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Abstract: In this work, a comparative study between an Ultra Wide-Band (UWB)
localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is
presented. Due to its high bandwidth and short pulses length, UWB potentially allows
great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM
algorithms recursively estimates the map of an environment and the pose (position and
orientation) of a mobile robot within that environment. The comparative study presented
here involves the performance analysis of implementing in parallel an UWB localization
based system and a SLAM algorithm on a mobile robot navigating within an environment.
Real time results as well as error analysis are also shown in this work.
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1. Introduction

This article addresses the experimental comparison analysis between an ultra wide-band localization
system (UWB) and a SLAM (Simultaneous Localization and Mapping) algorithm.

Indoor location systems have some problems such as the ability to locate objects exactly. This can
be caused by a number of factors depending on the system being used. Each system has its advantages
and its drawbacks. Some can provide a high degree of accuracy but are not suitable for manufacturing
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businesses, as they do not perform well in these conditions partly due to interference caused by other
machinery. Cost is another factor as some localization systems can be very expensive to implement.
Scalability is also another issue that requires investigation. However in order to evaluate these systems
we must look at how the different systems operate, as well as their advantages and disadvantages. Ultra
Wide Band technologies are often described as the next generation of real time location positioning
systems. In the world today industry is becoming more competitive and any technology that can provide
a competitive edge is welcome.

Industrial mobile robots, stock control and logistics in warehouses, mobility assistance for
handicapped people or patient monitoring in hospitals are some scenarios that require accurate position
estimation in indoor environments. Sensors based on ultrasound, lasers, cameras and Radio Frequency
signals (RF) are often used for these applications. Radio Frequency sensors have a wide range of usage as
the electromagnetic waves propagate through most typical environments. Impulse-based ultra wideband
transceivers offer accurate ranging with low cost. However, one of the most significant obstacles in
accurate ranging and positioning is the non-line of sight (NLOS) problem, which occurs in shadowed
environments where a signal that propagates with a clear line of sight (LOS) may not be available. There
are different wireless technologies, like WiFi [1], ZigBee [2], ultrasound [3], and others narrow band RF
systems that have been proposed for indoor localization. Generally, these localization systems are based
on low cost and low power sensors that measure received power or time of arrival. In the comparative
study of Clarke et al. [4], it is shown that UWB is one of the best candidates for low cost accurate
indoor localization. Commercial systems that use UWB sensors for indoor asset tracking are already
available. For example, Zebra Enterprise Solutions [5] utilize time-difference-of-arrival (TDOA), and
Ubisense [6] use a combination of TDOA and angle-of-arrival (AOA). The specified real-time accuracy
of these systems is sub-15 cm with indoor operating ranges of over 50 m to 100 m.

In a previous work, a Mobile Robot Self-Localization systems using UWB technology was
introduced [7]. The typical approach of commercial indoor localization systems consists of multiple
base stations (BS) that receive an UWB signal from the tag to be localized. The received signals are
processed by a central control unit or by the BS to finally estimate the tag or mobile robot position. In
the mentioned work, a new approach for mobile robot localization was developed and it is implemented
in this comparative study.

The SLAM algorithm applied on a mobile robot recursively estimates the pose—localization and
orientation—of the vehicle and the elements of the environment—called map—while reducing errors
associated with the estimation process [8,9]. Several algorithms have been proposed as solutions to
the SLAM problem. The most widely used by the scientific community is the Extended Kalman filter
(EKF) [8,10–12] solution and its derived filters, such as the Unscented Kalman filter (UKF) [12] and
the Extended Information filter (EIF) [13,14]. In these filters, the SLAM system state, composed by
the robot’s pose and the map of the environment, is modeled as a Gaussian random variable. Others
solutions has also been implemented to solve the SLAM problem with high success, such as the case of
the Particle filter (PF) [15], the Graph-SLAM [16] and the FastSLAM presented in [12].

Different SLAM algorithms solutions are presented to solve one or several issues associated with
the SLAM process, such as the time consuming processing, the accuracy of the map, the successful
closure of the loop, the integration of the SLAM algorithm with control laws to drive the vehicle motion
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and the modeling of different environments (dynamic, highly dynamic, static, structured, unstructured,
etc.) [9,12]. Thus, for example, the EKF-SLAM presented in [10] extracted maps lines from structured
environments, whereas [17] works on environments with point-based features (parameterized as range
and bearing). The EKF has also been used in vision-based SLAM. Despite the easy implementation of
the EKF-SLAM, its correction part demands high computation resources. To solve this, the EIF is used
instead of the EKF [12].

