), when complex illumination 
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is used. Only the illuminance diagram with the distance being 35 mm is illustrated because the effect 

of others is similar. Illuminance is even in the target region. 

Illuminance uniformity is evaluated by standard criteria of regional illuminance, and the standard 

criteria of a target region are listed in Table 1. The distance of ring light and illuminated surface is L 

using complex illumination. Illuminance uniformity is better when complex illumination is used, as 

standard criteria decrease and L decreases. 

Figure 9. Illumination diagram: (a) coaxial light only; (b), (c), (d) ring light only, L is  

35 mm, 40 mm, 45 mm in turn; (e) complex illumination. 

  

(a)      (b) 

  

(c)     (d) 

 

(e) 

Table 1. Standard criteria for target region illuminance. 

Coaxial light 
Combining illumination 

L = 35 mm L = 40 mm L = 45 mm 

6.8 1.8 2.2 3.3 
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3.3.2. Experiment and Grey Scale Image Analysis 

If direct light is used to illuminate the surface directly the camera is easily saturated due to specular 

reflection. Moreover, the reflexion will change because of the tiny angle changes of the light source, 

illuminated surface and lens. In this paper the ring light source uses scatter illumination. Grey-scale 

images are shown in Figure 10, with the target region framed. The bright spot in Figure 10(a,e–g) is 

because of the strong regional reflection caused by the irregular ball surface after machining, the gray 

scale of Figure 10(h) is even greater because the surface has no defects. Coaxial light and ring light 

illuminance are both bright field illumination. Reflected rays from defects, for example for depressions 

or scratches, cannot come into the lens. As a result, there is a low gray scale region that contrasts with 

the background. More analysis of the gray-scale images of the target region follows. 

Figure 10. Gray scale image of target region: (a) coaxial light only, (b), (c), (d) ring light 

only, L is 35 mm, 40 mm, 45mm in turn, (e), (f), (g) combining light, L is 35 mm, 40 mm, 

45 mm in turn, (h) no defect. 

    

(a)   (b)   (c)   (d) 

    

(e)   (f)   (g)   (h) 

 

1. Target region gray scale uniformity analysis: Illuminance uniformity is estimated by gray scale 

uniformity U of the target region, where a lower value indicates better uniformity. As shown in 

Equation (7), variance and mean gray scale are denoted by Var and Ave, respectively. The 

computed results of Figure 10(a,e–g) are listed in Table 2, uniformity using complex 

illumination is higher than that for coaxial light, and it becomes better when L increases: 

Var
U

Ave


 
(7)  

 
2

( ) ( , ) ( , )
x y

f I I x z y I x y    (8)  
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Table 2. Uniformity and articulation of image in different illuminance modes. 

Illuminance mode U Brenner 

Coaxial light 3.58 1.14 

Combination light 

L = 35 1.17 4.37 

L = 40 1.33 3.85 

L = 45 1.49 2.51 

 

2. Image articulation analysis: Blurring appears to a certain extent around the target region when 

complex illuminance is used. In addition, the articulation of the target region will change along 

with the change of ring light distance L. In this paper the articulation of the target region is 

calculated by the Brenner function [26], which is calculated by differences of neighboring pixel 

gray scales, square and sum. The greater the value is, the higher the articulation is, as shown in 

Equation (8), where l denotes gray scale (after normalization), and z denotes pixel interval and 

is usually 1. Blurring will present around the target region boundary, thereby articulation is 

calculated in the boundary region. The region is calculated between 200 × 200 to 240 × 240 pixels 

from the image center. The results of Figure 10(a,e–g) are listed in Table . When L is 35 mm, 

the Brenner function has the greatest value, and the articulation is the best. 

4. PSO-PCNN Image Processing 

4.1. PCNN Mathematical Model 

As shown in Figure 11, each neuron contains the input field, feedback field and pulse generator 

field [27]. The feedback field can receive exterior and local stimulation, and the input field can receive 

only local stimulation. Every neuron is connect to a neighboring field by the corresponding weight 

matrix and features attenuation delay, as shown in Equations (9) and (10): 

( ) ( 1) ( 1)F

ij ij ij F ijkl kl

kl

F n e F n S V M Y n


      
(9)  

