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Abstract: In order to enhance accuracy and reliability of wireless location in the mixed 
line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a robust mobile location 
algorithm is presented to track the position of a mobile node (MN). An extended Kalman 
filter (EKF) modified in the updating phase is utilized to reduce the NLOS error in rough 
wireless environments, in which the NLOS bias contained in each measurement range is 
estimated directly by the constrained optimization method. To identify the change of 
channel situation between NLOS and LOS, a low complexity identification method based 
on innovation vectors is proposed. Numerical results illustrate that the location errors of 
the proposed algorithm are all significantly smaller than those of the iterated NLOS EKF 
algorithm and the conventional EKF algorithm in different LOS/NLOS conditions. 
Moreover, this location method does not require any statistical distribution knowledge of 
the NLOS error. In addition, complexity experiments suggest that this algorithm supports 
real-time applications. 
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1. Introduction  

In order to understand sensor data in spatial context or for proper navigation throughout a sensing 
region, automatic location of the sensors in wireless networks is a key enabling technology. Therefore, 
mobile location technologies, which are designated to estimate the position of a MN, have drawn a lot 
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of attention for its various potential location-based services [1,2]. Although Global Positioning System 
(GPS) has been in service for many years, it is only available in GPS-enabled devices and may 
encounter problems in urban and indoor environments. The poor signal penetration capabilities of the 
GPS prevents consumer-grade GPS receivers from making reliable measurements in certain urban 
settings and indoor environments where there are no direct visibilities to satellites [3]. Thus, the 
location estimation based on existing wireless infrastructures has advanced rapidly in recent years. 
Research interests have been further aroused after the US Federal Commission Committee (FCC) has 
requested that the location accuracy of the emergency calls should be 100 m for 67% of time and  
300 m for 95% of time for the network-based location systems.  

If the LOS propagation exists between the MN and all fixed nodes (FNs), which are known-location 
reference anchor nodes in a sensor network, a high location accuracy can usually be achieved using the 
conventional location algorithms [4]. However, since the direct path from the MN to a FN can be 
blocked by buildings and other obstacles, the transmitted signal could only reach the receiver through 
reflected, diffracted, or scattered paths called NLOS paths. The NLOS propagation generally leads to a 
positive bias in the estimation range and causes a serious error in the mobile location estimation. The 
problem of containing positive bias is even recognized as a “killer” issue in the location  
estimation [5,6], which is also the main focus of this paper. 

In the open literature, many methods have been employed to mitigate the adverse effect. Generally, 
these methods can be divided into two categories: methods for static positioning systems and methods 
for mobile tracking systems. Reference [7,8] have summarized the methods for static position systems. 
However, these methods are not effective for mobility tracking systems, in which redundant 
measurements in time series can be exploited. Recently, the Kalman filtering techniques are applied 
for range measurements smoothing and NLOS error mitigation. Although some novel filtering 
techniques such as unscented Kalman filtering and particle filter are superior to the EKF for nonlinear 
systems [9], the EKF is one of the most widely used methods for tracking and estimation due to its 
simplicity, optimality, tractability and robustness. The EKF-based algorithms are suggested in [10,11] 
as a promising alternative to range measurement for smoothing and mitigating NLOS error. The 
identification of LOS/NLOS conditions in [10,11] is based on the reasonable assumption that the 
standard deviation of the range measurement in the case of NLOS is significantly larger than that of 
the LOS case. But the deviation threshold is set manually according to the experiments, which is 
difficult to be chosen in the diversified environments. A Kalman based IMM smoother [12,13] is 
proposed to estimate the range between the MN and the corresponding FN in the mixed LOS/NLOS 
conditions. This method can track the true range distance more accurately than the rough LOS/NLOS 
smoother in [10,11], especially in the transitional intervals. But in this method, the IMM KF range 
smoothing and the geolocation positioning are two separated steps with each introducing estimation 
error, which lead to a larger resultant location error. The method in [14] proposed a one-order hidden 
Markov chain to simultaneously model the transition of the LOS/NLOS condition and the MN position. 
However, the grid based Bayesian estimation is complex for computing. 

