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Abstract: We present a novel strategy for computing disparity maps from hemispherical 
stereo images obtained with fish-eye lenses in forest environments. At a first segmentation 
stage, the method identifies textures of interest to be either matched or discarded. This is 
achieved by applying a pattern recognition strategy based on the combination of two 
classifiers: Fuzzy Clustering and Bayesian. At a second stage, a stereovision matching 
process is performed based on the application of four stereovision matching constraints: 
epipolar, similarity, uniqueness and smoothness. The epipolar constraint guides the 
process. The similarity and uniqueness are mapped through a decision making strategy 
based on a weighted fuzzy similarity approach, obtaining a disparity map. This map is later 
filtered through the Hopfield Neural Network framework by considering the smoothness 
constraint. The combination of the segmentation and stereovision matching approaches 
makes the main contribution. The method is compared against the usage of simple features 
and combined similarity matching strategies. 

Keywords: fish-eye stereovision matching; fuzzy clustering; Bayesian classifier;  
weighted fuzzy similarity; Hopfield neural networks; texture classification; fish-eye lenses; 
hemispherical forest images 
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1. Introduction 

1.1. Problem Description 

One important task in forest analysis is to determine the volume of wood in an area for different 
purposes, such as to control the degree of growth of the trees or to determine the resources that must be 
applied for maintenance. The increasing computer vision technologies are demanding solutions for 
making the above task automatic. One of such technologies is concerned with a stereovision system 
patented by the Spanish Research Centre (CIFOR) with number MU-200501738. This device, located 
during the image acquisition at a known 3D position in an identifiable geographical direction, allows 
us to acquire two stereoscopic hemispherical images with parallel optical axes. 

Because of the large areas to be processed in forest environments, a system based on fish-eye lenses 
allows imaging a large sector of the surrounding space with hemispherical vision. This is the reason by 
which these systems are suitable for the proposed task. Fish eye optics systems can recover 3D 
information in a large field-of-view around the camera; in our system it is 183° × 360°. This is an 
important advantage because it allows one to image the trees in the 3D scene close to the system from 
the base to the top, unlike in systems equipped with conventional lenses where close objects are 
partially mapped [1]. Because the trees appear completely imaged, the stereoscopic system allows the 
calculation of distances from the device to significant points into the trees in the 3D scene, including 
diameters along the stem, heights and crown dimensions to be measured, as well as determining the 
position of the trees. These data may be used to obtain precise taper equations, leaf area or volume 
estimations [2]. As the distance from the device to each tree can be calculated, the density of trees 
within a determined area can be also surveyed and growing stock; tree density, basal area (the section 
of stems at 1.30 m height in a hectare) and other interesting variables may be estimated at forest stand 
level using statistical inference [3]. 

Moreover, the images constitute a permanent record of the sample point that allows measurement 
error control and future data mining, which currently requires revisiting the plot. Currently, the above 
mentioned measurements are obtained manually. An important goal is the automation of the process 
for data acquisition. Hence, a passive stereovision-based system is a suitable technique for this task, 
because during the intervention the trees are not affected by the measurement. 

According to [4,5], we can view the classical problem of stereo analysis as consisting of the 
following steps: image acquisition, camera modelling, feature extraction, image matching and depth 
determination. The key step is that of image matching. This is the process of identifying the 
corresponding points in two images that are cast by the same physical point in the 3-D space. This 
paper is devoted to the feature extraction and image matching steps.  

In our approach, the interest is focused on the trunks of the trees because they contain the higher 
concentration of wood. These are our features of interest in which the matching process is focused. 
Figure 1(a) displays a representative hemispherical image of the stereo pair (let’s say the left one) 
captured with a fish-eye lens of the forest. As one can see there are three main groups of textures out of 
interest, such as grass in the soil, sky in the gaps and leaves of the trees. Hence, the first step consists 
on the identification of the textures out the interest to be excluded during the matching process. This is 
carried out through a segmentation process which uses both: (a) methods for texture analysis [6] and 
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(b) a classification approach based on the combination of two single classifiers, they are the  
well-known fuzzy clustering strategy [7] and the parametric Bayesian estimator [8].  

Figure 1. (a) Hemispherical left image; (b) left expanded area; (c) corresponding right 
expanded area. 

 
(a) 

(b) 

 
(c) 

 
The first tries to isolate the leaves based on statistical measures and the second classifies the other 

two kinds of textures. The performance of combined classifiers has been reported as a promising 
approach against individual classifiers [9]. One might wonder why not to identify the textures 
belonging to the trunks. The response is simple. This kind of textures displays a high variability of 
tonalities depending on the orientation of the trunks with respect the sun, as detailed later in Section 2. 
Therefore, there is not a unique type of texture (dark or illuminated trunks and even though 
alternatively in bits), as we can see in Figure 1(a).  
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Once the textures to be excluded have been identified, now the goal is to match trunks between the 
two images of the stereo pair. Figure 1(b) displays the signed and expanded area on Figure 1(a). This is 
intended for making more explicit the details. In Figure 1(c) the corresponding area in the right image 
of the stereo pair is displayed.  

Because of the irregular forms and distribution of the trunks, the most suitable features to be 
matched are pixels. For such a purpose we exclude the pixels identified as belonging to one of the 
three kinds of textures out of interest mentioned above. The remaining pixels are the candidates to be 
matched, where those belonging to the trunks must be found.  

Moreover, as the images are captured in two positions separated a certain distance (base-line), the 
tree’s crowns are located at different positions with respect each camera position and the incident rays 
of the sun produce important lighting variability between the pixels locations and surrounding areas in 
both images for the same structure in the scene; this makes the matching process a difficult task. This 
observation is applicable for the whole images. 

In stereovision matching there are a set of constraints that are generally applied for solving the 
matching problem, such as: epipolar, similarity, uniqueness or smoothness.  

Epipolar: derived from the system geometry, given a pixel in one image its correspondence in the 
other image will be on the unique line where the 3D spatial points belonging to a special line are 
imaged. Similarity: matched pixels have similar attributes or properties. Uniqueness: a pixel in the left 
image must be matched to a unique pixel in the right one, except for occlusions. Smoothness: disparity 
values in a given neighbourhood change smoothly, except at a few discontinuities belonging to the 
edges, mainly in the trunks. 

Two sorts of techniques have also been broadly used for matching [5]: area-based and feature 
based. Area-based stereo techniques involve brightness (intensity) patterns in the local neighbourhood 
of a pixel in one image and the brightness patterns in the local neighbourhood of the corresponding 
pixel in the other image. Two kinds of approaches fall into this category. The first is concerned with 
the correlation coefficient and the second with statistical measures, generally used for identifying 
textures. Feature-based methods [10] compute some attributes for the pixels under correspondence; 
they can be simple attributes, such as the colour of the pixels or properties obtained by applying some 
operator such as the gradient (module and direction) or Laplacian. They were satisfactorily used in [11], 
although some of them, such as the Laplacian, could become noise sensitive in some contexts. Really, 
these operators take into account the pixels and its neighbours; hence, from this point of view they 
could be considered as area-based. The colour is the unique attribute where the neighbourhood is  
not involved. 