( ) ( 1) ( 1)L

ij ij L ijkl kl

kl

L n e L n V W Y n


     
(10)  

where Fij is the feedback input of neuron Nij in the two-dimension neural network, and Lij is linking 

item, which remembers former states and has the exponential attenuation form. Ykl is the neuron output 

of iteration (n − 1), VF and VL are amplification coefficients of the feedback field and linking field, 

respectively; αF and αL are attenuation time constants of the feedback field and linking field 

respectively. Internal activity items are generated by non-linearity coupling modulation of feedback 

input using the linking field, as shown in Equation (11), the value of which determines if a neuron 

generates pulses. Modulation intensity is decided by linking coefficient β: 

( ) ( )[1 ( )]ij ij ijU n F n L n   (11)  

Pulses will be generated if the internal activity items are greater than the dynamic threshold, as 

shown in Equation (12): 
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1 ( ) ( 1)

0 other

ij ij

ij

U n E n
Y

 
 


 (12)  

The dynamic threshold is denoted by Equation (13), where VE and αE denote the amplification 

coefficient and attenuation time constant of the dynamic threshold, respectively: 

( ) ( 1) ( 1)E

ij ij E ijE n e E n V Y n     (13)  

( ) ( )[1 ( )]ij ij ijU n F n L n   (14)  

Figure 11. PCNN neural structure drawing. 

 

4.2. PCNN Model Simplification and its Image Processing 

Neurons have a one-to-one relationship with image pixels, which constructs a single layered  

two-dimension and local connection network when PCNN is used for image processing. Shi [18] 

simplified the input field and recomposed the dynamic threshold to be a linearly decreased one with a 

constant that is calculated by derivation of the contrast (DOC). Lu [28] improved the region growing 

PCNN model by modifying the linking channel function and decreased the complexity of adjusting 

parameters. 

In this paper, the basal model structure of PCNN will be simplified hereinafter. It is simplified at 

the input field: Fij(n) = Sij(n). The neighborhood action part is omitted in the feedback field, of which 

the answer to a neighbor field action is boiled down to linking coefficient action for the linking field.  

Lij(n) = VL ∑kl WijklYkl(n – 1). Attenuation items are omitted in both the feedback and linking fields, 

which reduces the number of structure parameters and decreases computational requirements for 

confirming undetermined parameters. Meanwhile, the basic characteristics of the PCNN model are 

retained. In this case, the internal activity item is denoted by Equation (15): 

( ) ( )[1 ( )]ij ij ijU n S n L n   (15)  

Neurons Nij and Nkl are hypothetically linked, where exterior stimulations are Sij and Skl respectively 

and Sij > Skl. Initially, when neurons are not connected to each other, the greater the input value the 

higher ignition frequency. That is, a high gray scale pixel will ignite first. The temporary dynamic 

threshold of the two neurons is 0, and internal activity items are greater than the dynamic threshold. 
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The dynamic threshold increases to VE immediately after the first ignition and pulse export. At the 

same time, exported pulses of the two neurons come into the linking field of each other, which 

increases the internal state, but the neurons will not ignite immediately as VE was set to a high value. 

Neuron Nij will first generate the second ignition because the exterior stimulation of neuron Nij is 

greater than Nkl. Meanwhile, neuron Nkl receives a pulse input from neuron Nij through the linking 

field, which increases the internal state to Ukl = Skl(1 + βLkl) by couple modulation. If Ukl > Ekl(n) at 

that time, neuron Nkl can ignite ahead of time, indicating that neuron Nkl is captured by neuron Nij. 

Then, the two neurons can synchronously ignite. This capture characteristic is applicable to a neuron 

and other neurons in its neighboring field. PCNN generates pulses as comparability swarm, which 

enables neurons with similar properties to synchronously ignite. 

The linking weight matrix can be set to 4-connection, 8-connection or others according to actual 

requirements. The center pixel is affected by the distance of a pixel and its neighboring pixel, that is, if 

information transfer is strong from a neighboring field to the center. The nearer to the center pixel the 

greater the weight. Wijkl is calculated by Eyckid distance quadratic sum reciprocal of neighborhood 

neuron and current neuron, namely: 

2 2

1

( ) ( )
ijklW

i k j l


  
 

(16)  

At the same time, neuron Nij generates pulses that can capture distant neurons by neuron transfer 

due to the pulse transmission characteristic of PCNN. Consequently, its segmentation result features 

better self-adaption than traditional threshold segmentation methods. 

4.3. PSO-Based Parameter Self-Adaption 

4.3.1. PSO Algorithm 

The global optimum is searched in parameter space by a PSO algorithm using some particles [29]. 