Although the above algorithms mitigate the influence from the NLOS errors and improve the 
location accuracy in a certain extent, the more thorough method is directly to estimate and eliminate 
the NLOS bias in each measurement. Reference [15] has presented a modified Kalman tracker which 
increases the dimension of the state vector by adding the NLOS bias as additional parameters to be 
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estimated. The NLOS bias estimation provided for this new Kalman tracker improves the performance 
of the tracking position in NLOS scenarios. Although this method is not always effective for mobile 
tracking systems due to lack the proven research in theory, it inspired us to study the new EKF 
tracking algorithm combining with direct NLOS bias estimation. Different from the previous works, 
our method firstly estimates the NLOS errors using nonlinear optimization under the constraint of 
positive biases and geometrical relationship. Since all those NLOS distances can be converted into 
approximate LOS distances by eliminating the NLOS bias in the updating process, the EKF can be 
applied to achieve a high estimation precision. To reduce the unnecessary computing time when the 
LOS situation appears, a low complexity method based on innovation vectors is utilized to identify the 
LOS/NLOS conditions within the EKF framework. This algorithm does not require any priori 
statistical information of the NLOS error, and computation complexity is still low.  

The remainder of this paper is organized as follows. The measurement model is described in  
Section 2. The NLOS bias estimation using constrained optimization method is developed in Section 3, 
and Section 4 formulates the modified EKF-based tracking algorithm with NLOS correction. Section 5 
presents the LOS/NLOS identification method for decreasing computing time. The simulation results 
and performance analysis are discussed in Section 6. Finally, conclusions are drawn in Section 7. 

2. Measurement Model 

Assume that sensors are capable of transmission and reception, and then unknown-location devices 
are able to make measurements to multiple reference nodes. In the existing wireless systems, the range 
between the MN and a known-location FN could be measured by time of arrival (TOA), round trip 
time, and signal strength measurement techniques. In this study, we assume the mobility estimation is 
based on TOA at the MN, and the distance measurement is obtained by multiplying the time 
measurement by the speed of light. Assume that the MN has detected the range signals from the M 
FNs, and then the range between the MN and the ith FN at the time k can be modeled as:  

1, 2( ) ( ) ( ) ( ) ,i i i i i Mz k d k n k b k == + + L  (1) 

where: 
2 2( ) ( ) , 1,2( ) [ ( )]i i ii k kd x x y y i Mk f k = − + − == X L  (2) 

is the true range between the ith FN and the MN, ( ) [ , ]T
k kk x y=X represents the unknown coordinates,  

and [ , ]T
i ix y  is the ith FN location. ( )in k  and ( )ib k  represents the measurement noise and the effective 

NLOS component, respectively. The term ( )in k  is modeled as an independent and identically 
distributed zero-mean white Gaussian process with covariance matrix ( )kR . The term ( ) 0ib k ≥  always 

makes a TOA measurement longer than the true distance, whose probability distribution is generally 
unknown beforehand. Equation (1) can be written in a compact form as follows: 

( ) ( ) ( ) ( )k k k k= + +z d n b  (3) 

where: 

1 2( ) [ ( ), ( ), ( )]T
Mk z k z k z k=z L  (4) 
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1 2( ) [ ( ), ( ), ( )]T
Mk d k d k d k=d L  (5) 

1 2( ) [ ( ), ( ), ( )]T
Mk n k n k n k=n L  (6) 

1 2( ) [ ( ), ( ), ( )]T
Mk b k b k b k=b L  (7) 

1 2( ) [ ( ), ( ), ( )]T
Mf f f=f X X X XL  (8) 

3. Direct NLOS Bias Estimation 

Here, we propose a least squares (LS) optimization-based technique to estimate the NLOS 
propagation delay without requiring any prior statistics information. With the linearization of the 
system using Taylor’s series approximation as discussed in [16], a linearized measurement vector 
derived from (3) is defined as follows:  

0( ) ( ) ( ) ( )k k k k= + +y H X n b  (9) 

where 0H  is the Jacobian matrix of ( )f X  at a reference point 0X , viz. 