1.2. Motivational Research 

The correspondence process is designed as follows. Given a pixel in the left image, we apply the 
epipolar constraint for determining a list of candidates, which are potential matches, in the right image. 
Each candidate becomes an alternative for the pixel in the left image. For each pair of pixels, we apply 
the similarity constraint based on the six attributes mentioned above: (a) correlation coefficient,  
(b) variance as a measure of the texture, (c) colour for each pixel, (d) gradient magnitude, (e) gradient 
angle and (f) Laplacian. The gradient is computed through the Sobel operator, although some other 
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edge operators could be used. Based on the six attributes we compute six similarity measures, between 
a pixel and the pixels in the list of candidates. These similarity measures are conveniently combined. 
The final decision about the correct match, among the candidates in the list, is made according to the 
support that each candidate receives by applying a decision making strategy based on a Weighted 
Fuzzy Similarity (WFS) approach. The unique selection made about the correct match implies the 
application of the uniqueness constraint. In summary, at this moment we have applied three 
stereovision matching constraints (epipolar, similarity and uniqueness) and a disparity map is built 
taking as reference each pixel location in the left image. The disparity value at this location is the 
absolute difference value in sexagesimal degrees between the angle for the pixel in the left image and 
the angle of its matched pixel in the right one. Each pixel is given in polar coordinates with respect the 
centre of the image. This is detailed in Section 3.3. 

Now the goal is to improve the disparity map up to where it is possible. Erroneous disparity values 
must be removed and the disparities associated to pixels belonging to the trunks must be smoothed. 
These two sub-goals, can be achieved by applying the stereovision smoothness constraint, where it 
considers not only the isolated disparity values at each pixel location but the pixels in the 
neighbourhood. For such purpose we have selected the Hopfield Neural Network (HNN) paradigm 
because it can cope with this. Indeed, it is an optimization approach, which can be controlled by 
energy minimization, making it a suitable approach. Moreover, the HNN has been used satisfactorily 
in stereovision vision matching approaches although in a different context and under different  
criteria [12]. 

1.3. Contribution and Organization of This Paper 

The images analyzed belong to Scots pine (Pinus sylvestris L.) forests; Figure 1 displays a 
representative image. This paper presents the combination of a segmentation process for identifying 
three kinds of textures and a stereovision matching process, where the WFS approach allows the 
mapping of the similarity and uniqueness constraints obtaining an initial disparity map. This map is 
later filtered for its improvement by applying the smoothness stereovision matching constraint through 
the HNN paradigm. The proposed approach is compared favourably against the usage of individual 
area-based and feature-based matching techniques and against other combined decision  
making approaches. 

This work is organized as follows. In Section 2 we describe the procedures applied for the image 
segmentation oriented to the identification of textures. Section 3 is split in two parts; the first describes 
the design of the matching process by applying the epipolar, similarity and uniqueness constraints; 
including the overview of the WFS approach. The second part describes the HNN paradigm and the 
method for applying the smoothness constraint. Section 4 displays the results obtained by using the 
proposed approach, and compares them with those obtained by considering the individual similarities, 
also by applying only the WFS strategy, and others combined decision making strategies. Section 5 
presents the conclusions and future work. 
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2. Image Segmentation 

The images analysed belong to different pinewoods, Figure 1 displays a representative image. As 
mentioned before, the goal of the image segmentation process is to exclude the pixels belonging to one 
of the three kinds of textures out of interest: sky, grass in the soil and leaves. The exclusion of these 
textures is useful because the errors that they could introduce during the correspondence can be 
considerably reduced. This justifies the application of the segmentation process.  

Observing the textures we can see the following: (a) the areas occupied with leaves display high 
intensity variability in a pixel and the surrounding pixels in its neighbourhood; therefore methods 
based on detecting this behaviour could be suitable; (b) on the contrary, the sky displays homogeneous 
areas, where a pixel is surrounded with neighbouring pixels with similar intensity values where the 
dominant spectral visible component is blue; (c) the grass in the soil also tend to fall on the category of 
homogeneous textures although with some variability coming from shades, in both shading and sunny 
areas the pixels belonging to the grass have the green spectral component as the dominant one; (d) the 
textures coming from the trunks are the most difficult; indeed due to the sun position, the angle of the 
incident rays from the sun produce strong shades in the part of the trunks in the opposite position of the 
projection [west part in the image of Figure 1(a)]; the trunks receiving the direct projection display a 
high degree of illumination [east part in the image of Figure 1(a)]; there are a lot of trunks where the 
shades produce different areas. 

Based on the above, the identification of the trunks based on texture analysis is a difficult task. For 
identifying the textures coming from leaves, we use texture analysis techniques based on statistical 
measures that can cope with the high intensity variability (Section 2.1). Because of the homogeneity of 
grass and sky textures we can use methods based on learning approaches as explained in Section 2.2. 
Finally, only trunk pixels participate in the matching process, described in Section 3. 

2.1. Identification of High Contrasted Textures 

A variety of techniques have been used for texture identification [13]. Most techniques rely on 
comparing values of what are known as second-order statistics [6]. These methods calculate measures 
of image texture such as the degree of contrast, coarseness, entropy or regularity; or periodicity, 
directionality and randomness [14]. Alternative methods of texture analysis for image retrieval include 
the use of Gabor filters localized in space and frequency, which can be used to retrieve frequential 
properties of a texture [15]; wavelets which identify the textures based on the image decomposition on 
different sub-bands according to the orientation [16]; fractals used as measures of complexity for 
identifying repetitive patterns [17]; Fourier based for computing the orientation and spatial period for 
textures with at least two prominent directions [18]. 

The textures produced by the leaves of the trees under analysis do not display spatial distributions 
of frequencies nor textured patterns; they are rather high contrasted areas without any spatial 
orientation. Hence, we have verified that the most appropriate texture descriptors are those capturing 
the high contrast, i.e., statistical second-order moments.  
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One of the simplest is the variance σ2 (z) [6]. It is a measure of intensity contrast defined according 
to the z intensity levels. An intensity contrast coefficient, normalized in the range [0, +1] can be 
defined as in [6]: 

2

11
1 ( )

Z
zσ

= −
+

 (1)

As one can see, Z is 0 for areas of constant intensity, where the variance is zero, and approaches +1 
for large values of σ2 (z), i.e., high contrasted areas. This measurement is taken on the intensity image 
in the HSI colour model transformed from the original RGB. Only pixels with a value for the 
coefficient Z greater than a threshold T1, fixed to 0.8 in this paper, are allowed to ensure that only 
pixels belonging to leaves are excluded, i.e., with high contrast. 

2.2. Fuzzy Clustering and Bayesian Estimator Combination: Identifying Relevant Smooth Textures 

As mentioned before, in our approach there are two relevant textures that must be identified. They 
are specifically the sky and the grass. A pixel belonging to one of such textures displays a low value 
for Z because of its homogeneity. This is a previous criterion for identifying such areas, Z < T1. 
Nevertheless, this is not sufficient because there are other different areas which are not sky or grass 
fulfilling this criterion. Therefore, we apply a classification technique based on the combination of the 
Fuzzy Clustering (FC) and the parametric Bayesian estimator (PB) approaches. These classifiers are 
selected because of their individual performances in many classification approaches. According to [9], 
if they are combined the results improve. Both FC and PB consists of two phases: training and decision. 