Each particle of the population denotes a potential solution. A global optimum will be achieved and an 

optimal value will be obtained by information exchange among particles and iterative evolution. 

Assume that the position and velocity of the ith particle are represented as Xi = (Xi1,Xi2,···,Xid) and  

Vi = (Vi1,Vi2,···,Vid), respectively, in d-dimension search space. Particles will renovate automatically by 

two optimum solutions upon iteration: one is the optimal position Pi = (Pi1,Pi2,···,Pid) that has been 

found by the particle itself; the other one is the optimal position Pg = (Pg1,Pg2,···,Pgd) that has been 

located among the whole population. Each particle renovates its velocity and position by  

Equations (17) and (18): 

( 1) ( ) ( ) ( )

1 1 2 2[ ] [ ]t t t t

ij ij ij ij gj ijv wv c r p x c r p x       (17)  

( 1) ( ) ( 1)t t t

ij ij ijx x v    (18)  

where c1 and c2 are learning factors, t is the number of iterations, r1 and r2 are two random numbers 

within the range of 0 to 1, and w is an inertia factor. The linearity reduced inertia factor is used  

to avoid PSO algorithm precocity and oscillation near the global optimal solution, as shown in  

Equation (19): 
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max min
max

num

w w
w w t

M


   (19)  

where t denotes the current iteration number, and Mnum denotes the total iteration number. The inertia 

factor decreases linearly from the maximum to the minimum. It is propitious to leave from the local 

minimal point and easy for global search when the inertia factor is great and propitious for accurate 

local search and algorithm convergence when the inertia factor is small. 

4.3.2. PSO-PCNN Parameters Configuration 

The number of undetermined parameters for the simplified PCNN model has been greatly 

decreased, with only β, Wijkl, VL, VE and αE left. VL, Wijkl and αE have lower impact on segmentation 

results; β and VE have higher impact, and need to be set differently for different images. Therefore, the 

two key parameters are optimized by the PSO algorithm in the paper. The maximum cluster variance 

denotes a low probability of background misclassification. The maximum between cluster variance 

rules is used as the fitness function in this paper. It is defined as follows: 

2 2 2

0 0 1 1( ) ( )T Tp p         (20)  

where 0

i

i

p A

p p


  , 1 01
i

i

p B

p p p


   , A denotes the target region of binary image after PCNN 

segmentation, B denotes the corresponding background region, ip  denotes the probability of each gray 

scale, and 0 , 1 , and T  denote the mean gray scale of the target region, background region and 

image respectively. 

The key parameters β and VE of PCNN are searched by the PSO algorithm with a linearity reduced 

inertia factor. The procedure is as follows: 

(1) Initialize the position and values of each particle in the population, ( , )i EVP ; 

(2) Compute the fitness value of each particle. The particle position vector is imported to the 

PCNN model, and image segmentation is executed. The output binary image is mapped to the 

target of the original image and background region. Compute the variance between clusters as 

fitness value using Equation (20); 

(3) The position and fitness value of current particle are saved in the individual best position 

(pBest), and the position and fitness value of all the pBest  are saved in the article population 

best position ( gBest ); 

(4) Update the inertia factor w  using Equation(19); 

(5) Update the velocity 
( 1)t

ijv 
 and position 

( 1)t

ijx 
 of each particle using Equations (17) and (18); 

(6) If the fitness value of a particle is better than a value with the best historical position, set 

position pBest  as the current position for the particle; if a fitness value of particle population is 

better than the best historical position among the population, set position gBest  as the current 

position for the particle; 

(7) Assume that 1t t  . Return to step (2), until numt M ; 

(8) The best solution position is gBest  by iteration, and the optimizing β and VE are used for 

PCNN image segmentation. 
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5. Experiments 

5.1. Experiment One: Dimension Measurement  

(1) Axis diameter measurement: Axis diameter measurement can be considered as a distance 

measurement between parallel lines, and the premise is fitting parallel lines by obtaining the 

two groups of edge data. Edge points after image processing are processed by least squares 

fitting to obtain two line equations, which makes the two line slopes equal. Then the distance of 

two lines will be calculated. Point numbers of the two lines are denoted by 1n  and 2n , point 

sets of the two lines are 1P  and 2P , and the line equations are: 

1

2

sin cos 0

sin cos 0

x y d

x y d

 

 

  