0

1 2

0
1 2

( ) ( ) ( )

( ) ( ) ( )

T
M

M

d k d k d k
x x x

d k d k d k
y y y =

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦X X

H
L

L

 (10) 

Note that the reference point 0X  should be chosen close enough to the true position in order for (9) 

to be valid. The reference point coordinate estimates may be determined using the simple estimator as 
follows. Because the MN cannot be located farther than ( )iz k  from the ith FN, therefore, it must be 
located within a circle of radius ( )iz k  centered around the ith FN. By repeating these arguments for all 

FNs, and then their circles are determined; so their intersections define the set of the possible location 
points for the MN. As a result, the reference estimate ( 0) ( 0 )

0 ( , )x y=X  for the MN location can be 

obtained by finding the center of the feasible region. With three FNs, for example, it is calculated by 
averaging the coordinates of the points of intersection (1) (1)( , )x y , ( 2) ( 2 )( , )x y and ( 3) ( 3)( , )x y , i.e. 

( 0) (1) ( 2 ) ( 3)( ) / 3x x x x= + + , and ( 0) (1) ( 2 ) ( 3)( ) / 3y y y y= + + . This initial position contains an NLOS bias error. 
However, the NLOS bias is estimated to recalculate the MN position in later steps, which is explained 
in the next section.  

If the bias vector ( )kb  is known, the optimal estimate ˆ ( )kX  is given by [16]: 
1 1 1 1 1 1

0 0 0 0 0 0
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tk k k k k− − − − − −= − = +X H R H R y H R H H R b X UbH %  (11) 

where 1 1 1
0 0 0( )T T− − −= − H R H H RU  is a bias correction matrix, and 1 1 1

0 0 0( ) ( )( ) T T kk − − −= H R H H R yX%  stands 

for the bias-free position estimate. 
However, in reality, ( )kb  is unknown and has to be estimated. In order to estimate ( )kb  from (9), 

the observed bias metric is defined as: 



Sensors 2011, 11                            
 

1645

0 0 0

0 0

ˆ( ) ( ) ( ) ( ( ) ( ) ( )) ( ( ) ( ))
ˆ( ) ( ) ( ( ) ( )) ( )

( ) ( )

k k k k k k k k

k k k k
k k

= − = + + − −

= + + − +
= ⋅ +

r y H X H X b n H X Ub

I H U b H X X n
L b v

%

 (12) 

where 0= +L I H U , and the bias noise is given by:  

0
ˆ( ) [ ( ) ( )] ( )k k k k= − +v H X X n  (13) 

Then, the following constrained optimization problem is defined to estimate the NLOS bias errors: 
1ˆ ( ) arg min( ( ) ( )) ( ( ) ( ))

. . ( ) ( ( ), ( )), 1,2

T

L U
i i i

k k k k k

s t b k b k b k i M

−= − ⋅ − ⋅

∈ =
vb r L b Σ r L b

L
 (14) 

where [ ( ) ( ) ]TE k k=vΣ v v  is a covariance matrix of the error ( )kv , and ( ( ), ( ))L U
i ib k b k  are sets in 

which each bias error ( )ib k  between a MN and the ith FN lies. For the TOA measurement, the lower 
bound ( )L

ib k  always satisfies ( ) 0L
ib k ≥ , and the upper bound ( )U

ib k may be produced based on the 
geometrical layout of the MN and the ith FN. Specifically, we may set the upper bound by [17]: 

( ) min{ ( ) ( ) , , 1, , , }U
i i j ijb k z k z k l i j M j i= + − = ≠L  (15) 

where ijl  is the distance between the ith FN and the jth FN. 
It is obvious that (14) is a constrained LS problem, a type of quadratic programming (QP) problem. 

There are many algorithms developed to solve this type of problem [18]; here, the Matlab function 
quadprog is used to find the solution.  

