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Abstract: This paper addresses the collective odor source localization (OSL) problem in a 

time-varying airflow environment using mobile robots. A novel OSL methodology which 

combines odor-source probability estimation and multiple robots’ search is proposed.  

The estimation phase consists of two steps: firstly, the separate probability-distribution 

map of odor source is estimated via Bayesian rules and fuzzy inference based on a single 

robot’s detection events; secondly, the separate maps estimated by different robots at 

different times are fused into a combined map by way of distance based superposition.  

The multi-robot search behaviors are coordinated via a particle swarm optimization 

algorithm, where the estimated odor-source probability distribution is used to express the 

fitness functions. In the process of OSL, the estimation phase provides the prior knowledge 

for the searching while the searching verifies the estimation results, and both phases are 

implemented iteratively. The results of simulations for large-scale advection–diffusion 

plume environments and experiments using real robots in an indoor airflow environment 

validate the feasibility and robustness of the proposed OSL method. 

Keywords: odor source localization; multi-robot; estimation; search; Bayesian rules; fuzzy 

inference; particle swarm optimization 
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Notations  

z  The detection of wind and gas event 

tz  The detection event z happening in the time period ],[ ttt   

tz  Undetected event happening in the time period ],[ ttt   

Intz ,  Detected event, the robot is in the plume 

Edgetz ,  Undetected event, the robot is on the edge of the plume 

Outtz ,
 Undetected event, the robot is outside of the plume 

tiz ,  Detection event by the robot i in the time period ],[ ttt   

},...,,{ ,,2,1 tNttt zzzZ  Detection vector by N robots in the time period ],[ ttt    

},...,,{ 21:1 tt ZZZZ   Detection vector by N robots from time 1 to t 

  A small connected domain 

m  The smallest space unit of gas source probability estimation 

xym  The grid with the central coordinate ),( yx  in global coordinate system 

''yxm  The grid with the central coordinate ),( yx   in local coordinate system 

)(p  Probability that the gas source is in   

)(mp  Probability that the gas source is in m  

)|( zmp  Posterior probability that the gas source is in m  when z  happens 

)|( zp   Posterior probability that the gas source is in   when z  happens 

),|( zmp  Posterior probability that the gas source is in m  when z  happens and the gas source 

is in   

)( yxl mp   Prior probability that the gas source is in the grid yxm   in local coordinate system 

)|( , yxIntl mzp   Conditional probability that Intz ,  happens given the gas source is in ''yxm  in local 

coordinate system  

)( yxtl m|zp   Conditional probability that tz  happens given the gas source is in ''yxm  in local 

coordinate system  

),|(   tyxl zmp  Posterior probability of any grid yxm   being gas source when the source is in the 

area   and tz  happens in local coordinate system 

),( ,   Intyxl |zmp  Posterior probability of any grid yxm   being gas source when the source is in the 

area   and Intz ,  happens in local coordinate system 

),(   tyxl z|mp  Posterior probability of any grid yxm   being gas source when the source is in the 

area   and tz  happens in local coordinate system 

)|( ,Intyxl zmp   Posterior probability of any grid yxm   being gas source when Intz ,  happens in local 

coordinate system  

)|( ,Edgetyxl zmp 
  Posterior probability of any grid yxm   being gas source when 

Edgetz ,  happens in local 

coordinate system  

)|( ,outtyxl zmp   Posterior probability of any grid yxm   being gas source when Outtz ,  happens in local 

coordinate system 

)|( tl zp   Posterior probability of the gas source being in the area   when tz  happens in local 

coordinate system 

)|( ,Intl zp   Posterior probability of the gas source being in the area   when Intz ,  happens in 

local coordinate system 
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)|( ,Edgetl zp   Posterior probability of the gas source being in the area   when Edgetz ,  happens in 

local coordinate system 

)|( ,Outtl zp   Posterior probability of the gas source being in the area   when 
Outtz ,

 happens in 

local coordinate system 

)( ,tixy|zmp  Separate probability of the gas source being in xym  by the detection event of the 

robot i at the time t within the small area   

)|( txy Zmp  Combined probability of the gas source being in xym  by the detection event of all 

the robots at the time t  

)|( :1txy Zmp  Combined probability of the gas source being in xym  by the detection event of all 

the robots from time 1 to t 

1. Introduction 

The olfactory sense is crucial to the survival for many creatures, and has long played a fundamental 

role in human development and biosocial interaction. Electronic noses (e-noses), which are instruments 

designed to mimic the mammalian olfaction system, focus on identifying, classifying and quantifying 

the odor mixture—the fundamental function of animals’ smell sense. They are very useful for 

numerous applications in the food and pharmaceutical industry, in gaseous contamination monitoring, 

clinical diagnostics, contrabands inspection [1]. Besides the smell perception and discrimination, a 

number of life forms also use olfaction to trace odor cues for foraging, finding mates, exchanging 

information and evading predators [2]. Inspired by the odor tracing abilities of animals, in the early 

1990s, researchers started trying to build mobile robots with similar olfaction abilities to replace 

trained animals [3-6]. It is expected that mobile robots developed with such olfaction abilities will play 

an increasing role in areas such as judging toxic or harmful gas leakage locations, searching for 

survivors in collapsed buildings, humanitarian de-mining and thwarting terrorist attacks. 

Research into the use of one or more mobile robots equipped with odor/gas sensors and/or a wind 

sensor to search for odor/gas sources is called odor source localization (OSL) research [6,7]. OSL 

research can be classified into behavior-based methods and analytical-model-based methods [8].  