  
 (21)  

The target function is constructed by least square fitting as shown in Equation (22): 

   
 

 
 1 2

2 2

1 2 1 2

, ,

, , , , sin cos sin cos
i i i i

m i i i i

x y P x y P

E d d d x y d x y d    
 

         
(22)  

 ,i i j

j i

x y P

x x




  , 
 ,i i j

ij

x y P

y y




  , ( 1,2)j  , ( 1,2, , )ji n  ， 

then 

   

 

2 22 2

, ,

,

i i j i i j

i i j

jj i i j

x y P x y P

jj i i j

x y P

a x x y y

b x y x y

 

 



   

 

 


 1, 2,j  ， 1,2, , ji n   (23) 

Assuming:      
 
   ,      

 
   , (j = 1,2), then                 , when b≠0, 

     
          

  
, using                   , (j = 1,2), obtain   , and two parallel line 

equations. Then the distance of the two lines will be obtained, which is the axis diameter. 

(2) Ball head diameter measurement: Two arc segments cannot form a perfect circle due to the 

machining course of a ball. Therefore, the ball head diameter is calculated by averaging 

multiple results of the maximum distance of the left and right arc segments. 

(3) Experimental results: Ten pivot bearings are measured using the system for validating 

measurement methods. Compareison of the results with the results obtained by contact 

measurement using length measuring instruments (measurement accuracy is 0.0002 mm). 

Table 3 shows that the difference of measurement results is less than 0.001 mm. 
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Table 3. Measurement results of axis diameter and ball head diameter (mm).  

 
Workpiece 

number 
1 2 3 4 5 6 7 8 9 10 

Axis 

diameter 

System 

measurement 
3.0015 3.0016 3.0015 3.0013 3.0011 3.0016 3.0006 3.0012 3.0001 3.0018 

Length 

measuring 

instruments 

3.0018 3.0011 3.0019 3.0016 3.0008 3.0012 3.0004 3.0015 3.0005 3.0016 

Difference −0.0003 0.0005 −0.0004 −0.0003 0.0003 0.0004 0.0002 −0.0003 −0.0004 0.0002 

Ball head 

diameter 

System 

measurement 
0.4944 0.495 0.4968 0.4971 0.4967 0.4985 0.4978 0.4968 0.4936 0.4935 

Length 

measuring 

instruments 

0.4941 0.4955 0.4965 0.4969 0.4965 0.4989 0.4985 0.497 0.4939 0.494 

Difference 0.0003 −0.0005 0.0003 0.0002 0.0002 −0.0004 −0.0002 −0.0002 −0.0003 −0.0005 

5.2. Experiment 2: Defect Image Detection 

There are many reasons that may cause pivot bearing surface defects, for example non-uniform 

material structure, lapping stress and polishing, which all result in different defect dimensions and 

modes. Images of pivot bearing surface defects are segmented for validating the algorithm put 

forward in this paper. LV  and E  in the PCNN model are 1, ijklW  is set by Equation (16), where the 

size of the neighbor field is 5 × 5. PSO inertia factors in the experiment are max 0.9w   and min 0.4w  ; 

the iteration number is 20numM  ; the number of particle populations is 10N  ; the learning factor is 

1c  = 2c  = 2, as suggested by Shi [30]. Undetermined optimal PCNN parameters   and EV  are 

initialized in the PSO algorithm, and the optimum solution will be used for the PCNN parameters by 

an iteration search. The experiments were conducted on an Intel Pentium 4 CPU 3.0 GHz personal 

computer. Processing time of the PCNN algorithm is about 3 s on average. Image processing results 

for various defect images using methods in this paper are compared with others as shown in Figure 12. 

It shows rust stains, macula, coarse threads and depressions from top down, and original image and 

processing results of this paper, maximum entropy and minimum errors from left to right. 

Sunil [31] used the buffer region matching method [32] to estimate segmentation results of concrete 

infrastructure crack images. We use for reference Sunil’s method to objectively estimate segmentation 

results in this paper. The algorithm flow chart is shown in Figure 13. Buffer regions are formed by  

3 × 3 morphological dilate operation for defect regions that are extracted by artificial processing, and 

then defects that have been segmented are matched and compared with the buffer region. The pixels 

are denoted as 1S  inside the buffer region and as 2S  outside that region. Similarly, buffer regions are 

formed by dilate operation for defect targets that are extracted by segmentation methods, and those are 

compared with defects that are extracted by artificial processing. The pixels are denoted as 3S  and 4S  

inside and outside the buffer region, respectively. Image segmentation are estimated by three 

estimating factors in Equations (24–26), where C  denotes Correctness that is the correct degree of the 

defect target region as shown in Equation (24); I  denotes Integrality that is the overlay degree of 
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artificial distilling defects by segmentation processing as shown in (25); Q  denotes Quality, which is a 

synthetic estimation of correctness and integrality as shown in Equation (26). 