2.2.1. Training Phase 

We start with the observation of a set X of n training patterns, i.e., { } d
nX ℜ∈= xxx ,...,, 21 . Each 

sample is to be assigned to a given cluster cj, where the number of possible clusters is c, i.e.,  
j = 1, 2,…, c. In our approach the number of clusters is two corresponding to grass and sky textures, 
i.e., c = 2. For simplicity, in this paper, we identify the cluster c1 with the sky and the cluster c2 with 
the grass. The xi patterns represent pixels in the RGB colour space. Their components are the R,G,B 
spectral values. This means, that the dimension of the space ℜ  is d = 3. 

(a) Fuzzy Clustering (FC) 

This training process receives the input training patterns, which have been previously classified as 
belonging to one of the above clusters c1 and c2. According to [7,8], FC computes for each xi at the 
iteration k its membership grade ijμ  and updates the cluster centres for each cluster, d

j ℜ∈v  

according to Equation (2):  
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( )jiij dd vx ,22 ≡  is the squared Euclidean distance. The number e is called the exponent weight [7,19] 
fixed to 2.1 in our experiments. The stopping criterion of the iteration process is achieved when 
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ijkk ijij ∀<−+    )()1( εμμ  or a number kmax of iterations is reached, set to 20 in our experiments; ε  
has been set to 0.1 in this paper, both fixed after trial and error. 

The method requires the initialization of the cluster centres, so that the Equation (2) can be applied 
at the iteration k = 1. With such purpose we apply the pseudorandom procedure described in [20]: 

Perform a linear transform Y = f(X) of the training sample values so that they range in the  
interval [0,1]. 

Initialize mRMv DD += 2 , where m  is the mean vector for the transformed training samples 
values in Y and ))(max( mM −= Yabs , both of size 1 × d; D = [1 ... 1]t with size c × 1; R is a c × d 
matrix of random numbers in [0,1]; the operation denotes the element by element multiplication. 

(b) Parametric Bayesian Estimator (PB) 

This estimator assumes a known distribution (generally Gaussian) for each cluster expressed as 
follows [8]: 
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where the parameters to be estimated are the mean vj and the covariance Cj, both for each cluster cj. 
They are estimated through maximum likelihood as: 
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where T denotes transpose and nj is the number of samples in the cluster cj. 

2.2.2 Decision Phase 

After the training phase, a new unclassified sample d
s ℜ∈x must be classified as belonging to a 

cluster cj. Here, each sample, like each training sample, represents a pixel at the image with the R,G,B 
components. FC computes the membership degrees for xs to each cluster according to the Equation (2) 
and PB computes the probabilities that xs belong to each cluster from the Equation (3). Both, 
probabilities and membership degrees, are the outputs of the individual classifiers ranging in [0, 1]. 
They are combined by using the mean rule ( )( )jssjsj cpm |5.0 x+= μ  [9] which outperforms other 
combined schemes studied in [21], specially in the RGB colour model as reported in [22,23]. The pixel 
represented by xs is classified according to the following decision rule: js c∈x if shsj mm >  and 

2Tmsj > otherwise the pixel remains unclassified. We have added, to the above rule, the second term 
with the logical “and” operator involving the threshold T2 because we are only identifying pixels 
belonging to the sky or grass clusters. This means that the pixels belonging to textures different from 
the previous ones remain unclassified, and they becomes candidates for the stereo matching process. 
The threshold T2 has been set to 0.8 after experimentation. This is a relative high value, which 
identifies only pixels with a high membership grade of belonging to either c1 or c2. We have preferred 
to exclude only pixels which belong clearly to one of the above two textures. 

Figure 2 displays the result of applying the segmentation process to the image in Figure 1. The 
white areas are identified either as textures belonging to sky and grass or leaves of the trees. On the 
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Figure 3. Geometric projections and relations for the fish-eye based stereo vision system. 

 
 
According to [25], the following geometrical relations can be established: 
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Now the problem is that the 3D world coordinates (X1, Y1, Z1) are unknown. They can be estimated 
by varying the distance d as follows: 
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From Equation (6) we transform the world coordinates in the system O1X1Y1Z1 to the world 
coordinates in the system O2X2Y2Z2 taking into account the baseline as follows:  

12 XX = ; 1212 yYY += ; 12 ZZ =  (7)

Assuming no lenses radial distortion, we can find the imaged coordinates of the 3D point in  
image-2 as [25]: 

( )
( ) 1

arctan 2
2

22

2
2

2
2
2

2
+

+
=

XY

ZYXR
xi

π
, 

( )
( ) 1

arctan 2
2

22

2
2

2
2
2

2
+

+
=

YX

ZYXR
yi

π
 (8)

Using only a camera or a camera position, we capture a unique image and the 3D points belonging 
to the line PO1 , are all imaged on the unique point represented as ( )11 , ii yx . So, the 3D coordinates with 
a unique image cannot be obtained. When we try to match the imaged point ( )11 , ii yx into the image-2 

we follow the epipolar line, i.e., the projection of PO1 over the image-2. This is equivalent to vary the 
parameter d in the 3-D space. So, given the imaged point ( )11 , ii yx in the image-1 (left) and following 
the epipolar line, we obtain a list of m potential corresponding candidates represented by ( )22 , ii yx in the 

image-2 (right). 
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3.2. Similarity and Uniqueness: Based on the WFS Approach 

Each pixel l in the left image is characterized by its set of attributes Al = (Ala, Alb, Alc, Ald, Ale, Alf) 
where the Alj are identified with the six properties computed for each pixel, i.e., the sub-index  
j = a,b,c,d,e,f. In the same way, each candidate i in the list of m candidates is described by its set of 
attributes Ai, such that Ai = (Aia, Aib, Aic, Aid, Aie, Aif). The weights associated with every attribute are 
respectively w = (wa, wb, wc, wd, we, wf), estimated according to its relative importance or relevance, as 
described later in the Section 4.2. We have verified during our experiments that the attributes used for 
matching display high variability in their values. Indeed, the differences between attributes for true 
matches sometimes become greater than differences between false matches. This leads to a high degree 
of uncertainty or imprecision when a decision about the correct match is to be made. The fuzzy set 
theoretic techniques provide a general framework to deal with imprecision. This is the main reason for 
applying the similarity stereovision matching constraint under the fuzzy set theory paradigm.  
In [26] is described three similarity measures defined in [27], all they display a similar behaviour in 
our approach and therefore we have chosen the one defined in Equation (9) because of its lower 
computational cost. For this purpose the attributes Alj and Aij are linearly mapped to range in the 
interval [0, 1]. The lower and upper limits for the six attributes used for normalization are: (a) 
correlation [−1, 1], which are the usual values; (b) colour [0, 765] corresponding to equal values (zero) 
for both attributes or opposite (i.e., three zeros and the other three 255); (c) texture [0, 85], computed 
as the standard deviation in a 3 ×  3 neighbourhood, i.e., the lower is zero if all values are equal and the 
upper 85 if a value is zero and the remainder 255 or vice versa; (d) gradient magnitude [0, 255] 
minimum and maximum difference between values; (e) gradient direction [0, 360°] around the circle; 
(f) Laplacian [0, 2,040], where if all values in the neighbourhood are equal, the Laplacian is zero and if 
the central pixel is zero and the remainder 255 or vice versa, the Laplacian value is 8 ×  255.  