In this article, an experimental comparison between the UWB localization method and the SLAM
algorithm is performed. The UWB localization system and the SLAM algorithm are implemented in
parallel on a mobile robot. The SLAM algorithm is implemented on an Extended Kalman filter (EKF)
and extracts corners and lines —associated with walls—from the environment.

The comparison analysis involves the pros and cons of both methods when implemented on the mobile
robot platform for navigation purposes. The experimental analysis includes covariances estimation
evolution, accuracy of the localization methods, portability and feasibility of the SLAM and the UWB
system, and error analysis. Finally, a comparative table is presented showing the advantages and
disadvantages of both techniques presented in this work.

The article is organized as follows: Section 2 shows the general system implemented in this work;
Section 3 introduces the UWB localization system; Section 4 presents the SLAM algorithm, the mobile
robot and the map’s features model used in this work; Section 5 shows the experimental results of
carrying out parallel experimentations of the UWB localization system and the SLAM algorithm.
Section 6 concludes.

2. General System Architecture

The system architecture of the comparative study between the UWB localization system and the
SLAM algorithm is shown in Figure 1. Both localization systems (UWB and SLAM) are implemented
in parallel and their localization estimations are independent from each other.

Given that the mobile robot has two independent localization systems implemented on it, the
navigation of the vehicle should not rely on any of them [18] in order to avoid contradictory driving
commands. Thus, the mobile robot motion is controlled by hand-joystick. This way, the mobile robot
navigates within the same environment, following the same path for both localization methods.

The UWB localization system transmitters are located within the environments whereas the UWB
localization system receiver is located on the mobile robot (see Figure 1). This scenario will be explained
in detail in Section 3. On the other hand, the SLAM algorithm depends only on the exteroceptive
sensors [18] of the mobile robot. UWB localization system estimates the position of the robot whereas
the SLAM algorithm estimates both the position and the orientation of the mobile robot while it is
navigating within the environment.

The following sections will show in detail each block of Figure 1.
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Figure 1. General System Architecture. The UWB localization system and the
SLAM algorithm estimations are independent between them and both related to the same
environment.
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3. Ultra Wide-Band Localization System

Generally, typical approaches of indoor localization systems consists of multiple base stations (BS)
that receive an UWB signal from the robot to be localized. The received signals are processed by a
central control unit or by the BS and finally estimate Mobile Robot (MR) position [19]. In mobile robot
control application the position information must be sent back to the mobile vehicle, sometimes using a
different communication system [20].

In this work, four synchronized anchor nodes are located in fixed known positions in the
indoor environment. These anchor nodes transmit synchronized UWB pulses modulated as DBPSK
(Differential Binary Phase Shift Keying), using a carrier of 3.5 GHz. In the current implementation,
2 ns pulses having a –10 dB bandwidth of approximately 1 GHz have been used. The mobile robot is
equipped with an UWB receiver that estimates the robot localization measuring the Time Difference of
Arrival (TDOA) between pairs of synchronized base stations. The UWB system used on this comparative
study is defined as self-localization algorithm because the estimation algorithms run locally on the MR.

3.1. UWB Communication System and General Architecture

There are different UWB approaches that have been proposed for communication and localization
systems like orthogonal frequency division multiplex [7], frequency hopping [19], chirp or
direct-sequence spread spectrum modulation [20]. Nowadays, there is a general agreement that
optimum receiver structures from conventional narrow-band communications systems are not feasible
for low-power UWB communications. Currently there are different approaches to design sub-optimum,
non-coherent schemes, based on energy detectors or differential detection. In our case, an UWB
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non-coherent system based on differential detection was implemented due to its simplicity and
robustness, also because it allows to develop implementations with small power consumption.