The task of behavior-based OSL can be decomposed into three sub-procedures (namely, plume 

finding, plume traversal, and source declaration) according to Hayes et al. [7], or four sub-procedures 

(namely, finding a plume, tracing the plume, reacquiring the plume, and declaring the source) according 

to Li et al. [9]. During the initial phase, contact is made with an odor plume [7,9,10]. Once the plume 

is detected, the robot traces the odor/chemical toward its source. Most methods for this sub-procedure 

are biologically inspired, such as the gradient-following algorithms [10-12], the zigzagging  

algorithms [6,9,10,13], the upwind algorithms [7,14], and the SPIRAL algorithm (Searching Pollutant 

Iterative Rounding ALgorithm) [15]. To our knowledge, until now most research related to the OSL 

focuses on the plume tracing phase, that might be why the mobile-robot based OSL is also called 

chemical plume tracing (CPT) [16,17]. In the final phase, the robot locates the source [9,18,19].  

Analytical-model based methods have also been proposed by several OSL researchers.  

The analytical-model based odor-source estimation could make up for the disadvantage of commonly 

used gas sensors with small detection range as well as the discrete distribution of plumes caused by 

turbulence. Ishida et al. [20] proposed a method to remotely locate a gas source based on a time-averaged 



Sensors 2011, 11                            

 

 

10418 

gas distribution model [21]. Kowadlo and Russell [22] used a map of the robot’s environment, together 

with a naïve physics model of airflow, to predict the air movement pattern in a cluttered indoor 

environment with low ceiling and thinly populated by objects that affect airflow. The robot then used 

the airflow pattern to infer the probable location of the odor source. Farrell et al. [23] presented a plume 

mapping approach based on hidden Markov methods. Pang et al. [24] also proposed a source-likelihood 

mapping approach based on Bayesian inference method, where the source-likelihood map was propagated 

through time and updated in response to both detection and non-detection events. Li et al. [25] 

proposed a particle filter based algorithm to estimate the localization of the odor source in real time in 

a time-varying outdoor airflow environment.  

Up to now, most OSL research work was implemented using a single robot. Compared with the 

single-robot search, multiple robots might have at least two advantages: the expected search time could 

be decreased; and multi-robot systems could provide a greater robustness against hardware failures. 

Hayes [7] proposed a spiral surge strategy for multiple robots OSL with real-robot hardware. Several 

fans were used to produce an artificial wind field. Lytridis and his colleagues [26] combined the 

biologically inspired chemotaxis strategy with biased random walking (BRW) strategy to form a 

chemo-BRW algorithm for multi-robot plume tracing with three BIRAW robots. A Gaussian-shaped 

odor field was created using a fan. The particle swarm optimization (PSO) algorithm was tested via 

computer simulation by Jatmiko [27] and Marques [28] using the plume models developed by  

Farrell [29] and Nielsen [30], respectively. Li and Meng [31] proposed a probability PSO (P-PSO) 

algorithm for multi-robot based OSL. Simulation results in ventilated indoor environments demonstrated 

the feasibility and advantage of the P-PSO algorithm. Spears and her colleagues [32] proposed a  

multi-robot CPT algorithm called fluxotaxis that follows the gradient of the chemical mass flux to 

locate a chemical source emitter. Ferri and his colleagues [15] used a biologically-inspired SPIRAL 

(Searching Pollutant Iterative Rounding ALgorithm) with MOMO (Multi-robot for Odor Monitoring) 

platform to localize a gas source in an indoor environment with no strong airflow. Meng et al. [33] 

applied an adapted ant colony optimization algorithm to multi-robot odor-plume tracing in indoor 

natural airflow environments, and real robot experiments demonstrated its feasibility.  

Multi-robot based OSL has not been well studied and has mostly been restricted to simulated robots 

and simulation environments. To our knowledge, only a few publications [7,26,33] have discussed the 

OSL problem with multiple real robots, where the plumes in [7,26] were produced using fans instead 

of natural airflow. In indoor natural airflow environments the dispersion of odor molecules is 

dominated by turbulence. Here natural airflow means that the wind is not produced using fans. The 

natural wind direction in indoor environments often changes randomly and sometimes even by 180°. 

In addition, local concentration maxima caused by large eddies often exist in indoor environments, 

especially in corners.  

A novel collective OSL strategy which combines multi-robot search with gas source probability 

estimation is proposed in this paper. The source probability estimation consists of two steps. Firstly, 

separate gas source probability map is estimated via Bayesian rules and fuzzy inference by using a 

single robot’s detection information; secondly, the distance and superposition methods are used to fuse 

separate source probability maps into one combined map. Multi-robot search is realized by a PSO 

algorithm, in which the local and global fitness functions are replaced by the estimated separate and 

combined gas source probability, respectively. The gas source probability estimation and multi-robot 
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searching are implemented iteratively. The estimation phase exploits the detected information to guide 

multi-robot search, and multiple robots’ search can further verify the estimation result by updating 

their locations continuously. The proposed collective OSL strategy has been verified in both the 

simulated and real time-varying plume environments.  

One of the main contributions of this manuscript is that a new OSL methodology which combines 

the estimation and searching is proposed. The previously published OSL work either only used 

behavior based searching methods or only used analytical based estimation methods, however, few 

research works related to OSL combining both the estimation and searching methods have been 

published. The behavior-based OSL searching without estimation has blindness, while the feedback of 

estimation based OSL is difficult to be obtained without robot searching. In the P-PSO algorithm 

proposed in our research, the estimation process exploits the detected information to guide the  

multi-robot search, while the multi-robot search coordinated via PSO method updates the estimation 

result by exploring more areas, thus a better OSL performance could be achieved.  