Once these values are normalized to such range they can be considered as fuzzy measures. From the 
point of view of the fuzzy theory, the sets Al and Ai are considered as fuzzy ones and their attributes Alj 

and Aij as membership degrees. Given the pixels l and i, under the above consideration we can measure 
its similarity as follows:  

( )1( , ) 1
( )i l i j lj ij

jl

d A A w A A
card A

= − −∑ , j = a,b,c,d,e,f  (9)

where card (Al) denotes the cardinal of the set Al or equivalently the cardinal of the set Ai i.e., the 
number of elements of Al and Al. In our case card (Al) is equal to 6, since we have six attributes. 
According to the definition in Equation (9), di (Al, Ai) = 1 if the attributes are equals (maximum 
similarity), otherwise if they are completely different di (Al, Ai) = 5/6 (minimum similarity). This value 
is obtained by assuming that if one attribute is null and the other the unity the absolute difference value 
between both is the unity and because ∑ ௝ ௝ݓ ൌ 1, this results in that minimum. Finally, the limits for 
minimum/maximum similarity are obtained by mapping linearly the above limits to range as follows: 
di (Al, Ai)  [0, 1]. 

The original similarity measure in [26,27] does not include the weight wj, we have included this 
weight because of the relative importance of each attribute, which means that each attribute contributes 
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in a different fashion to the matching. In Section 4.2 we provide details about its computation. This 
makes a contribution of this work because it favors the correspondences. 

As mentioned before, in this paper we use the following six attributes for describing each pixel 
(feature): (a) correlation; (b) texture; (c) colour; (d) gradient magnitude; (e) gradient direction and (f) 
Laplacian. Both first ones are catalogued as area-based, computed on a 3 ×  3 neighbourhood around 
each pixel through the correlation coefficient [10] and standard deviation [6] respectively. The four 
remaining ones are considered as feature-based [11]. The colour involves the three red-green-blue 
spectral components (R,G,B) and the absolute value in the Equation (9) is extended as: 

∑ −=−
H ijljijlj HHAA , H = R,G,B. 

Gradient (magnitude and direction) and Laplacian are computed by applying the first (Sobel’s 
operator) and second derivatives [6], over the intensity image after its transformation from the RGB 
plane to the HSI (hue, saturation, intensity) one.  

At this stage we have available the similarities between the pixel l in the left image and each pixel i 
in the list of m candidates. We must make a decision about the best match, which implies the mapping 
of the uniqueness constraint. The decision is made based on the following rule: i is the best match of l 
if ( ) ( )jliili AAdAAd ,, > , .   ;,...,1, jinji ≠=  

3.3. Disparity Map Computation 

Taking as reference the left image of the stereo pair, for each pixel ( )ll yxl ,≡ in this image we have 
its corresponding match in the right one ( )ii yxi ,≡ . Therefore, we know their corresponding locations 
in Cartesian coordinates, which are transformed to polar coordinates considering the centre of the 
image as the origin of the polar reference system; so both pixels l and i have polar angles θl and θi, 
respectively. We build a map with the same locations that the original left image, i.e., q = M × N  
(M rows, N columns), where each location represents a pixel. Given the pixel location ( )ll yxl ,≡  we 
load it with the following value ill θθθ −=Δ  which represents the disparity value for the pixel l, once 
it has been matched with its best candidate i. This process is carried out for all locations corresponding 
to unclassified pixels during the segmentation process. We assign a null disparity value for those 
locations corresponding to pixels classified as belonging to sky, grass or leaves. The values in the 
disparity map range in the interval [0, θmax], where θmax is fixed to 6.0 in our approach because it is the 
maximum disparity value observed in all available stereo images. This is the initial disparity map 
which is used as input for the HNN approach. 

3.4. Smoothness: Hopfield Neural Networks (HNN) 

Once the disparity map is obtained according to the above process, we try its improvement based on 
the HNN paradigm. In Sections 3.4.1 and 3.4.2 we give details about the topology of a HNN and its 
working process. In Sections 3.4.3 and 3.4.4 we apply this paradigm for improving the incoming 
disparity map by applying the smoothness constraint.  



Sensors 2011, 11                            
 

 

1768

3.4.1. Topology and Basic Concepts 

An important issue addressed in neural computation for image applications is referred to how 
sensory elements in a scene perceive the objects, i.e., how the scene analysis problem is addressed. To 
deal with real-world scenes some criterion for grouping elements in the scene is required. In the work 
of [28] a list of major grouping principles is exhaustively studied. They are inspired in the Gestalt’s 
principles [29]. In our approach we apply the following three principles: proximity, labelled pixels that 
lie close in space tend to group; similarity, labelled pixels with similar values tend to group; 
connectedness, labelled pixels that lie inside the same connected region tend to group. These principles 
allow defining a spatial neighbourhood. Now the problem is to build some structure that can cope with 
the above. Several approaches can be used; we have chosen the HNN because it is an optimization one 
based on energy minimization, i.e., the convergence can be controlled by the energy. In HNN the 
above principles can be applied by considering the influences exerted by the nodes k in a 
neighbourhood over a node i and mapped as consistencies, from the data and the contextual 
information, as explained later. 

From the disparity map available at this moment, we build a network of nodes, where the topology 
of this network is established by the spatial distribution of the disparity map. Each node in the network 
is located at the same position that the elements in the map, i.e., at the same position that the 
corresponding pixel in the left image with the associated disparity value. Hence, the number of nodes 
in the network is q = M × N. The node i in the network is initialized with the disparity value obtained 
from the disparity map at the same location, i.e., ∆θi, but instead of using the range [0, θmax] we map 
linearly the disparity values for ranging in [−1, +1]; for simplicity ∆θi is renamed as Di.  

The network states (activation levels) are the normalized disparity values associated to the nodes. 
Through the HNN these network states are reinforced or punished iteratively based on the influences 
exerted by their neighbours. The goal is to smooth the disparity map based on more stable state values.  

3.4.2. A Review on the HNN 

The HNN paradigm initially proposed by Hopfield and Tank [30,31] has been widely used for 
solving optimization problems. This implies fixing two characteristics [32]: its activation dynamics 
and an associated energy function which decreases as the network evolves. 

The HNN is a recurrent network containing feedback paths from the outputs of the nodes back into 
their inputs so that the response of such a network is dynamic. This means that after applying a new 
input, the output is calculated and fed back to modify the input. The output is then recalculated, and the 
process is repeated again and again. Successive iterations produce smaller and smaller output changes, 
until eventually the outputs become constant, i.e., at this moment the network achieves an  
acceptable stability.  

The connection weights between the nodes in the network may be considered to form a matrix T. 
Although some studies carried out by [33] in Hopfield neural networks have been addressed for 
solving the problem of optimal asymmetric associative memories, we have found acceptable the 
classical approach studied in [34] and [35] where it is shown that a recurrent network is stable if the 
matrix is symmetrical with zeros on its diagonal, that is, if Tik = Tki for all i and k and Tii = 0 for all 
neurons i. To illustrate the Hopfield networks in more detail, consider the special case of a Hopfield 
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network with a symmetric matrix. The input to the ith node comes from two sources: external inputs 
and inputs from the other nodes. The total input ui to node i is then: 

( ) ( ) ( )i ik k i
k i

u t T D t U t
≠

= +∑  (10)

where the Dk(t) value represents the output of the kth node at the iteration t; Tik is the weight of the 
connection between nodes i and k; and Ui represents an external input bias value which is used to set 
the general level of excitability of the network. There are two kinds of Hopfield networks [32,36] 
namely, (1) the analog ones in which the states of the neurons are allowed to vary continuously in an 
interval, such as [−1, +1] and; (2) the discrete ones in which these states are restricted to the binary 
values −1 and +1. The drawback of these binary networks is that they oscillate between different 
binary states, and settle down into one of many locally stable states. Hopfield has shown that analog 
networks perform better since they have the ability to smooth the surface of the energy function which 
prevents the system from being stucked in minor local minima [30,31].  