4. EKF Tracking Algorithm with NLOS Correction 

Assume that a MN of interest moves on a two-dimensional plane, and the motion state at time 
instant k is defined as the vector [ , , , ]( ) T

k k k kx y x yk =S & & , where [ , ]k kx y  corresponds to the horizontal and 
vertical Cartesian coordinates of the mobile position, [ , ]k kx y& &  are the corresponding velocities. The 

mobile state with random acceleration can be modeled as: 
2

2

1

1

1

1

01 0 0 2
0 1 0

0
0 0 1 0 2

00 0 0 1
0

k

k

k k

xk k

k k y

k k

t
t

t t

t

t

x x
wy y

x x w
y y

−

−

−

−

Δ
Δ

Δ Δ

Δ

Δ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

& &

& &

 (16) 

where tΔ is the discrete sampling period, and the random process ( ) [ , ]
k k

T
x yk w w=W  is a 2 1× vector.  

Since ( )kW  is a white noise, [ ( ) ( )] 0TE k k j+ =W W  for 0j ≠ . The covariance matrix Q  of ( )kW  is 
2 2( , )x ydiag σ σ=Q . The vector form of (16) can be described as:  

( ) ( 1) ( )k k k= − +S ΦS ΓW  (17) 

Because of the non-linear measurement equation, the EKF has to be used. Applying the 
linearization method used in EKF design, the linearized measurement equation becomes: 
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( ) ( ) ( ) ( ) ( )k k k k k= + +z F S n b  
(18) 

where: 

ˆ ( )

1 1 1 1
( )

k

k k k k

M M M Mk k k k

k
f x f y f x f y

f x f y f x f y
=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
S S

F M M M M

& &

& &
 (19) 

Similar to the Kalman filter, the operations of the EKF can be represented by two recursive steps. 
The prediction step includes the following operations: 

( | 1) ( 1 | 1)k k k k− = − −S ΦS  (20) 

( | 1) ( 1 | 1) T Tk k k k− = − − +P ΦP Φ ΓQΓ  (21) 
1( ) ( | 1) ( 1)[ ( 1) ( | 1) ( 1) ( )]T Tk k k k k k k k k −= − − − − − +K P F F P F R  (22) 

where ( )kK  is Kalman gain and ( | 1)k k −P is the covariance matrix of ( 1 | 1)k k− −S . The covariance 
matrix ( )kR  is updated by the adaptive approach in [19]. The measurement correction step is written 
as follows: 

( | ) [ ( ) ( 1)] ( | 1)k k k k k k= − − −P I K F P  (23) 

( | ) ( | 1) ( )[ ( ) ( 1) ( | 1)]k k k k k k k k k= − + − − −S S K z F S  
(24) 

Although the EKF is probably the most widely used estimation algorithm for nonlinear systems, it 
is derived basing on Gaussian noise condition. In the LOS environments where only measurement 
noise is considered, the EKF is an optimal estimator and can improve the tracking accuracy since 
measurement noise is usually assumed to obey Gaussian distribution [7,20]. For the NLOS error which 
depends on the environmental conditions, the bias term ( )ib k was modeled in different ways in the 
literature, such as exponentially distributed [21,22], uniformly distributed [23,24], Gaussian  
distributed [25], or based on an empirical model from measurements [26,27]. Therefore, it is difficult 
to accurately estimate the MN location in the NLOS scenario using the conventional EKF, and at worst 
the EKF may cause its estimates to diverge. This paper proposes an efficient and practical method to 
facilitate an accurate EKF tracking. The main idea behind the proposed approach is to get rid of the 
NLOS bias directly in the updating process. 