The remainder of this paper is organized as follows. The characteristics of an advection-diffusion 

plume are analyzed in Section 2. Section 3 presents the framework of the collective OSL strategy. The 

realization of separate and combined gas-source probability estimation is explained in Section 4. 

Section 5 introduces PSO-based collective gas-source search strategy using the estimated source 

probability as the fitness function. The simulation and multiple real-robot experiments for collective 

OSL and search are given in Sections 6 and 7, respectively. Finally, conclusions are summarized.  

2. Characteristic of Advection-Diffusion Plume 

The transport of a gas in the air is influenced by advection, turbulent diffusion and molecular 

diffusion. The effect of advection is that the gas is transferred by the time-averaged flow movement; 

the effect of turbulent diffusion is that the gas diffuses by turbulent kinetics; the molecular diffusion is 

caused by molecular motion. The speed of turbulent diffusion is much faster than that of molecular 

diffusion. For example, in the air the difference is about 10
5
–10

6
 times, therefore the molecular 

diffusion in turbulence could be neglected [34]. Because the height of gas sensor equipped on the robot 

is usually fixed, the equation that describes advection-diffusion of a puff is formulated for the case of 

sensing a 2-dimension plane as follows [29,35]: 

where  )(),()( tytxt X  is the coordinate of the puff at time t; ),( yx uuU  is the velocity of advection; 

),( yx vvN  represents the turbulent diffusion, which could be expressed by a quasi-Gaussian random 

process [36] with expectation )0 ,0(  and variance ),( 22
yx  .  

Without loss of generality, suppose the wind direction is along the x  axis, i.e., the movement is 

only dominated by advection along the x  axis direction, and the random process of Gaussian 

distribution is only considered in y  axis. A puff was released at the time 0t  from the origin, and the 

displacement of the puff in the y  axis direction is given by: 

 
t

y dttvty
0

')()(  

)(),()( ttt NXUX   (1)  
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Since yv  fits the Gaussian distribution, the ensemble average displacement of large puffs is 0)( ty  

and the variance 2)(ty  [36] can be expressed as follows: 

For a short period of time, Equation (2-a) can be rewritten as follows:  

For a long period of time, Equation (2-a) can be rewritten as follows:  

where LT  represents the Lagrange time scalar. From Equations (2-b) and (2-c) it can be found that the 

variance in the y  axis direction increases gradually with time. In a short time, 2)(ty  is directly 

proportional to the square of time, while in a long time, 2)(ty  is proportional to the time. The 

movements of puffs are illustrated in Figure 1. The red dashed-lines denote the trajectories of puffs in 

yx  plane. In homogeneous isotropic turbulence, the probability distribution of puffs in cross section 

of the x  axis fits the Gaussian distribution [37]. )(x,yp  denotes the probability density function (PDF) 

of puffs in cross section of the x  axis; the puffs arrive at the lines 1xx   and 2xx   at time t1 and t2, 

respectively, so 2
1)(ty  and 2

2 )(ty  denote the variances of the PDF along the lines 1xx   and 2xx  , 

respectively. In Figure 1, 12 tt  , 2
1

2
2 )()( tyty   according to Equation (2-b), so in the same abscissa 

21 yy  , )()( 2211 ,yxp,yxp  . The characteristic of advection-diffusion is fundamental to the collective 

gas-source probability estimation presented in Section 4. 

Figure 1. The schematic diagram of probability density distribution of puffs. 
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3. Framework of the Collective OSL Strategy 

In the proposed collective OSL process, the gas-source probability estimation and multi-robot 

search are implemented iteratively. The estimation is used for guiding robots’ search, and multiple 

robots’ search can further verify the estimation result by updating their locations continuously. The 

proposed methodology includes the following four phases. The flowchart is illustrated in Figure 2. 

 
t

L
y d

T
tty

0

22 )exp()(2)( 


  (2-a)  

222)( tty y  (2-b)  

tTty Ly
22 2)(   (2-c)  
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Phase 1: Perception, i.e., detection of gas and airflow data using onboard sensors.  

Phase 2: Estimation, i.e., prediction of gas source position by fusing the detected gas and airflow 

information. The gas source position prediction consists of two steps, the first is separate prediction 

using Bayesian rules and fuzzy inference based on single robot’s detection events, the second is the 

estimation of the combined probability map using the distance based superposition method. 

Phase 3: Multi-robot search, a particle swarm optimization (PSO) algorithm is used to coordinate 

multi-robot based collective search for the gas source. The PSO uses the estimated separate and 

conbined gas source probabilities instead of real values (gas concentration, for example) as the local 

and global fitness functions, respectively. Here we call it the Probability-fitness-function based Particle 

Swarm Optimization (P-PSO) algorithm. If all the searchers have not detected the gas after many tries, 

a simple heuristic finding/re-finding plume algorithm is used; otherwise, the robots move according to 

the P-PSO searching algorithm based on the gas-source probability estimation.  

Phase 4: Declaration, i.e., identification of the gas source. If the source is not successfully declared, 

the algorithm will return to the phase 1.  

The algorithm proposed by Li et al. [18] could be used for the declaration phase (dashed-line frame 

in Figure 2), but in our experiments, the multiple robots were stopped manually when all the robots 

approached the real source and converged to a specified area.  

Figure 2. The flowchart of the proposed gas source localization strategy. 