1

1 2

S
C

S S



 (24)  

3

3 4

S
I

S S



 (25)  

1

1 2 4

S
Q

S S S


 
 (26)  

1 2 3S k C k I k Q +  (27)  

Figure 12. Result of image processing, (a) Original image with defect, (b) Result of this 

paper, (c) Result of maximum entropy, (d) Result of minimum error. 

    

    

    

    

(a) (b) (c) (d) 
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Figure 13. Flowchart of buffer region matching. 
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The ideal value of the three estimation factors is 1. A value closer to 1 indicates higher performance. 

The estimation factor results of pivot bearing surface defect processing are listed Table 4, where the 

three estimation factors for coarse thread and macula processing results in this paper are better than the 

other two.  

Table 4. Result of buffer region matching estimate. 

Defect 
Segmentation 

Method 
C I Q Defect 

Segmentation 

Method 
C I Q 

Rust stains 

This paper 0.971 0.983 0.955 

Macula 

This paper 0.98 0.877 0.792 

Minimum error 0.979 0.841 0.8 Minimum error 0.966 0.714 0.597 

Maximum entropy 0.987 0.908 0.889 Maximum entropy 0.921 0.844 0.773 

Coarse thread  

This paper 0.98 0.867 0.792 

Fovea 

This paper 0.973 0.985 0.963 

Minimum error 0.931 0.844 0.773 Minimum error 0.979 0.948 0.927 

Maximum entropy 0.976 0.714 0.597 Maximum entropy 0.882 0.991 0.876 

 

The correctness of rust stains processing results is not the best, but the integrality and quality are 

better. Integrality of fovea processing is not as good as maximum entropy, but the correctness and 

quality are better. The synthetic estimation factor is calculated by Equation (27) that is proposed in this 

paper to synthetically compare the three algorithm processing results for different defects, where k1, k2, 

k3 are the coefficients of the three estimation factors, and k1 = k2 = k3 = ⅓ in this paper. Results are 

shown in Table 5. Comparing the results for different defects, the PCNN processing results in this 

paper are better than the other two, and that proves the methods in this paper can be used for defect 

image segmentation. 

Table 5. S estimation factor results. 

 Rust stains Macula Coarse thread Fovea 

This paper 0.9697 0.883 0.8797 0.9736 

Minimum error 0.8733 0.759 0.8493 0.9513 

Maximum entropy 0.928 0.846 0.7623 0.9163 
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6. Conclusions 

An image analysis-based vision detection system aimed at gyroscope pivot bearing dimension 

measurement and surface defect detection is described in this paper. It implements pivot bearing axis 

diameter and ball head diameter measurement and surface defect detection in one instrument. 

Illumination has a direct effect on imaging quality and detection results. Therefore, stepwise design, 

simulation, experiment and analysis are used to propose an illumination system design method. 

Detection target characteristics and detection requirements are both considered, and the illumination 

model is designed according to the system environment. Illuminance uniformity is simulated and 

image results are analyzed by experimental research, which optimize illumination system design. 

Complex illumination is composed by a coaxial light and a ring light source with the purpose of 

gyroscope pivot bearing surface defect detection, which enhance illuminance uniformity and image 

articulation of target regions. Furthermore, the PSO-based PCNN method is proposed in this paper to 

process pivot bearing defect surfaces, and two key PCNN parameters, connect coefficient and dynamic 

threshold, are optimized by the PSO algorithm using the maximum cluster variance as a fitness 

function. Linearity reduced inertia factor is adopted to avoid PSO algorithmic precocity and oscillation 

near the global optimal solution, which implements a self-adaptive PCNN parameter setting. Buffer 

regions matching the estimated method for segmentation results prove that the methods in this paper 

can be used for image segmentation. In addition, iterative computation is required for both PSO and 

PCNN, therefore how to improve the speed of PSO algorithm-based optimal computation for PCNN 

parameters still needs further study. 
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