The modulated Differential Binary Phase Shift Keying (DBPSK) signal in a complex form can be
written as:

s(t) =
√
Eb

+∞∑
k=−∞

(2b̃(k)− 1)p(t− kTf ) (1)

In (1), b̃(k) = b(k)
⊕

b̃(k − 1), b̃(k) ∈ {0, 1}.
⊕

is the logical or operator, b̃(k) are the differential
encoded pulses, and p(t) is the selected pulse shape (Eb is the bit energy). An IR-UWB system transmits
each information symbol over a time interval of Ts seconds, which consists ofNf frames of length Tf and
the resulted symbol length is Ts = Nf× Tf . In each frame, a short pulse p(t) of Tp = 2ns is transmitted
with the selected shape.

The mobile robot must identify multiple signals that come from different base stations. In order to
differentiate each BS, Direct Sequence (DS) Gold spreading codes are differentially encoded prior to
the modulation. The code length 7, which is the smallest Gold code, was implemented for reducing
acquisition and processing time. It is worth noting that better accuracy could be achieved if longer codes
were implemented. If the base stations transmit at the same time, inter-pulse interference takes place,
hence a simple time division multiple access (TDMA) was implemented. The final DS-UWB DBPSK
transmitted signal can be written as:

xu(t) =
√
Eb

+∞∑
k=−∞

(2b̃(k)− 1)p(t− kTf − uTs) (2)

In (2), xu(t) is the transmitted signal by the base station BSu, u = 0, 1, ..., NBS − 1 and NBS is the
number of base stations, in our case NBS = 4. The UWB transmitter use an RF switch to distribute the
corresponding signal to each antenna.

Regarding the receiver, differential demodulation is necessary to compare the phase of the previous
pulse with the phase of the current pulse. To do this, the delay needs to be as large as the frame time Tf .
The receiver accuracy is related with the capacity to make a precise delay. Since it is difficult to make
an accurate analog delay, the authors used the concept of Software Defined Radio (SDR), in which the
analog to digital converter (ADC) is placed as close as possible to the antenna.

3.2. UWB Localization Algorithm

The localization algorithm is based on two step positioning approach. In the first step of a two-step
localization system, signal parameters are estimated for ranging purpose, in our case the time-of-arrival
(TOA). Then, in the second step, the target node position is estimated based on the signal parameters
obtained from the first step using adequate positioning algorithms. A block diagram of two-step
localization system is illustrated in Figure 2.
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Figure 2. Two step localization scheme.

For ranging purpose the received signal r(t) is correlated with a delayed signal coming from the
same BS. This correlation improves the signal to noise ratio (SNR) because the signals are scattered by
the same objects or building furniture and modified by the same communication channel, so they are
highly correlated. In the implemented receiver, a high sampling frequency ADC is placed after the low
pass filters and the signal detection is made on digital domain using a Field Programmable Gate Array
(FPGA) (Figure 3). The real receiver that was mounted over the MR is shown in Figure 4.

Figure 3. Block diagram of the implemented receiver structure, Time of Arrival, and
positions estimation algorithms.

Figure 4. Receiver implemented with off-the-shelf components.
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The TOA estimation is implemented on the FPGA due to its parallel processing capabilities, which
permits to reduce the detection time. The implementation was done using the System Generator tool
from MatLab, as Figure 5 shows.

Figure 5. Detection and TOA estimation on FPGA.

The DBPSK detector block in Figure 5 computes the correlation with a delayed version of the
incoming in-phase (I) and quadrature (Q) signal components. The recovered signal SIout is the
input to the following block (TOA Estimator) which estimates the TOA using an adaptive threshold
concept [20]. A threshold-based TOA algorithm selects the time at which the signal “SI” crosses an
established threshold. The estimation accuracy depends on the threshold selection. If the threshold is
low, the probability of detecting a peak due to noise increase, and it is defined as false alarm or early
detection. In contrast, if the threshold is high, probability of detecting a signal that arrives later than the
direct path increases, and this is called miss detection. An important issue is how to select a dynamic
threshold that works well under different SNR and LOS conditions. This problem was solved by the
dynamic threshold algorithm proposed in [20]. At the output of TOA estimator block, the signal is
regenerated using the times estimated by the threshold algorithm.

The Sliding correlator block receives a digital recovered signal that will be cross-correlated against
each Gold code templates. The output of this block is compound by a set of signals whose peaks take
place when the code template matches the received signal. Next, the Time Generator block estimates the
peaks time and generates the TOA estimations corresponding to each transmitter. The detailed ranging
algorithm runs on real time over the FPGA. The required processing time depends on the code length
and the number of BS. In our case the ADC capture 8192 samples @ 1.5 Gsps, which means 5.4 µs for
acquisition and detection since that the developed algorithm can run on line in the FPGA.