Once the NLOS bias is obtained in Section 3, the measurement updating Equation (24) is modified 
as: 

ˆ( | ) ( | 1) ( )[ ( ) ( 1) ( | 1) ( )]k k k k k k k k k k= − + − − − −S S K z F S b  (25) 

where ˆ ( )kb is the estimation of NLOS propagation delay by means of the optimization method. Since 
the NLOS bias is eliminated directly in (25), the modified EKF can mitigate the adverse effects caused 
by the NLOS error. And thus the modified EKF overcomes the shortcomings of the conventional EKF 
that is only fit to the Gaussian noise. 
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5. NLOS Identification  

The unique change of the modified EKF is to subtract the NLOS bias in the updating equation, so 
increased computing time is small, but the NLOS bias estimation using the optimization method will 
increase the computational complexity. In the mixed LOS/NLOS environments, however, the above 
NLOS bias estimation is actually needless when the LOS situation appears. However, we do not know 
when and how often the LOS or NLOS conditions appear and disappear in the realistic scenarios, so it is 
important to check the LOS/NLOS condition for reducing unnecessary computing time. In the previous 
algorithms [10,11], identification is implemented by a time-history based hypothesis test, which need a 
period of samples to calculate the standard deviation of the measured range data. In this work, the main 
feature behind the proposed approach is real-time identification, since only the present innovation 
vector and its covariance matrix are used. 

From the incoming measurement and the optimal prediction obtained in the previous step, the 
innovation sequence in the LOS case is defined as: 

ˆ( ) ( ) ( | 1) ( ) ( | 1) ( )k k k k k k k k= − − = − +α z z F S n%  (26) 

where ˆ( | 1) ( ) ( | 1)k k k k k− = −z F S is the estimate of the one-step predicted measurement values, and 
( | 1) ( ) ( | 1)k k k k k− = − −S S S% is the one-step prediction error. Due to the white Gaussian noise 

presumption in the LOS condition, the theoretical covariance matrix of ( )kα is:  

( ) { ( ) ( )} ( ) ( | 1) ( ) ( )T T
LOS k E k k k k k k k= = − +D α α F P F R  (27) 

But in the NLOS case, the measurement equation becomes:  

( ) ( ) ( ) ( ) ( )k k k k k= + +z F S n b  (28) 

Correspondingly, the innovation vector turns into: 

( ) ( ) ( | 1) ( ) ( )k k k k k k= − + +α F S n b%  (29) 

Assuming that the covariance matrix of the NLOS error ( )kb is defined as ( )ko , the covariance 
matrix of ( )kα  in the NLOS condition can be expressed as: 

( ) { ( ) ( )} ( ) ( )T
NLOS LOSk E k k k k= = +D α α D o  (30) 

From (29,30), the positive deviation will be added in the innovation vector and its covariance 
matrix in the NLOS conditions, since the NLOS propagation generally leads to a positive bias in the 
estimation range. Some canonical field tests in [5,28-29] have shown that the positive bias in the TOA 
measurement caused by the NLOS error can typically be of up to several hundred meters in the 
outdoor environment. For example, the means of the NLOS errors in GSM system tested by the Nokia 
corporation and in IS-95 CDMA system tested by the Korea Telecom corporation are on the order of 
513 m and 589 m, respectively [5,28]. On the other hand, the indoor environments are full of obstacles, 
walls, and other objects, which affect transmitted signal, and then range estimates might be much 
larger than the true distances. Therefore, the large deviation value can be used to distinguish the 
LOS/NLOS situations. 

Because variance calculation needs a time series of range measurements from each FN, the 
LOS/NLOS identification based on variance comparison is not suitable for real-time application. On 
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the contrary, the square sum of the innovation vector, i.e., ( ) ( )T k kα α , which still contains the 
estimation error information of the range measurement, can be used to indicate the NLOS error is 
present or not. When the MN has a LOS path to the FN, then the square sum of the innovation vector 
in theory can be obtained by: 

( ) ( ) [ ( ) ( | 1) ( ) ( )]T Tk k Tr k k k k k= − +α α F P F R  (31) 

in which []Tr  denotes the trace of a matrix. 
If not, the NLOS error is present, then we would expect for the square sum of the innovation vector 

to have a significantly larger deviation than the values of (31). This assumption is strongly supported 
by the field test results and the above analysis, which clearly indicate that the presence of the NLOS 
error increases the deviation of the measurements in a significant manner. 