 Detect the odor, wind, etc.Phase 1: Perception

 Estimate the odor source probability mapPhase 2: Estimation

Multi-robot search 

based on the 

estimated probability 

map

Phase 3: Searching

Phase 4: Declaration

Find or re-find the 

odor plume

Is the odor not detected 

many times?

Y N

Is the odor source found ?

End

Start

Y

N

 



Sensors 2011, 11                            

 

 

10422 

4. Gas Source Probability Estimation 

The gas source probability estimation consists of two steps, the first is separate estimation based on 

single robot’s detection events by using Bayesian rules and fuzzy inference (see Section 4.1), the 

second is fusing the separate estimation to form a combined probability map by using the distance 

based superposition method (see Section 4.2).  

4.1. Separate Gas Source Probability Estimation 

Because the accurate turbulent model is hard to set up, the posterior probability of gas source could 

not be obtained from it. The separate gas source probability estimated using Bayesian rule is expressed 

as follows:  

where )|( zmp  denotes the posterior probability of the area m  being the gas source given the detection 

event of the robot’s sensors. The sensor detection event z  denotes the detection of wind and gas.  

m , the smallest area unit of gas source probability estimation, denotes the grid in searching area;  

  denotes a small square connected domain, and m ; ),|( zmp  expresses the probability of the 

unit m  being the gas source given the detection event of the sensors and the source being in the 

domain  . )|( zp   stands for the probability of the gas source being located in the domain   given 

the sensor detection event. 

 m ,  1),|(  mzp . So Equation (3-a) can be rewritten as follows: 

The estimation process of the probabilities )|( zp   and ),|( zmp  is presented in Sections 4.1.1 and 

4.1.2, respectively. The flowchart of the separate gas-source probability estimation is shown in Figure 3. 

Figure 3. The flowchart of the separate gas source probability estimation. 
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4.1.1. Estimation of )|( zp   

)|( zp   is estimated using fuzzy inference by combining the concentration magnitude and 

fluctuation intensity. The gas plume itself contains the information about source location, and the 

fluctuation intensity can be used to express the gas variation [15]. Here the fluctuation intensity is set 

to be the number of wave peaks whose values are bigger than the average. The inputs of the fuzzy 

inference are the gas concentration and its variation, and the output is the estimated probability 

)|( zp  . The concentration information is calculated by sampling many times and then averaging. 

Both the inputs and output of the fuzzy inference are divided into five fuzzy subsets: SMALL, 

MIDDEL-SMALL, MIDDLE, MIDDLE-BIG and BIG. The central idea of the fuzzy reasoning rules is 

that, the less concentration and fluctuation intensity, the less probability of gas source being in the area 

 , and vice versa [15]. To adapt to the change of environment, especially under the condition of the 

unknown gas source concentration, the universe of the fuzzy sets is variable instead of fixed. The two 

fuzzy input universe ranges are set to max2C  and max2I , respectively. maxC  and maxI  are the maximal 

gas concentration and fluctuation intensity detected until now, respectively. 

4.1.2. Estimation of ),|( zmp  

According to the dynamic characteristics of gas plume described in Section 2, the square area   

centered on the gas and wind sensors is determined as follows: 

where tr  denotes the side length of the area   at the time t; the initial side length 0r  is set to 10 m in 

simulations and 2 m in experiments; )|( tzp   denotes the probability of gas source located in   given 

the detection value tz . The value of )|( tzp   is obtained by the fuzzy inference (see Section 4.1.1). 

The reason that tr  is set to be variable is that, the estimation area is narrowed when the detected 

concentration increases, so that the robot is prone to search locally near the location of high 

concentration and the exploitation performance of the robots increases; in the position of low 

concentration, the enlargement of estimation area could broaden the search area of the robot, and the 

exploration performance of the robots gets enhanced.  

Suppose refc  denotes the detection threshold of gas sensors ( 50refc  ppm in our experiments).  

Let tc  denote the average gas concentration when the robot detects gas in the time period ],[ ttt  , 

where t  is the sampling period of sensors. Let tz  denote the detection event z  happening in the time 

period ],[ ttt  . tz  has two forms: Intz ,  (i.e., reft cc  ) and tz  (i.e., reft cc  ). tz  also includes two 

forms: Edgetz ,  and Outtz , . The detection event Intz ,  means the robot is in the plume; while the detection 

event Edgetz ,  and Outtz ,  denote the robot is on the edge and outside of the plume, respectively. Here we 

distinguish these two situations by setting a time threshold plumeT  (10 s in our experiments). If the time 

of not detecting gas is greater than plumeT , the robot is considered to be outside of the plume; otherwise 

the robot is considered to be on the edge of the plume. Under the three kinds of detection events,  

i.e., Intz , , Edgetz ,  and Outtz , , the probability estimation of gas source is constructed through the wind 

direction information. 

))|(1(0 tt zprr   (4) 
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Figure 4. (a) The grids in the robot and world coordinate systems; (b) Separate gas source 

probability distribution map (the gas is detected); (c) Separate gas source probability 

distribution map (the gas is undetected). 
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As Figure 4(a) shows, we take the location of the robot as the origin of coordinate, and the 

directions parallel and perpendicular to the upwind direction as the lateral and vertical axes (see X  

and Y ), respectively. The square area   (see the square marked with red thick line) is divided into 

grids ''yxm  with the central coordinate ),( yx   in (robot’s) local coordinate system YX  . Let xym  

represent the grid m  with the central coordinate ),( yx  in global (world) coordinate system. The global 

coordinate and local coordinate systems can be transformed by the equation xyyx mmf  )( . 