At the mobile robot, the estimation of the ranges between base stations and robot’s current position
(see Equation 3) is performed by multiplying the estimated time difference with the radio speed (4).
These ranges produce a set of hyperbolas and their intersections determine the MR position. In a 2-D
position localization system, the base station position is expressed as (Xbs, Ybs) and the mobile robot
location is (xr, yr).

Ri =
√

(Xbs − xr)2 + (Ybs − yr)2 (3)

The range difference between the base stations is:

Ri,1 = cτi,1 = Ri −R1

Ri,1 =
√

(Xi − xr)2 + (Yi − yr)2 −
√

(X1 − xr)2 + (Y1 − yr)2
(4)
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In order to solve the set of non-linear equations, a linear constrained least square algorithm that
applies the technique of Lagrange multipliers to solve the minimization problem proposed by [21] is
implemented. The localization algorithm runs on a PC located over the mobile robot. The processing
time takes 300 ms on a Core2Duo @ 1.66 GHz. Majority of this time is due to USB handshake between
PC and ADC-FPGA board.

4. SLAM Algorithm

The SLAM (Simultaneous Localization and Mapping) algorithm recursively estimates the
pose—position and orientation—of the mobile robot within the environment while mapping the same
environment [8,9].

The SLAM algorithm implemented in this work is solved by an Extended Kalman filter (EKF).
The SLAM system state is composed by the vehicle estimated pose—position and orientation—and the
features extracted from the environment, which are known as the map of the environment. The features
extracted from the environment correspond to corners (concave and convex) and lines (associated with
walls). For visualization and map reconstruction purposes, a secondary map is maintained. This
secondary map stores the beginning and ending points of the segments associated with the lines of the
environment. Thus, the secondary map allows finite walls representation. The secondary map is updated
and corrected according to the feature correction in the EKF-SLAM system state, and if a new feature
is added to that system state, it is also added in the secondary map [22]. Equations (5) and (6) show the
system state structure and its covariance matrix. All elements of the SLAM system state are referenced
to a global coordinate system.

ξ̂t =

[
ξ̂v,t

ξ̂m,t

]
(5)

Pt =

[
Pvv,t Pvm,t

P T
vm,t Pmm,t

]
(6)

In Equation (5), ξ̂t is the SLAM system state; ξ̂v,t = [x̂t ŷt θ̂t] is the estimated pose of the vehicle,
where x̂t and ŷt represent the global position of the agent within the environment and θ̂t its orientation;
ξ̂m,t represents the map of the environment and it is composed by parameters that define both lines and
corners (corners are defined in the Cartesian space and lines in the polar space, as will be shown in
Section 4.2). The order in which lines and corners appear in ξ̂m,t depends on the moment they were
detected. Pt is the covariance matrix associated with the SLAM system state; Pvv,t is the covariance of
the vehicle’s pose and Pmm,t is the covariance of the map. Pvm,t and P T

mv,t are cross-correlation matrices
(between the vehicle and the map).
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The covariance matrix initialization techniques and the EKF definition can be found in [8,9]. The
EKF is represented in Equation (7). All variables involved in the estimation process are considered as
Gaussian random variables. 

ξ̂−t = f(ξ̂t, ut)

P−t = AtPt−1A
T
t +WtQt−1W

T
t

Kt = P−t H
T
t (HtP

−
t H

T
t +Rt)

−1

ξ̂t = ξ̂−t +Kt(zt − h(ξ̂−t ))

Pt = (I −KtHt)P
−
t .

(7)

In Equation (7), ξ̂−t is the predicted state of the system at time t; ut is the input control commands
and ξ̂t is the corrected state at time t; f describes the motion of the elements of ξ̂. P−t and Pt are the
predicted and corrected covariance matrices respectively at time t; At is the Jacobian of f with respect to
the SLAM system state and Qt is the covariance matrix of the noise associated to the process, whereas
Wt is its Jacobian matrix; Kt is the Kalman gain at time t; Ht is the Jacobian matrix of the measurement
model (h) and Rt is the covariance matrix of the actual measurement(zt). The term (zt − h(ξ̂−t )) is
called the innovation vector [12] and takes place when the data association procedure has reached an
appropriate matching between the observed feature and the predicted one (h(ξ̂−t )). Both the process
model (f ) and the observation model are non-linear expressions. Further information concerning the
EKF-SLAM can be found in [22].