Figure 1. Flow chart of the proposed algorithm with NLOS correction. 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the calculated square sum of the innovation vector, therefore, the hypothesis testing can 
decide whether NLOS components exist. The decision rule of the LOS/NLOS hypothesis testing for 
mobile location is chosen as follows: 
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: ( ) ( ) [ ( ) ( | 1) ( ) ( )],
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1ˆ( ) argmin( ( ) ( )) ( ( ) ( ))

. . ( ) ( ( ), ( )), 1,2
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L U
i i i

k k k k k

st b k b k b k i M

−= − ⋅ − ⋅

∈ =
vb r L b Σ r L b
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where the scaling factor 1γ ≥  is used to reduce the probability of false detection, and the value of 
1.1γ = is chosen in this paper. Unlike the previous algorithms in [10,11], the proposed method can 

satisfy most real-time applications, because only current ( )kα , ( )kF , ( | 1)k k −P  and ( )kR  are 
needed and they can be updated in time according to the EKF. To sum up, the proposed algorithm is 
summarized in Figure 1. 

6. Simulation Results  

Simulation results are provided in this section to assess the performance of the proposed algorithm 
in both large-scale and small-scale environments. Two conditions in [10,13] are considered to simulate 
the large-scale mobile communication environments, whereas some results in small-scale conditions 
will be presented in Section 6.4. The first case in the large-scale environment is with the fixed 
LOS/NLOS condition, and the second case is with the LOS/NLOS transition condition which the LOS 
or NLOS of each FN is changed for each 200 samples in an alternate way. Many NLOS mitigation 
algorithms can meet the FCC location requirement when seven FNs are available. This is because 
while many FNs (e.g., seven) increase the chance of mutual NLOS error canceling, few NLOS FNs 
(e.g., three) increase the tendency to greatly bias the final location estimate [30]. In a more realistic 
scenario there are often only three FNs detectable from a MN, so we assume that the MN can receive 
the signals from three FNs in both cases. The coordinates (in meters) of these three FNs are (0, 0), 
(8,600, 0) and (4,300, 7,500). The simulated measurement data are generated by adding the 
measurement noise and the NLOS noise to the true distance from a MN to each FN. In comparison 
with the NLOS error, the measuring error is usually considered to be several tens of meters at the most 
when super-resolution TOA estimation and high precision synchronization techniques are used. In this 
paper, the measurement noise is assumed to be a white Gaussian random variable with zero mean and 
standard deviation 50 m, which comprises the synchronization errors, clock drifts errors, and so  
on [20,31]. For simplicity, we simulate the MN moves in a straight line at a constant speed of (10 m/s, 
15 m/s). The random acceleration variance 2

xσ , 2
yσ  are both chosen to 1 m/s2. The simulated trajectory 

has L = 2,000 time samples, and the sample interval Δt = 0.1 s. We compare the performance of the 
EKF, the Iterated NLOS EKF [15] and the proposed method in the same conditions. All the simulation 
results are obtained based on N = 100 Monte Carlo realizations with the same parameters. The mobile 
location error is calculated with the elimination of the first 100 samples so as to ignore the large 
location error caused by the initial conditions. 

6.1. In the Fixed LOS/NLOS Condition 

In this condition, the NLOS measurement noise is fixed for the whole trajectory, which is assumed 
to be a white Gaussian random variable with positive mean mNLOS = 513 m, and standard deviation 
σNLOS = 436 m [5,13].  

Table 1 shows the root mean square error (RMSE) of the three algorithms in four different cases 
under this condition. Assuming the true MN location is ( , )s sx y , the RMSE at the time instant k is 

defined as 2 2
, ,

1

1 [( ) ( ) ]
N

k k i s k i s
i

RMSE x x y y
N =

= − + −∑ .  
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It can be seen from Table 1 that, the proposed method achieves the least RMSE among all the three 
methods, and the EKF method and the Iterated NLOS EKF algorithm can not meet the FCC 
requirement (for 67% location error at 100 m and 95% location error at 300 m) even if there is only 
one NLOS FN. Even in the worst case, i.e., when the three FNs are all in NLOS condition, the 
proposed method has the performance with 67% error at 37.37 m and 95% location error at 76.58 m, 
which is far below the location requirement mandated by the FCC. 