For analog Hopfield networks the total input into a node is converted into an output value by a 
sigmoid monotonic activation function instead of the thresholding operation for discrete Hopfield 
networks [35]. The dynamic of a node is defined by: 

( )i i
ik k i

k ii

du u T D t U
dt R ≠

= − + +∑  where ( ) ( )k kD t g u       k= ∀  (11)

where g(ui) is the sigmoid activation function, and Ri is a time constant which can be set to 1 for  
simplicity [36,37]. We have chosen the sigmoid activation function to be the hyperbolic tangent 
function [36], g(uk) = tanh(uk/β). This function is differentiable, smooth and monotonic, i.e., 
contributes to the network stability [35]. A detailed discussion about the settings of the time step dt and 
gain β−1 can be found in [32]. As dt increases, the probability that the energy falls into a local 
minimum also increases. According to some experiments carried out in [32] where this parameter has 
been set to values in the range 1 to 10−2, the best performance is achieved with the minimum value 
(i.e., 10−2), hence we have fixed it to 10−3 which is an order of magnitude less than the experimented  
in [32]. The way to avoid that a continuous network cannot find a solution due to the existence of local 
minimum and makes the network converge up to a solution state is to decrease β along the simulation, 
theoretically until β = 0. This strategy reminds a simulated annealing process starting from high 
enough β, then the network evolves until a stable state (which is not a solution) is reached, then β is 
decreased and the network evolves again up to a new stable state, and so on; the process ends when β 
becomes zero and at this moment, the stable state reached should be a global minimum. According to 
the results reported in [38] and [39], we have tested the following scheduling strategy  
β(t) = β0/log(t + 1) where t is the iteration number. We have computed β0 as follows [40]: (1) we select 
four pairs of images, where the nodes have been initialized; now we compute the initial energy; (2) we 
choose an initial β, that permits about 80% of all transitions to be accepted (i.e., transitions that 
decrease the energy function), and this value is changed until this percentage is achieved; (3) we 
compute the M transitions ∆Ei and we look for a value for β for which ଵ

ெ
∑ exp ሺെ∆ܧ௞/ߚሻெ

௞ୀଵ  = 0.8, 
after rejecting the higher order terms of the Taylor expansion of the exponential, 5 kEβ = Δ , where ⋅  

is the mean value. In our experiments, we have obtained 0.87kEΔ = , giving 0 4.35β = . In the work  
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of [39] a simulated annealing scheduling is used with β0 = 2, i.e., with the same order of magnitude. 
Taking into account that β(t) = 0, t → +∞ and considering t = 1010 we obtain β = 0.43, i.e., β−1 = 2.30. 
In our image classification approach, we have carried out different experiments by applying the above 
scheduling and also assuming fix the gain without apparent improvement in the final results. Hence we 
set the gain to 2.30 during the full process.  

The model provided in Equation (11) is the classical Hopfield circuit [30,31,41] which follows from 
the Cohen-Grossberg dynamical systems [34]. In [41] the global stability of these systems is proven 
under the positivity assumption dg/dt > 0 and considering that the coefficient in the left term of 
Equation (11) is also positive. Because g is the hyperbolic tangent function the first condition is true. 
Additionally, towards the global stability also contributes that the bias Ui varies slowly. In our design 
this is also true according to the discussion in Section 3.4.3(d). The stability of the Hopfield neural 
network has also been studied under different perspectives in [35] or [42]. Hence, it belongs to the 
important class of feedback neural networks models that are globally stable. The quantity describing 
the state of the network called energy, is defined as follows: 

( )1

0

1( ) ( ) ( ) ( )
2

iD

ik i k i i
i k i i i

E t T D t D t U D t g D dDβ −

≠

= − − +∑∑ ∑ ∑∫  (12)

According to the results reported in [32], the integral term in (12) is bounded by ln 2 0.19β ≈  when 
Di(t) is +1 or −1 and is null when Di(t) is zero. In our experiments, we have verified that this term does 
not contribute to the network stability and only the energy is increased in a very little quantity with 
respect to the other two terms in Equation (12), hence for simplicity we have removed it from the 
Equation (12).  

The continuous Hopfield model described by the system of nonlinear first-order differential 
Equation (11) represents a trajectory in phase space, which seeks out the minima of the energy 
function in (12). 

3.4.3. Mapping Consistencies and Information 

(a) Consistency from the Data 

During the optimization process the initial states Di(t) are modified trying to achieve the network 
stabilization. Now, the goal is to map the data consistency between nodes i and k into the consistency 
coefficient wik(t), at each iteration t. Given the node i we consider its m-connected neighborhood ௜ܰ

௠, 
under the grouping criterion established by the proximity and connectedness principles according  
to [28]; m could be 4, 8, 24, 48 or any other value taking into account only horizontal, vertical or 
diagonal directions. A typical value is 8, corresponding to a central pixel and its 8 neighbors. 

For each node i, only consistencies can be established between nodes k, where ݇ א ௜ܰ
௠ and ݅ ് ݇ 

otherwise if m
ik∉N  it is assumed that there is not consistency between nodes i and k. This is justified 

under the hypothesis that only local relations can be established between pixels with similar disparities. 
Two nodes i, k where ݇ א ௜ܰ

௠ are said consistent if they have similar data information, i.e., similar 
disparities. Otherwise they should be inconsistent. The data consistency between the nodes i, k is 
mapped into the consistency coefficient as follows: 
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( ) ( ) ( )1    ,    

0                              ,    

m
i k i

ik m
i

D t D t k i k
w t

k i k

⎧ − − ∈ ≠⎪= ⎨
∉ =⎪⎩

N

N
 (13)

From (13) we can see that wik(t) ranges in [−1, +1]. The influence exerted by the node k over the 
node i will be positive (reward) or negative (punishment). Hence, a positive data consistency will 
contribute towards the network stability. 

(b) Consistency from the Contextual Information 

In some existing works dealing with images, such as in [38], the inter-pixel dependence is described 
by defining a kind of consistency which is achieved under the consideration of contextual information. 
We make use of this concept and apply it to our HNN approach. Given the node i at the pixel location 
(x,y) with state value Di and a set of nodes ݇ א ௜ܰ

௠ with state values Dk, a measurement of contextual 
consistency between the node i and its k neighbors can be expressed as:  

( ) ( ) ( )
m
i

i i k
k N

E t D t D t
∈

= ∑  (14)

This term represents an inter-state relation between the nodes in the network. It also represents a 
kind of external influence exerted by the nodes k over the node i. As Di(t) and Dk(t) range in [−1, +1], 
given Di(t) the term Ei(t) will be maximum when the Dk(t) values are close to Di(t). Indeed, assuming 
that under the 8-neighbourhood Di(t) and Dk(t) take simultaneously values of +1 or −1, Ei(t) = 8, i.e., 
reaches its maximum value. On the contrary, if Di(t) = +1 and all Dk(t) = −1 or Di(t) = −1 and all  
Dk(t) = +1, Ei(t) = −8, i.e., its minimum value. It is worth noting that Equation (14) can be regarded as 
an implementation of the Gibbs potential in a neighborhood under the Markov Random Fields  
framework [38]. 