In this work, the sequential EKF was implemented in order to reduce computational costs. The
sequential EKF-SLAM is based on the iterative calculation of the correction stage (SLAM system state
and covariance matrix) for each feature with correct association, see [12]. The prediction stage remains
as stated in Equation (7).

The general form of the correction stage of the classical sequential EKF-SLAM algorithm [12] is
summarized in the algorithm shown in Algorithm 1. Sentences (3) to (9) describe the for loop of the
correction stage of the algorithm. For every feature with correct association (sentence (2)), the for loop
is executed. Sentence (4) shows the Kalman gain calculation; sentence (5) is the correction of the SLAM
system state, whereas sentence (6) is the correction of the covariance matrix of the SLAM algorithm. In
sentence (7), the current feature is deleted from the set of features with correct association (Mt). In the
next iteration, the next predicted SLAM system state and covariance matrix are the last corrected SLAM
system state and covariance matrix respectively, as noted in sentence (8).

Further information concerning the EKF-SLAM implemented in this work can be found in [23].

4.1. Mobile Robot

The mobile robot used during the experimentation is a Pioneer 3AT built by ActivMedia. The Pioneer
3AT is an unicycle like non-holonomic mobile robot. The vehicle has a range sensor laser, built by
SICK, incorporated on it that acquires 181 measurements between 0 and 180 degrees in a range of 32 m.
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Algorithm 1 Algorithm of the correction stage of the Sequential EKF-SLAM.
1: Let Nt be set of the observed features
2: Let Mt ⊆ Nt be the set of features with correct association
3: for j = 1 to #Mt do
4: Kt,j = P−t,jH

T
t,j(Ht,jP

−
t,jH

T
t,j +Rt,j)

−1

5: ξ̂t,j = ξ̂−t,j +Kt,j(zj − h(ξ̂−t,j))

6: Pt,j = (I −Kt,jHt,j))P
−
t,j

7: Mt,j = Mt,j − {zj}
8: P−t,j := Pt,j; ξ̂−t,j = ξ̂t,j

9: end for

Figure 6(a) shows a picture of the mobile robot used. The mobile robot kinematics equation are shown
in Equation (8), whereas Figure 6(b) shows a graphic representation of the kinematic model of the robot. xt

yt

θt


G

=

 xt−1

yt−1

θt−1

 + ∆t

 cos(θt−1) 0

sin(θt−1) 0

0 1

[
ut

ωt

]
+ Φt (8)

In Equation (8), xt, yt and θt are the coordinates of the point of control of the vehicle in Figure 6(b);
Φt is the Gaussian noise associated with the vehicle’s model; ut and ωt are the linear and the angular
velocities respectively, generated by the control strategy. In this work, the mobile robot control
commands were generated by means of a hand-joystick; ∆t is the sampling time and the suffix G

implies that xt, yt and θt (the pose of the vehicle) are expressed in a global reference frame of the
environment [23].

Figure 6. Mobile robot unicycle non-holonomic type, Pioneer 3AT used in this work.
(a) shows a picture of the vehicle. (b) shows a graphic representation of the kinematic model
of the vehicle.
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4.2. Features of the Environment

The models of the features of the environment (corners and lines) are shown in Equations (9) and (10).
Figure 7 shows the graphical interpretation of the variables in Equations (9) and (10).

zcorner(k) = hi[ξ̂v,t, w(k)] =

[
zR

zβ

]
=

[ √
(x̂t(k)− xcorner)2 + (ŷt(k)− ycorner)2

arctan ŷt(k)−ycorner

x̂t−xcorner
− θ̂t(k)

]
+

+

[
wR

wβ

]
(9)

zline(k) = hi[ξ̂v,t, w(k)] =

[
Zρ

Zα

]
=

[
r − x̂t(k) cos(α)− ŷt(k) sin(α)

α− θ̂t(k)

]

+

[
wρ

wα

]
(10)

Figure 7. Graphic representation of line and corners extracted from the environment.
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In Equations (9) and (10), wρ, wα, wR, wβ are additive Gaussian noise associated with the
measurement. Further information concerning the line’s modeling can be found in [10].