Table 1. Performance comparisons among three algorithms under the different NLOS conditions. 

Algorithm The proposed method Iterated NLOS EKF EKF 
Error (m) 67% 95% 67% 95% 67% 95% 
3LOS, 0NLOS 17.17 30.07 34.58 73.35 9.83 38.39 
2LOS, 1NLOS  32.76 63.96 105.8 221.1 309.2 375.1 
1LOS, 2NLOS  35.99 69.52 238.5 280.1 789.9 859.5 
0LOS, 3NLOS  37.37 76.58 301.9 315.9 828.5 916.3 

Figure 2. Comparison of the RMSE when the three FNs are all in NLOS conditions. 
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In order to evaluate the tracking precision obtained by the proposed algorithm, we have computed 
the RMSE of the three different trackers in the worst situation, i.e., no LOS path between the MN and 
each FN. We can observe in Figure 2 that the EKF method results in poor tracking performance in the 
NLOS conditions. Since the iterated NLOS EKF algorithm utilizes the NLOS bias estimation and 
correction, its location estimation error is much smaller than that of the EKF method, but it is clearly 
outperformed by the proposed algorithm in terms of RMSE. These results reveal that our method is 
very robust to bad propagation environments and effectively enhances location accuracy. 

6.2. In the LOS/NLOS Transition Condition 

This group of simulations will show the great improvement in the accuracies on the range 
estimations and tracking trajectories in the LOS/NLOS transition condition. In order to do that, we 
take TOA measurements during 60 seconds in three intervals NLOS-LOS-NLOS. Figure 3 shows how 
the proposed algorithm works for TOA measurements in the mixed LOS/NLOS environment. 
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Simulation results show the proposed method can closely track the true distance between the MN and 
the corresponding FN, while the estimation of the EKF is far away from the true distance with a big 
positive bias in the NLOS condition. Although the iterated NLOS EKF algorithm performs as good as 
the proposed method in the LOS phase, its performance is still much worse than that of the proposed 
method in the NLOS situation. 

Accordingly, it can be seen from the estimated trajectories in Figure 4 that the proposed algorithm 
can provide better tracking capability comparing with the other two schemes. Although the Iterated 
NLOS EKF method improves the accuracy of the location estimation comparing with the conventional 
EKF, it still severely deviates from the true trajectory. 

Figure 3. Zoom of the range estimation by three algorithms during 60 seconds.  
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Figure 4.  The estimated trajectories of the MN by three algorithms from a single realization. 
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   The identification results in the LOS/NLOS mixed environment is provided in Figure 5. Because 

the innovation vector contains the estimation error information of the range measurement which 
represents a kind of additional information available to the filter as a consequence of the new 
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observation, the proposed identification method according to (32) can immediately and effectively 
respond to the LOS/NLOS changes. Moreover, it can be seen form Figure 5 that the changes of the 
LOS/NLOS situation can be identified accurately, except several false points in the beginning moment. 
The accurate identification of LOS/NLOS conditions will enhance location accuracy and reduce 
unnecessary computing time, when the proposed algorithm is implemented. 

Figure 5. The identification results of the LOS/NLOS hypothesis testing. 
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6.3. Complexity Analysis and Comparison 

Compared with the conventional EKF smoother, the additional computation in the proposed 
algorithm is primarily introduced by the estimation of NLOS bias using constrained LS optimization, 
which mainly involves the operations of matrix inverse and multiplication. The complexity of the 
matrix inverse operation is 3( )O N , and the multiplication operation is 2( )O N , where N represents the 
dimension of the matrix. Table 2 shows the complexity comparison results of the three algorithms in 
terms of the actual computation time. The total sampling times L in all three methods equal to 2,000. The 
experiments are processed on the computer with Pentium IV 2.4 GHz processor and 1 GB memory. 

Table 2. Computer running time of the three methods. 