It is supposed that each detected filament travels directly from the gas source to the sensor in the 

estimated area. The separate posterior probability ),|(  tyx zmp  of grid ''yxm  being gas source in the 

area   by the detection event tz  can be calculated according to the Bayesian rules. The movement 

time of the detected puff is previously unknown, so in square area   the moving time of the detected 

puff is supposed from 0 to Mt , where Mt  represents the maximum moving time of the detected puff in 

 , its value can be calculated as: 

'2
x

t
M

u

r
t   (5)  

where 'x
u  denotes the wind magnitude. When the event Intz ,  happens and the movement time of the 

detected puff is equal to 
'x

u

x
, ),|(  tyx zmp  is calculated using Equation (6); when the movement time 

of the detected puff is not 
'x

u

x
, ),|(  tyx zmp  is equal to 0. 

where )( yxmp   denotes the separate prior probability that the gas source is in the grid ''yxm . 

Considering the volume of robot, the initial abscissa in the estimation area should be more than half of 

the robot side length robotd . In the downwind field, the posterior probability of the grid being gas 

source is set to be a small constant  . In the upwind field, the conditional probability )|( , yxInt mzp   is 

represented as follows [37] (see also Figure 1). 

where y  represents the ordinate of central position of the grid yxm  ; d  denotes the distance between 

the central point of the grid ''yxm  and the square’s centerline being parallel with the wind direction (see 

Figure 4); 
2

'y
  represents the variance of the probability distribution of the puffs in the vertical 

direction of the wind when the puffs diffuse from the grid ''yxm  to the position of the sensor. Here the 

prior probability )( yxmp   in   is set to be equal in separate gas source probability estimation, so it can 

be deleted. Substituting Equation (7) into Equation (6), we get: 




























 

2
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 (6)  

)
2

exp(
2

1
)
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Let 'y
  express the standard deviation of random process of turbulence in Y  direction, then 

'

'

'' y

x

yxy u

x
t  


   [see Equation (2-b)], where xt   denotes the moving time of the puffs from the grid 

yxm   to the position of the sensor. Therefore Equation (8) can be rewritten as follows:  

The separate probability map in square area   with the supposed moving time of the detected puff 

from 0 to Mt  is shown in Figure 4(b), where the value in Z  axis shows the probability details. 

When the robot does not detect the gas, the posterior probability distribution is represented as 

follows: 

When Edgetz ,  and Outtz ,  happen, the estimation probability distribution map is shown in Figure 4(c).  

We can obtain an approximate template of separate probability distribution of gas source in the area   

by detecting the gas and wind (cf. [Figure 4(b,c)]). The purpose of estimating the separate map is that 

the discrete detection point can be converted into a continuous probability distribution field, which 

makes up the disadvantage of gas sensor with small detection range as well as the discrete distribution 

of plume caused by turbulence. 

4.1.3. Separate Gas Source Probability Estimation 

When the detection event Intz ,  happens, the separate gas source probability )|( ,Intyx zmp   can be 

represented as follows on the basis of Equation (3-b),  

When the detection events Edgetz ,  and Outtz ,  happen, )|( ,Edgetyx zmp   and )|( ,Outtyx zmp   are 

calculated using Equations (12) and (13), respectively:  
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where the symbols 1  and 2  are two constants with the range of (0, 1). For the detection events 

Edgetz ,  and Outtz , , the fuzzy inference cannot be used to predict )|( ,Edgetzp   and )|( ,Outtzp  . In 

Equation (12) )|( ,11 Intzp   is used to approximate the value of )|( ,Edgetzp   (in our experiments, 1  

was set to 0.8). In Equation (13), the probability )|( ,Outtzp   is set to be the small constant 2  (in our 

experiments, 2  was set to 0.2). The value of )( tyx |zmp   in the local coordinate system YX   is 

transformed to the )( txy|zmp  in the world coordinate system YX  by the transform equation

xyyx mmf  )( . 

4.2. Combined Gas Source Probability Estimation 

The purpose of estimating combined gas source probability map is to guide the subsequent search 

of robots. To make the estimation results more reliable, all the separate probability maps from different 

spaces and different time are merged into one combined gas source probability map.  

When N robots have detected the gas and/or wind information in the time period ],[ ttt  , all the 

separate gas source probability distribution maps are integrated into a combined gas source probability 

map as follows.:  

where yx,x  denotes the central coordinates of the grid xym ; ix  denotes the location of the i-th robot; 

tiz ,  ),,2,1( Ni   denotes the detection event by the robot i in the time period ],[ ttt  . Equation (14) 

shows that the closer the detected point is to the estimated grid, the bigger weight the estimated gas 

source probability has in the process of fusion.  

Finally the combined gas source probability map is calculated by superposing the maps at different 

sampling times:  

where   denotes the decay coefficient of the history information. Through the iteration in time, an 

average distribution is obtained. 

5. Multi-Robot Search 

A particle swarm optimization (PSO) algorithm is used to coordinate multiple robots search for the 

gas source. The PSO uses the estimated separate and combined gas source probabilities instead of real 

values (gas concentration, for example) as the local and global fitness functions, respectively. Here we 

call it the Probability-fitness-function based Particle Swarm Optimization (P-PSO) algorithm.  