Sensors 2011, 11 2046

5. Experimental Results

The comparison experiments were carried out at the facilities of the Engineering Department of the
National University of San Juan, Argentina. The environment was a static non-structured environment.
Figure 8(a,b) shows two pictures of the four antennas located near the four walls intersections of the
environment. They were located at a high of 2.45 m from the floor. The UWB receiver antenna was
located at the mobile robot, at a high of 0.835 m from the floor. Figure 8(c) shows the mobile robot
used (the Pioneer 3AT) with the laser SICK and the UWB receiver antenna on it. On the other hand,
Figure 8(d) shows several landmarks intentionally located over the environment’s floor. The relative
position of each landmark with respect to the transmitter antennas (see Figure 8(a,b)) is known. Thus, it
is possible to reference the environment to any coordinate system [24]. Figure 8(d) shows the walls of
the environment (solid black segments), the disposition of the transmitter antennas within it (solid red
triangles) and the landmarks on the floor of the environment (solid blue dots).

Figure 8. Environment disposition. (a,b) shows the four UWB transmitter antennas located
on each wall of the environment, near their respective corner. (c) shows the Pioneer 3AT
with both the UWB receiver antenna and the laser SICK, used by the SLAM algorithm.
(d) shows the environment with the landmarks referenced to an arbitrary reference frame.
The solid black lines represent walls of the environment, the solid red triangles are the UWB
transmitter antennas and the solid blue dots are the landmarks on the floor of the environment.
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5.1. UWB Localization

In order to determine the performance of the localization systems shown in Figure 1, the mobile robot
is positioned at [x y]T = [10.5 8.2]T meters within the environment shown in Figure 8(d).

With the purpose of avoiding disperse measurements –as the ones shown, e.g., at positions
[x y]T = {[8.65 8]T , [8.44 12.8]T , [10.5 9.3]T} in Figure 9(a), a five samples average filtering is applied.
This filter is an sliding window that averages five samples at a time, as shown in Equation (11).

y[n] = (y[n] + y[n− 1] + y[n− 2] + y[n− 3] + y[n− 4])/5 (11)

In Equation (11), y is the localization measurement at instant n. Five past samples are needed in
order to smooth the current measurement. Thus, only the first five localization measurement from the
localization process are lost, which correspond to the robot at its initial position. Figure 9(b) shows the
filtered measurements when reconstructing the traveled path of the mobile robot. As it can be seen, data
dispersion is reduced.

Figure 9. UWB localization measurements. (a) shows raw UWB localization data within
the environment in which the mobile robot is navigating. (b) shows the UWB localization
data after applying an averaging filter of five past samples. As it can be seen, data dispersion
is reduced. Solid black segments are associated with walls of the environment; solid red
triangles represent the UWB transmitter antennas’ locations; solid blue dots are intentionally
located landmarks at the floor of the environment and solid red dots are the estimated
localization measurements of the robot’s positions given by the UWB system.
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5.2. EKF-SLAM: Mapping and Localization Results

During the mobile robot navigation shown in Figure 9(a,b), the EKF-SLAM algorithm was running in
parallel to the UWB localization system as stated in Section 2. Figure 10(a) shows the map reconstruction
and the localization of the mobile robot within the navigated environment. The SLAM algorithm is
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performed on line based on the features extraction by the range sensor laser. In Figure 10(a), the yellow
points are raw laser data, the solid red segments are associated with the line-features extracted from the
environment and the solid green circles are associated with corners. The estimated path is represented
by solid grey dots.

Figure 10. EKF-SLAM results. (a) shows the map reconstruction of the environment. The
solid red segments are associated with line-features extracted by the SLAM algorithm; solid
green circles are associated with corners; yellow points are raw laser data and solid green
dots represent the path traveled by the mobile robot estimated by the SLAM algorithm.
(b) shows the map obtained by the SLAM juxtaposed with the real map of the environment
and the floor-landmarks. (c) shows the variance evolution of five features extracted from the
SLAM system state, see Equation (5).
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On the other hand, Figure 10(b) shows the mapped environment compared with its real geometric
reconstruction. The solid black lines are the walls of the environment whereas the solid red triangles
represent the UWB transmitter antennas; the solid magenta dots are the landmarks on the floor of the
navigated environment whereas the solid green dots are the estimated path by the SLAM algorithm. The
solid red segments and the solid green circles are the features extracted by the SLAM algorithm.