Method The proposed method Iterated NLOS EKF EKF 
Average Time(s) 0.352 0.216 0.191 
Standard 
deviation(s) 

0.011 0.012 0.016 

 
From Table 2, it shows that the computer running time of the proposed method is about 0.16 second 

larger than the conventional EKF and 0.14 second larger than the Iterated NLOS EKF. Considering the 
large performance gain that the proposed method achieves, this slight complexity is totally acceptable. 
Note that the computer time is the results of 2,000 iterations, so the average compute time in a single 
iteration is small. Therefore, the proposed method is promising for most real-time applications. 
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6.4. Accuracy Evaluation in a Short-Range Environment 

To verify the proposed method and examine the performance in a short-range environment, the 
following simulations are carried out. The location area is a square with dimensions of 100 × 100 m. 
In the first case, four FNs are assumed to be located at (0, 0), (100, 0), (0, 100), and (100, 100) (in 
meters), respectively. This is based on the well-known fact that placing the FNs along the boundary of 
the location area produces better performance. On the contrary, the four anchors’ locations are  
almost-collinear in the second case, at (0, 0) (38, 39), (80, 81), and (100, 100) (in meters), which is an 
extremely bad node geometry. The measurement noise is Gaussian with zero mean and a standard 
deviation iσ being proportional to the distance, i.e., 0.02i idσ = . The NLOS error is exponentially 
distributed with the parameter denoted by 0.08i idλ = , and hence the mean and variance of NLOS 
error are iλ  and 2

iλ , respectively. The selection of these values is in accordance with the range 
estimation accuracy when using TOA measurements in [32,33]. We simulate the MN moves in a 
straight line at a constant speed of (0.1 m/s, 0.15 m/s). The random acceleration variance 2

xσ , 2
yσ  are 

both chosen to 0.01 m/s2. The simulated trajectory has L = 200 time samples, and the sample interval 
0.1t sΔ = . 

Figure 6 illustrates the effect of the number of NLOS FNs (from one to four) when the location 
error is up to 5 m under the good node geometry. Basically, the accuracy degrades, approximately in a 
linear form, as the number of NLOS FNs increases. The proposed method achieves accuracy of 5 m at 
a probability greater than 85% in all the cases, while the iterated NLOS EKF algorithm performs only 
well when there is no more than two NLOS FNs.  

Figure 6. Impact of the number of NLOS FNs on the location accuracy in the good node geometry. 
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On the other hand, Figure 7 shows the probability of the location error versus the number of NLOS 
FNs in the bad node geometry when the location error is up to 5 m. As expected, the probability goes 
down as the number of NLOS FNs increases. Apparently, the iterated NLOS EKF algorithm and the 
conventional EKF approach perform very poorly in the bad anchor geometry. However, the accuracy 
of the proposed method drops only about 3% under the given anchor geometry in the second case. This 
may indicate that, in practice, whenever the node geometry can be obtained, the proposed algorithm 
may be applied to produce an accurate location estimate. 
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Figure 7. Impact of the number of NLOS FNs on the location accuracy in the bad node geometry. 
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7. Conclusions  

Because the NLOS propagation is ubiquitous in both indoor and outdoor positioning scenarios, a 
robust algorithm is required to mitigate the impact of the NLOS location estimation error. In this work, 
we have developed a suitable NLOS identification and mitigation algorithm for the improvement of 
location accuracy in EKF-based mobile location. Simulation results show that the proposed algorithm 
exceeds the FCC target and significantly outperforms the other two methods. Meantime, it does not 
depend on a particular distribution of the NLOS error. As compared to the conventional time-history 
method, the proposed identification approach has achieved the real-time capability by using only 
current innovation sequence. The complexity comparison suggests that the performance gain of the 
proposed method is at the expense of increasing the computer time. However, the difference of 
complexity is small and acceptable when considering the large performance gain it achieves. This 
method can still be considered as a candidate for most real-time applications. Further investigation will 
emphasize on the impact of different motion models and channel models for the proposed algorithm 
and the theoretic bound on the location estimation precision for a given set of measurements. 
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