),|()|()|( ,11,   tyxIntEdgetyx zmpzpzmp   (12)  

),|()|( 2.,   tyxOuttyx zmpzmp   (13)  
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If all the searchers have not detected the gas after many attempts, robots move toward different 

directions to re-find the plume; otherwise, the robots move according to the searching algorithm based 

on the result of estimation. The basic formula of standard PSO [38] can be expressed as follows:  

where 1c  and 2c  are two constants; w  is the inertial weight; 1r  and 2 r  denote two random numbers; 

)(tiX  and )(tiV  stand for the coordinate and velocity of the i-th robot at the time t , respectively; 

)(tipos  and )(tgpos  represent the position of the optimal fitness function of the i-th robot and the 

position of global optimal fitness function, respectively. 

In the P-PSO, )(tipos  is the grid of the maximal gas-source posterior probability expectation of the 

i-th robot till the time t , and )(tgpos  represents the grid with the maximum combined gas-source 

posterior probability up to the time t . Here the estimated maximum probability of gas source in the 

local area is not adopted in P-PSO. The main reason is that we should consider the moving time of the 

detected puff. Based on the hypothesis of different moving times of the detected puff, we can get the 

gas probability distribution map shown in Figure 4(b,c) in a small area range. However, the accurate 

moving time is unknown in advance. Since the expected grid of probability distribution in small area 

  can denote the average position of the estimated gas source by this detection. The calculation 

formula of the expectation is expressed as follows: 

)( ,tixy|zmp , which can be calculated through Equations (11)–(13) and coordinate transformation, 

represents the estimated probability of the gas source being in xym  by the detection event of the robot i 

at the time t. 

In the proposed P-PSO, )(tipos  and )(tgpos  are represented as follows: 

The necessity of coordinating multi-robot to search gas source by P-PSO includes two aspects. 

First, the proposed P-PSO uses the estimation probability distribution as a clue for re-finding the 

plume, thus it could reduce the probability of losing the plume. Second, the real gas concentration 

fluctuates violently, but the probability distribution changes slowly, so the probability distribution 

instead of real concentration is adopted as the fitness function. 
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6. Simulation Results and Analysis 

6.1. Basic Simulation Assumptions 

The size of the robot is negligible compared with the large scale of the search space (100 m  100 m). 

It is assumed that each robot is equipped with one gas sensor and one wind sensor. The gas sensor has 

relatively quick response and recovery (further details are presented in Section 6.3). The wind sensor 

measures wind speeds from 0 to 10 m/s and wind directions from 0 to 359. Zero-mean Gaussian 

noise is added to the output of the wind sensor, and the variances of the wind speed and direction are 

set to 0.05 m/s and 1, respectively. The sampling frequency of the gas concentration and wind sensors 

is 10 Hz. In view of the influence of the recovery and response time of metal oxide semiconductor 

(MOS) sensors, the motion mode of ―run-stop-run-stop‖ is adopted here. Each robot stops at one 

location for 5 s to collect the gas and wind information, and then the robot runs for 1 s again according 

to the velocity and direction calculated by the algorithm. Each robot knows its current location and 

moves in a speed ranging from 0.2 m/s to 0.8 m/s. The initial and largest side length of   is set to be 

10 m. The smallest side length of   is 2 m. Gas concentration and wind information data recorded by 

the robots are sent to a workstation via wireless communication. The motion mode of each robot is 

planned by the algorithm running in the workstation. 

6.2. Time-Variant Large-Scale Advection—Diffusion Plume Model 

In Farrell’s model [29], a sequence of gas puffs is released at the source location, and each puff is 

composed of n filaments. The motion velocity of each filament is divided into three components: dV , 

mV , and aV , where each component is implemented by a distinct process. This decomposition of the 

velocity spectrum can be interpreted theoretically in terms of eddy scales. The effect of the smallest 

eddies (i.e., slow growth of the filaments) of the wind fluid flow process (modeled by dV ) is 

implemented as an increase in filament size and a change in shape. The term aV  represents the portion 

of the wind process with characteristic length much larger than the filaments. This portion of the wind 

process transports each filament as a body; therefore, the term aV  represents advection. The advection 

portion of the velocity is represented as a continuous (in time and space) but temporally and spatially 

varying function, so that a sequence of filaments released at the source will result in a sinuous trail of 

filaments leaving the source. The term mV  represents the intermediate range of scales that transports 

(i.e., stirs) the filaments within the body of the plume. 

The advection–diffusion model is composed of a large number of advected and dispersed filaments. 

Given the large number of filaments, the overall instantaneous concentration at ),,( zyxx  is the sum 

of the concentrations at that location contributed by each filament [29]:  

3
1

),(),(
cm

molecules
tCtC

N

i
i



 xx  (20)  

where N is the number of filaments currently being simulated. The concentration at location x  caused 

by the ith filament is modeled as [29]: 
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where Q represents the amount of gas released (i.e., molecules per filament), Ri is a parameter 

controlling the size of the ith filament, and pi (t) is the spatial extent of the ith filament. 

6.3. Gas Sensor Model 

MOS sensors are widely used for chemical plume tracing because of their low cost and small size. 

To simulate the real response and recovery characteristics of MOS sensors, a second-order sensor 

model is built here, with the response and recovery phases of the sensors both regarded as  

second-order inertia links. The two phases have different time constants, and therefore their design 

parameters are different. The left block in Figure 5 represents the switch module for the two phases, 

and the right two blocks represent inertia links of the two phases. When the output is greater than the 

input, the recovery phase is chosen; otherwise, the response phase is chosen. Without considering the 

noise, the transfer functions for the second-order inertia links in the response and recovery phases are 

expressed as Equations (23) and (24), respectively: 

)1)(1(
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  (23)  
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sy
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  (24)  

where )(sx  is the input and )(syres  and )(syrec  are the outputs of the sensor in the response and recovery 

phases, respectively. 