Sensors 2011, 11 2049

Figure 10(c) shows the variance evolution associated with five features extracted from the
environment by the SLAM algorithm. As it can be seen, the variance of the features gradually decreases
as established in [23,25], proving that the SLAM algorithm has consistently estimated the map of the
environment after closing the loop (re-observation of the first extracted features [12]).

5.3. UWB vs. EKF-SLAM: Discussion

As stated in Section 2, the UWB localization system and the SLAM algorithm were implemented
in parallel. Thus, the UWB localization and the SLAM estimation were performed during the same
path traveled by the mobile robot. The SLAM maximum sampling time was 0.2 s whereas the UWB
localization method sampling time was 0.3 s. In this section the advantages and disadvantages of both
localization methods will be shown.

Figure 11(a) shows the path obtained by the UWB localization method (dotted red line) also shown
in Figure 9(a), whereas Figure 11(b) shows the UWB filtered path (in dotted red line) also shown in
Figure 9(b). On the other hand, Figure 11(c) shows the path estimated by the SLAM algorithm (dotted
green line) and Figure 11(d) shows the path estimated by the odometric data of the mobile robot [18] (in
green dotted line). By inspection is possible to observe the following:

• The mobile robot path estimated by the odometric data (Figure 11(d)) is inconsistent with the
environment. The path crosses through a wall of the environment. Odometric data is highly noisy
[12] and cannot be used as a single localization measure.

• The UWB filtered path (Figure 11(b)) is smoother than the non-filtered UWB path (Figure 11(a)).
Also, Figure 11(a) shows a more dispersed path when compared with Figure 11(b,c).

• The SLAM estimated path shows the smoothest path when compared with the UWB estimated
paths.

In addition, Figure 12(a,b,c) shows the covariance ellipses associated with the UWB paths and
the SLAM’s estimated path. For the path estimated by the SLAM algorithm, the covariance
ellipses are obtained based on the covariance evolution of the SLAM system state along the
experimentation [12]. For the UWB paths (Figure 12(a,b)), the covariance ellipses are generated based
on successive measurements of the robot’s position before the execution of a control command (the robot
remains still for several sampling times, acquiring UWB localization data). For example, if the robot is
positioned at point P1 within the map, it acquires several UWB measurements at that point until it moves
to point P2. In P2, the system acquires again several measurements. Those measurements associated
with a same position are then used to build the uncertainty ellipse associated with a given position of the
mobile robot.

As it can be seen, the path estimated by the SLAM algorithm (Figure 12(c)) shows a better path—from
a covariance perspective—than the path obtained by the UWB localization system. Given the data
dispersion associated with the UWB non-filtered localization method (Figure 12(a)), the covariance
ellipses associated with it shows a bigger area than the ellipses of Figure 12(b) for the same robot’s
position. Generally, the covariance increment happens due to non-line of sight conditions. As is possible
to see in 12(a), big dispersion takes place at positions in which one of the antennas is totally blocked.
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Figure 11. Path estimated by the localization system. (a) shows the path obtained by the
UWB localization system without filtering data; (b) shows the path generated by the UWB
localization system applying the filtering criterion shown in Equation (11). In both figures,
the dotted red line is the path estimated by the UWB localization system. (c) shows the
path estimated by the SLAM algorithm (dotted green line) and (d) shows the path estimated
by the odometric data of the mobile robot. As it can be seen, the odometric data becomes
inconsistent with the environment information.
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Finally, the paths obtained by the UWB filtered localization system and the SLAM algorithm are
compared with the landmarks located on the floor of the environment. As stated in Section 5, the position
of the landmarks within the environment is previously known. The landmarks over which the mobile
robot has passed are also known (they are shown in green-dot points in Figure 13(a)). Thus, Figure 13(b)
shows the norm of the error between the landmarks’ true localization within the environment (shown in
Figure 13(a)) and both the UWB localization estimation and the SLAM algorithm mobile robot’ pose
estimation. Figure 13(c) and 13(d) show the error of the estimated position of the mobile robot based
on both the UWB localization method and the SLAM algorithm for each coordinate. The estimation
errors shown in Figure 13(c) and 13(d) are compared with respect to the true landmark position within
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Figure 12. Covariance ellipses of the estimated paths. (a) shows the covariance ellipse of the
UWB localization system without the filtering stage shown in Equation (11). Figure 12(b)
shows the case for the filtered UWB data. As it can be seen, (a) is more disperse than (b).
(c) shows the covariance ellipses associated with the SLAM algorithm estimation.
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the environment. Also, only the landmarks through which the mobile robot has passed (see Figure 13(a))
are considered for the calculation of the positioning errors. As it can be seen in Figure 13(c) and 13(d),
both localization methods have shown similar errors during the experimentation.