Once data and contextual consistencies are specified, we search for an energy function such that the 
energy is low when both consistencies are high and vice versa. This energy is expressed as:  

( ){ }
( )

1
( ) ( )( ) sgn ( ) ( )

2
1 ( ) 0 1

sgn ( )
1 ( ) 0 0

m
i

v
C ik ik ik i k

i k N

ik
ik ik

ik

t tAE t  w t w t D D  

     w t    if     i k
where    w t      and     

      w t    if    i k

δ

δ

+

∈
⎡ ⎤⎣ ⎦

⎧ ⎧⎪ ⎪
⎨ ⎨

⎪⎪ ⎩⎩

= − −∑ ∑

− ≤ =
= =

+ > ≠

 (15)

where A is a positive constant to be defined later, sgn is the signum function and v is the number of 

negative values in the set { }( ), ( ), ( )ik i kC w t D t D t≡ , i.e., given { }/ 0S s C s C≡ ∈ < ⊆ , v = card (S); ikδ is 

introduced to cancel the self contribution of the node i because it is considered later under the  
self-data information. 

Table 1 shows the behavior of the energy term EC(t) against data and contextual consistencies. As 
one can see, the energy decreases as the data and the states are both simultaneously consistent (rows 1 
and 4 in the left part of the Table 1); otherwise under any inconsistency the energy increases. We have 
considered that data inconsistencies have higher priority than contextual ones; so under this criterion if 

( ) 0ikw t <  then the energy increases.  



Sensors 2011, 11                            
 

 

1772

Table 1. Behavior of the energy term against data and contextual consistencies. 

( )ikw t
 

( )iD t  ( )kD t  ( )CE t ( )ikw t ( )iD t ( )kD t  ( )CE t  
+ + + − − + + + 
+ + − + − + − + 
+ − + + − − + + 
+ − − − − − − + 

(c) Self-Data Information 

We have analyzed the inter-relations between nodes in a given neighborhood, based on data and 
contextual consistencies. This implies that the state for each node evolves according to the information 
provided by the majority in the neighborhood, ignoring its own information. This may lead to an 
incorrect state for the node under consideration. To overcome this drawback we assume that each node 
must contribute to the evolution of its own state through the self-data information. The self-data 
information is modeled as a kind of self-consistency based on the hypothesis that a node in the network 
with a disparity value (state) Di(t) its updating must be governed by this value. This is mapped  
as follows: 

( ) ( ) ( )B i i
i

E t B D t D t= − ∑  (16)

The constant B is a positive number to be defined later. So, independently if Di is positive or 
negative, the product Di(t)Di(t) is always positive and the term EB(t), at each iteration is minimum,  
as expected. 

(d) Derivation of the Connection Weights and the External Inputs for the HNN 

Assuming data and contextual consistencies, Equation (15), and self-data information, Equation (16), 
we derive the energy function of the Equation (17), which is to be minimized by optimization under 
the HNN framework:  

( ){ }1

( ) ( ) ( )

sgn ( ) ( ) ( ) ( ) ( ) ( )
2 m

i

C B
v

ik ik ik i k i i
i ik N

E t E t E t
A w t w t D t D t B D t D tδ

+

∈

= + =

− − −⎡ ⎤⎣ ⎦∑ ∑ ∑  (17)

By comparison of the expressions Equations (12) and (17) without the integral term in Equation (12), 
it is easy to derive the connection weights and the external input bias as follows:  

( ) 1
sgn ( ) ( ) ;    ( ) ( )

v

ik ik ik ik i iT A w t w t U t BD tδ
+

⎡ ⎤= − =⎣ ⎦  (18)

According to the discussion in Section 3.4.2, to ensure the convergence to stable state [34], 
symmetrical inter-connection weights and no self-feedback are required, i.e., we see that by setting  
A = B = 1 both conditions can easily be derived from (17). Also, the external input bias Ui(t) must vary 
slowly to ensure the network stability. Because the network is loaded initially with the disparity map 
provided by the WFS approach, the network optimization process starts with a high degree of stability 
and these values change slowly. Additionally, the definition of the neighborhood establishes that only 
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small numbers of neurons are interconnected. It is also well-known that this contributes to the  
stability [42].  

The energy in Equation (17) represents a trade-off between the data and contextual information 
coming from the spatial environment surrounding the node i and also its self-data information. The 
constants A and B could be fixed so that they tune the influence of each term in Equation (17). We 
have carried out several experiments verifying that in our approach the above setting is appropriated. 

The Equation (11) describes the time evolution of the network, the total input to the node Di(t) is 
computed by solving the Equation (11) with the Runge-Kutta method. Finally, the state Dk(t) is also 
computed according to Equation (11). As we can see, the energy in Equation (17) is obtained by 
considering the state values and a kind of attractiveness derived from both, data and contextual 
consistencies. The derivation of an energy function with attractiveness between fixed points has been 
well-addressed in the work of [43] for discrete Hopfield memories preserving symmetrical weights and 
without self-feedback. Hence, we can assume that under the attractiveness of data and contextual 
consistencies, our analog Hopfield approach performs appropriately. 

3.4.4. Summary of the Smoothness Constraint Mapping  

After mapping the energy function onto the Hopfield neural network, the filtering of the disparity 
map is achieved by letting the network evolve so that it reaches a stable state, i.e., when no change 
occurs in the states of its nodes during the updating procedure. The whole smoothness procedure can 
be summarized as follows: 

1. Initialization: create a node i for each pixel location (x,y) from the left image; t = 0 (iteration 
number); load each node with the state value Di(t) defined in Section 3.4.1; compute Tij, Ui(t) through 
Equation (18); 01.0=ε  (a constant to accelerate the convergence); tmax = 20 (maximum number of 
iterations allowed); set the constant values as follows: Ri = 1; β = 0.43; dt = 10−3. Define nc as the 
number of nodes that change their state values at each iteration. 

2. HNN process: set t = t + 1 and nc = 0; for each node i compute ui(t) using the Runge-Kutta 
method and update Di(t), both according to Equation (11) and if ( ) ( ) ε>−− 1tDtD ii  then nc = nc + 1; 
when all nodes i have been updated, if 0≠nc  and maxtt < then go to step 2 (new iteration), else stop. 

3. Outputs: Di(t) updated for each node (disparity values for each pixel location). 

4. Results 

The system geometry is based on the scheme of the Figure 3, with a baseline of 1 meter. The 
camera is equipped with a Nikon FC-E8 fisheye lens, with an angle of 183°. The valid colour images 
in the circle contain 6,586,205 pixels.  