Figure 5. The MOS sensor model. 
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In our simulations, the discrete sensor models [Equations (25) and (26)] with additive Gaussian 

noise are used: 
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where )(knres  and )(knrec  are the Gaussian noise added in the sensor response and recovery phases, 

respectively. In our simulations, )(knres ~ ),0( 2
resN   and )(knrec ~ ),0( 2

recN  , where res  = rec  = 5 ppm. 

The average response time of the TGS-series MOS sensors is about 1.8 s, and the average recovery 

time is 20.7 s without a fan and 11.1 s with a fan [39]. In our simulations, the response and recovery 

times are set as 2 s and 11 s, respectively.  

6.4. Simulation Results 

The size of the simulation environment is 100 m  100 m. Each square grid of the environment is 

0.5 m  0.5 m. The rate of puff released by the source is 5 puffs/s. The plume-model update period is 

0.01 s. The wind speed range is between 0.5 and 2.5 m/s. The gas source is located at (20, 0) and the 

robots start at (90, –30), where the coordinate units are meters. The gas-source localization algorithm 

is demonstrated for two different plume environments, which we refer to as slightly wandering and 

medium-wandering. The extents of the two plumes in the vertical direction are 20, 60 (measured at  

x = 100 m), respectively.  

The CPSO (see Reference [27]) and P-PSO algorithms proposed in this paper are adopted by  

multi-robot for searching with the robot numbers 1, 3, 5, 7, 9, 11, 13 and 15. Each method was 

implemented 20 times for each of the slightly wandering, medium-wandering environments. The 

parameters for the CPSO were the same as those used in [27]. The time consumed by the robots for 

traveling from the start points to the vicinity of the gas source is considered as the performance metric. 

If none of the robots approached the gas source within 3000 s, the trial was taken as failure. 

The simulation results are illustrated in Figure 6, in which the abscissa is the number of robots and 

the vertical ordinate expresses the confidence interval of a search time with a 95% confidence level. 

The source declaration is not studied in this paper, so the search time in Figure 6(a) denotes that any 

robot enters into a circle 1O  with a radius of 
1

R  ( 5.01 R  m) and the center being actual gas source. To 

reduce the chance of random arrival, a more rigorous metric, i.e., convergence time was used. The 

convergence time means the time from any robot entering into 1O  to all the robots converging in a 

circle 2O  with a radius of 2R  ( 52 R  m) and the center being actual gas source. Figure 6(b) shows the 

simulation results of convergence time. It is taken as a success search if any robot enters the circle 1O , 

and the success times is shown in Table 1. In Figure 6 and Table 1, P-PSO-S and P-PSO-M indicate 

search results using the P-PSO-based method for the slightly wandering and medium-wandering plume 

environments, respectively. CPSO-S refers to the search results using the CPSO-based method for the 

slightly wandering plume environment. Within 3,000 s, few robots using the CPSO-based method for 

the medium-wandering plume environment (CPSO-M) approached the gas source, so their results are 

not shown in Figure 6. In addition, using one robot does not make sense for the CPSO algorithm, so in 

Figure 6 the searching time using one robot is not given, either. 

It takes more time to localize the gas source via the P-PSO algorithm in medium-wandering plume 

environments than that in the slightly wandering environments. The trails adopting CPSO method in 

slightly meandering plume environments consume longer time than both the conditions employing  
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P-PSO algorithms. That is, the P-PSO algorithm gains an advantage over the CPSO in respect of the 

searching efficiency. Furthermore, the searching time gets reduced for both algorithms as the number 

of robots increases. In contrast with the searching time, as Figure 6(b) shows, the convergence time in 

P-PSO trials increases with the increase in the number of robots. This phenomenon might be due to 

two reasons. Firstly, in the upwind region of the source, there is no gas plume, and in the downwind 

region of the source, the plume width is very narrow. Therefore, in the vicinity of the source, the 

chance of detecting plume is low and the possibility of missing the plume is high. Secondly, the 

algorithm of odor source declaration was not adopted in our research, so the robots which had 

approached the source continued searching and might move away from the source. Only all the robots 

approached the source simultaneously, was it taken as convergence. Thus, the larger the number of 

robots is, the harder to converge to the real gas source. 

Figure 6. (a) The search time of P-PSO and CPSO based gas source localization in  

large-scale plume environments; (b) The convergence time of P-PSO. 

 

    (a)       (b) 

Table 1. The times of robots successfully approaching the source out of 20 trails. 

Number of robots 1 3 5 7 9 11 13 15 

P-PSO-S 15 17 19 20 20 20 20 20 

CPSO-S — 2 5 12 13 17 17 19 

P-PSO-M 12 16 18 18 19 20 20 20 

CPSO-M — 0 0 1 1 2 2 4 

 

Table 1 shows the success times of P-PSO and CPSO algorithms. From Table 1 it is seen that the  

P-PSO algorithm manages to navigate the robots to approach the gas source at least 12 times (when 

only one robot was used) out of 20 trials. In the slightly meandering plume environments, the success 

times of CPSO obviously increases with an increase in the number of robots; in the medium-wandering 

plume environments, however, the success times of CPSO is very low on the whole, although it also 

increases as number of robots increases. 

Figure 7 shows the combined gas source probability maps derived from separate maps of 5 robots, 

which are recorded at six different times in one trail in the medium-wandering plume. The estimated 

highest probability peaks move from the start area to the location of the gas source during the robots’ 



Sensors 2011, 11                            

 

 

10433 

searching process. In Figure 7(e), one of the robots approaches the gas source for the first time. The 

robots continue to search, and finally converge to the gas source, as shown in Figure 7(f).  