Although both localization methods (UWB based and SLAM based) have shown similar results
(errors and performance), there are important differences between them. For example, if an extra
robot is added to the environment, the UWB localization based will require only a new UWB receiver,
whereas the SLAM algorithm will require a new range sensor laser for this mobile robot and this
SLAM algorithm. Also, the UWB localization system is restricted to the environment where the UWB
transmitter antennas are located, whereas the SLAM algorithm is independent of the environment and
human intervention. The SLAM algorithm is restricted by the nature of the features to be extracted from
the environment (in this work, lines and corners), whereas the UWB localization system is independent
of the elements of such environment (it could be either dynamic or static). Finally, as stated in [12],



Sensors 2011, 11 2052

the SLAM algorithm needs to close the navigation loop in order to reduce the accumulative estimation
errors whereas the UWB filtered localization method has a non-accumulative error. The advantages and
disadvantages of both localization methods are summarized in Table 1.

Figure 13. Error of the estimated paths. (a) shows the landmarks in green-dot points through
where the mobile robot has passed during the experiment. (b) shows the norm of the error
between the landmarks’ true position and the position of the mobile robot estimated by
both the UWB localization method and the SLAM algorithm when the vehicle is positioned
over such landmarks. (c) shows the errors in the x coordinate of the of the robot’s position
estimation based on both the UWB localization method and the SLAM algorithm, when the
vehicle is positioned on the landmarks shown in (a). (d) shows the case for the y–coordinate.

(a) (b)

(c) (d)
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Table 1. Comparisons between the UWB localization system and SLAM algorithm.

UWB filtered localization system SLAM algorithm
Depends on the UWB antennas disposition on
the environment

Can map and localize in several maps of
different sizes

An extra robot requires an extra UWB receiver An extra robot requires a new range sensor
appropriate for the SLAM algorithm

The localization error is not accumulative The SLAM system state estimation error is
accumulative until the SLAM closes the loop
within the navigated environment (the mobile
robot re-sees past features)

Concerns only localization problems Acquires a map based on the features detection
procedure incorporated on the SLAM algorithm

Features independent. The UWB localization
system is not dependent on the nature of the
features present within the environment

Depends on the detection and extraction of
the determined features from the environment.
If the SLAM algorithm does not extract
any feature from the environment, then the
localization errors are not minimized

Estimation does not turn into inconsistence Due to bad features matching, the SLAM
algorithm could turn into inconsistence

High dispersion of unfiltered data Consistent estimation of the mobile robot
navigated path

Covariance error remains bounded Covariance error is minimized
Mobile robot autonomy is restricted to the
sensed environment

Mobile robot autonomy is potentiated by
SLAM [26]

6. Conclusions

The experimental results show that both localization systems can be used to localize mobile robots in
indoor environments with high accuracy. The UWB localization system has greater variance compared
with SLAM but the accuracy of both systems is similar. The main advantage of SLAM systems is that
navigation is not restricted by the environment. In the UWB case, more transmitting antennas are needed
in order to increase the coverage area. On the other hand, if the UWB receiver and transmitter will be
integrated on the same chip, the mentioned problem could be solved. Furthermore, a low cost radar type
sensor could locate the robot and map the environment as SLAM does. It is important to mention that
the localization error is not cumulative on UWB localization system, because the proposed scheme gives
an absolute result. However, the SLAM localization system must close the navigated loop in order to get
the shown results. Finally, the accuracy could be improved and the variance could be bounded if more
UWB pulses are acquired per position estimation. On the current UWB localization system, only one
transmitted symbol is processed for position estimation, due to time constrains. If the TOA estimation
and position algorithms were implemented on the Field Programmable Gate Array, better results could
be reached.
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