The tests have been carried out with twenty pairs of stereo images. The total number of pairs of 
pixels extracted from these images is 131,724,100. This number of pairs of pixels is representative of 
the forest environment where the measurement device works, i.e., Scots pine forest (Pinus sylvestris L.). 
We use four pairs of them for the training involved in the FC and PB approaches (Section 2.2.1) and 
also for computing the relevance of each criterion from which the fuzzy weights, involved in the WFS 
approach (Section 3.2), can be obtained. 
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At a second stage, for the remainder sixteen stereo pairs we obtain the initial disparity map for each 
stereo pair by applying the WFS approach pixel by pixel (Section 3.2). Then, each initial disparity map 
is smoothed through the HNN method (Section 3.4). 

The tests consist on the computation of the errors obtained in the disparity maps. For such purpose 
we have available the ground truth disparity maps for the trunks of each stereo pair, provided by the 
end users. Thus, for each pixel in a trunk we know its correct disparity value according to this expert 
knowledge; which allows us to compute the percentage of error. For each one of the sixteen pairs of 
stereo images used for testing, we compute the disparity error for the pixels belonging to the trunks 
and then average these errors among the sixteen pairs of stereo images. Only the trunks located in an 
area of 25 m2 around the stereo vision system are to be tested, because for the trunks out of this area 
the volume of wood cannot be obtained with the required precision. 

In the remainder of this section we give details, in Section 4.1, about the results obtained by the 
segmentation process described in Section 2, including the training and decision phases. In Section 4.2 
we display the results obtained for the relevance of each criterion, to be used in the WFS. In Section 4.3 
we display the performance of the WFS and the HNN. They are compared against the results obtained 
by applying each criterion separately, also by applying only the WFS strategy, and against the 
combined decision making strategies of Yager [44], the Choquet Fuzzy Integral (CFI) [45], the Sugeno 
Fuzzy Integral (SFI) and the Dempster-Shafer theory (DES) [46], and the Fuzzy Multicriteria Decision 
Making (FMCDM) [24]. 

4.1. Results for the Training Phase during the Image Segmentation Process 

From the four pairs of stereo images available for this, we select manually the samples belonging 
two the sky and grass textures, obtaining a set of 2,560 samples, which are used for estimating the 
cluster centres involved in Equations (2) to (4). As one can see from the image in Figure 1, the grass 
texture displays several intensities values depending on if the pixels are in a shaded or a sunny area. 
Therefore, to avoid problems with the absolute values of the R,G,B spectral components, we normalize 
them to range in the interval [0,1] as follows: given a sample ( )BGR ,,=x  it is normalized as

( ), ,R U G U B U=x with BGRU ++= . The cluster centres obtained by applying the training 
process in Section 2.2.1 through Equations (2) to (4) are displayed in Table 2. 

Table 2. Cluster centres for the sky and grass textures. 

 Sky Grass 
FC 1 (0.18,0.35,0.48)=v 2 (0.32,0.43,0.17)=v  
PB 1 (0.16,0.32,0.52)=v 2 (0.31,0.48,0.14)=v  

Table 3. Parameters and thresholds involved in the process of pixel-based segmentation. 

Phase Parameters/thresholds
 

Training 
e = 2.1 
ε  = 0.1 

kmax = 20 

Decision T1 = 0.8 
T2 = 0.8 
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Table 3 shows the most significant thresholds and parameters values involved in the pixel-based 
segmentation process, depending on whether they are related to the training or decision phase. Figure 2 
displays the results obtained after segmentation for the image in Figure 1(a), where high contrasted 
areas are identified through the coefficient Z, Equation (1). Sky and grass textures are identified 
through the combined approach during the decision phase in Subsection 2.2.2. In summary, as one can 
see in Figure 2, the white pixels have been identified as belonging to one of the three textures out of 
interest, which are discarded during the later matching process, making it easier. 

It is difficult to validate the results obtained by the segmentation process, but we have verified that 
without the segmentation process, the error for all matching strategies is increased a quantity that 
represents on average about 9–10 percentage points. In addition to this qualitative improvement it is 
easy to deduce the existence of a quantitative improvement by the fact that some pixels belonging to 
textures not excluded by the absence of segmentation, they are incorrectly matched with pixels 
belonging to the trunks, this does not occur when these textures are excluded, because they were not 
offered this possibility. This means that the segmentation is a fundamental process in our  
stereovision system. 

4.2. Computing the Relevance for Each Criterion 

Given the four available pairs of stereo images for this purpose, we selected manually a set  
of 800 pixels belonging to the trunks in the left images and their corresponding true matches in the 
right one, obviously also in the matched trunk, according to our expert knowledge. So, given a pixel l 
coming from a left image we apply the stereovision matching process described in Section 3 and 
search for a set of m potential matches according to each individual attribute identified by j, i.e., the 
similarity between l and each i of the m candidates is computed according to the following expression 
for the attribute j: 

( , ) 1 ;   1,.., ;   , , , , , ;j lj ijs l i A A i m j a b c d e f= − − = =  (19)

where [ ]( , ) 0,  1 ,   ( , ) 1j js l i s l i∈ =  if the difference between both attributes is null (maximum similarity), 
otherwise if they are very different, ( , ) 0js l i =  (minimum similarity). Because we know the correct 
matches we are able to compute the averaged percentage of error for the set of 800 pixels based on 
each attribute and hence the relative relevance and the weights wj for the individual attributes. These 
percentages are finally: pa = 30 (correlation), pb = 12 (colour), pc = 16 (texture), pd = 10 (gradient 
magnitude), pe = 34 (gradient direction) and pf = 30 (Laplacian). So, each weight is computed as 

kkhh ppw Σ= , h, k = a,b,c,d,e,f. The weights associated with every attribute are respectively 
( ).227,258,76,122,90,22710 3−=w  As one can see, the most relevant attribute is the gradient magnitude. 

4.3. WFS and HNN Performances 

Given a stereo pair of the sixteen used for testing, for each pixel we obtain its disparity as follows. 
For facility, we reproduce in Figure 4(a) the expanded area in Figure 1(b).  
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Figure 4. (a) Expanded area corresponding to the signed area in the image of Figure 1(a); 
(b) disparity map obtained by the WFS approach; (c) disparity map obtained by the  
HNN approach. 

 
(a) 

 
(b) 

 

 
(c) 

 
Considering the six attributes separately, used as criteria in the WFS, and applying a maximum 

similarity criterion according to Equation (9) among the m candidates, we obtain a disparity map for 
each attribute. By applying the WFS approach based on maximum similarity, we obtain the initial 
disparity map displayed in Figure 4(b) for the area in Figure 4(a). This initial map is filtered 
(smoothed) through the HNN procedure. After four iterations of the HNN we obtain the disparity map 
displayed in Figure 4(c). The colour bar shows the disparity level values according to the colour for 
each disparity map. We have verified that more iterations do not improve the map. This is explained 
because as displayed in Figure 5, the energy reaches a stable value at the iteration 4 and then remains 
stable for the other iterations. This is the general behaviour for the remainder stereo images. The 
average number of iterations for the sixteen stereo pairs is 3.8. 
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Figure 5. Energy variation against the number of iterations during the HNN  
optimization process. 

 
As one can see by observing the disparity map in Figure 4(c), many isolated disparity values out 

and inside the trunks in Figure 4(b) have been changed towards the values given by their neighbours. 
This leads to the desired smoothing in both the trunks and outside them. Another important 
observation comes from the main trunk in the left part of the expanded area; indeed, in the initial map, 
Figure 4(b), the disparity values range from 1.5 to 5.5, but in the filtered map, Figure 4(c), the low 
level values have been removed, now the disparities range from 3.5 to 5.5. Although there are still 
several disparity levels, this is correct because the trunk is very thick and it is placed near the sensor. 
This assertion is verified by the expert human criterion. 

Table 4. Averaged percentage of errors and standard deviations obtained through 
maximum similarity criteria for each attribute separately and also for the WFS decision 
making approach and the HNN paradigm against the combined decision making strategies. 

Averaged percentage of error and standard deviations 
Category Criteria/methods % σ  
Attributes sa (correlation) 30.1 2.9 

sb (color) 16.2 1.3 
sc (texture) 18.1 1.7 
sd (gradient magnitude) 14.3 1.1 
se (gradient direction) 35.2 3.6 
sf (Laplacian) 32.1 3.1 

Decision 
making 

strategies 

YAG 13.3 1.9 
CFI 11.2 1.3 
SFI 11.2 1.3 
DES 11.2 1.6 
FMCDM 9.3 0.9 
WFS 9.3 0.8 

Filtering HNN 6.3 0.8 
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Table 4 displays the averaged percentage of errors and standard deviations based on the similarity 
for the six attributes when used separately, identified under the follows columns: (sa, sb, sc, sd, se, sf). 
The averaged percentage of error obtained with the WFS and the HNN approaches are also displayed. 

Because the WFS approach is a combined decision making strategy, for comparative purposes we 
have tested the performance of our methods (WFS and HNN) against the combined decision making 
approach proposed by Yager [44] based on fuzzy sets aggregation. The combination is made two to 
two similarity measures as defined in Equation (19) according to the following expression: 

( ) ( ) ( )( )
1

, 1 min 1,  1 ( , ) 1 ( , ) ,    1p p p
h kS l i s l i s l i p

⎧ ⎫⎪ ⎪= − − + − ≥⎨ ⎬
⎪ ⎪⎩ ⎭

 (20)

where h and k denote two similarity measures. Then, by applying the associative property of this 
aggregation operator we compute a final support for the six similarity values. The parameter p is 
estimated from the four stereo pairs used for training and computing the relevance of each attribute. 
Indeed, we vary p from 1 to 4, which is the range generally used, and compute the percentage of error, 
obtaining the best results with p set to 2.0. The averaged percentage of error obtained trough the Yager 
method (YAG) are also displayed in Table 4. 

Also for comparative purposes, we have tested the performance of our proposed methods against 
the combined decision making approaches successfully used in previous works in the same forest 
environment. Concretely, the combination in each method is: in CFI as we explain in [45], in the SFI 
and DES methods as in [46], and in the FMCDM method as in [24]. The averaged percentage of error 
and standard deviations obtained trough these three methods are also displayed in Table 4. 

From results in Table 4 one can see that the strategies that combine the simple attributes, YAG, 
CFI, SFI, DES, FMCDM and WFS, outperform the individual similarity based approaches. This means 
that the combination of similarities between attributes improve the results obtained by using 
similarities separately. These conclusions have been already obtained in our previous works [24,45,46]. 

The best individual results, according to the six attributes, are obtained through the similarities 
provided by the gradient magnitude attribute (sd). This implies that it is the most relevant attribute. 
This agrees with its relevance obtained previously in Section 4.2, as it has turned out to be the most 
relevant attribute. 

The combined strategies that show better results they are FMCDM and WFS. Both of them obtain 
similar results in terms of percentage and with the lower standard deviation, i.e., with less dispersion of 
the values from statistical point of view. The main advantage for using WFS is its simplicity with 
respect FMCDM and therefore it implies a lower computation cost. 

Nevertheless, the main relevant results are obtained by the proposed HNN approach in terms of less 
percentage of error. This together with the qualitative improvement provided by this approach, as 
explained above, allow us to conclude that it is a suitable method for computing the disparity map in 
this kind of images. 

We have verified that without the segmentation process the error for all strategies is increased about 
a quantity that represents on average about 9-10 percentage points. This means that the segmentation 
process is very important. 
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To sum up the study, the strategy shown in diagram in Figure 6 is proposed based on the results 
obtained with different methods. The diagram first shows the capture of the two images involved in the 
LI (Left Image) and RI (Right Image) process with the geometric configuration system described in 
Section 3.1, resulting in the implementation of epipolar constraint. Then the segmentation process is 
applied for excluding textures, after which it is defined the properties (attributes) of the pixels that are 
used as features for correspondence. This process is applied in parallel to the two stereoscopic images 
that in Figure 6 has been identified as AE. The application of the epipolar constraint through the 
relevant process is identified in the Figure 6 as EP where le is the epipolar line obtained from 
Equations (5) to (8). The similarity constraint provides values of similarity between pixels in one 
picture to another so that by the application of the uniqueness constraint, with details specified 
previously, it is decided on the best possible candidates. In both cases under the WFS approach 
because of the best results we obtained. Following the application of this method is obtained an initial 
disparity map, which is refined later through the HNN process by applying the smoothness constraint, 
with which we obtain the final disparity map. 

Figure 6. Proposed stereoscopic matching process based on pixels. 

 

5. Conclusions and Future Work 

In this paper we have proposed a new strategy for obtaining a disparity map from hemispherical 
stereo images captured with fish-eye lenses. A first segmentation process identifies three types of 
textures, where the pixels classified as belonging to one of them are not matched. This improves the 
final results. The stereovision matching process is based on the application of four stereovision 
matching constraints. 

An initial disparity map is obtained by applying three of them (epipolar, similarity and uniqueness). 
For each pixel in the left image, a list of possible candidates in the right one is obtained for 
determining its correspondence. This is carried out through the WFS approach, which is a decision 
making strategy based on a weighted fuzzy distance.  

The initial disparity map is improved by applying the smoothness stereovision matching constraint, 
inspired on the Gestalt’s principles. This is carried out through the network built under the HNN 
paradigm, which can cope with the relations established between a pixel and its neighbours. 
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The proposed combined WFS strategy outperforms the methods that use similarities separately and 
also the combined decision making methods: YAG, CFI, SFI and DES. FMCDM and WFS obtain 
similar results although WFS is simpler than FMCDM and therefore it implies a lower computation 
cost. The HNN outperforms the WFS, thanks to the optimization process. This means that it is a 
suitable strategy for filtering disparity maps. 

Based on this, some optimization approaches could be used, such as simulated annealing, where 
also the smoothness constraint and the Gestalt principles could be applied under an energy 
minimization based process. 

This paper deals only with the stereovision matching problem in the specific forest environment 
studied. The method proposed can be applied for similar forest environments where pixels are the key 
features to be matched. Applications using this sensor are based on identical geometry and image 
projection, although the matching strategy could be completely different. This occurs in [47] where the 
matching strategy, based on region segmentation, is applied in Rebollo oak forests where the images 
are very different and captured under different illumination conditions.  

Because the works based on this sensor are relatively recent, we have no reliable records for forest 
inventories. The next work following this study is the computation of distances to the trees for 
obtaining volumes and other variables of interest. Moreover, the matching strategy, proposed in this 
paper, could be considerably improved by considering previous and validated results obtained in the 
past, such as distances to the trees. This is because the trees, although growing, are fixed at a specific 
location with respect the sensor and a great volume of data are stationary, allowing to guide the 
matching process, where some ambiguities and false correspondences can be solved based on  
this information.  
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