Figure 7. The combined gas source probability maps estimated at six different times. 

 
(a) 100 s                                                                         (b) 300 s 

 

 
(c) 500 s                                                                         (d) 700 s 

 

 
(e) 1,000 s                                                                        (f) 1,500 s 

7. Real Robot Experiments 

The collective odor source estimation and search experiments were carried out in a centralized way. 

The sensed gas concentrations and airflow information were sent from each robot to a central 
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workstation, and the control commands were sent from the workstation to each robot, both via wireless 

communication. If all the robots approach the real source and converge in a specified area, the 

algorithm is stopped manually.  

7.1. Real-Robot Hardware Platform 

Four small olfaction robots, named MrCollie (Mobile Robots for Cooperative Odor-source 

LocaLization in Indoor Environments), were used in the experiments. The robots were designed and 

assembled by the Institute of Robotics and Autonomous Systems of Tianjin University in 2006. One of 

the MrCollie robots and its onboard sensors is illustrated in Figure 8. The robot is driven differentially 

by two wheels, one mounted on the left and the other one on the right. Two castors on the front and 

back sides are used for balance. The robot is equipped with a two-dimension ultrasonic anemometer 

(Windsonic, Gill), a gas sensor (TGS2620, Figaro, with a response time of 1.4 s and a recovery time of 

15.0 s), eight sonar sensors (L Series 40LPT16, Senscomp), eight infrared sensors (GP2D15, Sharp), 

and a wireless communication module (RPC module, Radiometrix). There is a unique location 

identifier at the top of each anemometer.  

Figure 8. The small mobile MrCollie robot and onboard sensors. 

 

7.2. Gas Sensor 

High sensitivity, long life-span and low cost make MOS sensors the most widely used gas sensors in 

mobile robots. TGS2620, a kind of MOS sensor produced by Figaro Engineering Inc., was used in our 

real-robot OSL experiments. TGS2620 consists of a silicon semiconductor layer formed on an alumina 

substrate of a sensing chip together with an integrated heater. In the presence of a detectable gas, the 

voltage across the heater causes an oxygen exchange between the volatile gas molecules and the metal 

http://www.senscomp.com/specs/40lpt16%20%20spec.pdf
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coating material. Electrons are attracted to the loaded oxygen and result in decreases in sensor 

conductivity. A simple electrical circuit can convert the change in conductivity to an output signal 

which corresponds to the gas concentration [1,8]. 

The relationship between the gas concentration and the sensor resistance is expressed as follows [20]: 

b
s CaRR  )1(0  (27)  

where sR  and 0R  represent the sensor resistances in gas and air, respectively; C means the gas 

concentration; a  and b  are constants. A signal processing circuit converts the change in resistance to 

output voltage outV : 

b
out CaVV )1(0   (28)  

where 0V  is the output voltage when 0C . 

The calibration process is described as follows: a certain amount of liquid ethanol was injected into 

a flask, and a fan was employed to speed up the evaporation. The amount of ethanol liquid was 

calculated according to the desired concentration of the ethanol vapor and the volume of the flask. The 

vapor was sucked by an air pump into a chamber and contacted with the gas sensor therein. The sensor 

outputs were recorded after the readings got steady. The calibration device is given in Figure 9. 

Through curve fitting, the constants a  and b  in Equation (28) could be obtained.  

Figure 9. The device for gas sensor calibration. A TGS2620 gas sensor was mounted 

inside the air chamber. 

Pipe

Fan

Flask

Air chamber Air pump

 

7.3. Robot Localization 

An overhead charge coupled device (CCD) camera sent the image of each robot’s location identifier 

to the workstation, and the position and orientation of each robot were extracted by the workstation via 

a simple pattern recognition algorithm.  

The location identifier is shown in Figure 10. The central black spot indicates the position of the 

robot, and the straight line joining the spot and the front circular arc (120°) determines the orientation. 
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In addition, the three sectors (Sectors I, II and III) beneath the central spot are used to distinguish the 

serial number of the robot. If a sector is filled with black, it represents 1; else, it represents 0. Thus, up 

to seven serial numbers (001~111) can be distinguished. The white margin surrounding the black areas 

reduces the chance of adhesion to the cluttered background and the robot body. 

Figure 10. The location identifier labeled at the top of the robot. 

Front arc

SectorⅠ

SectorⅡ

Sector Ⅲ

Orientation of 
robot

Central 
spot

 

The experimental scene is captured by the overhead CCD camera and sent to the workstation. Then 

the workstation can recognize the location identifier by a series of binarization, filtering and pattern 

recognition process. Finally, the position, orientation and serial numbers of the robots are obtained. 

Sometimes the CCD camera failed to localize the robots, so dead reckoning was also used for correction.  

7.4. Obstacle Avoidance between Robots 

A traffic-rule based method was adopted to avoid robot collisions. The multiple robots are 

coordinated by seven simple rules. To apply these rules, the surrounding area of each robot is divided 

into five zones, see Figure 11. The bold arrow represents the orientation of the robot. Zone II stands for 

the immediate front space of the robot, while zone I the farther ahead. Zones III and IV indicate the left 

and the right space, respectively. The rest area belongs to the zone V. Each robot only responds to the 

nearest robot. For robot i , the nearest obstacle detected is assumed to be robot j , and the vectors from 

their current positions to their target points are denoted by ir


 and jr


, respectively.  

Figure 11. The surrounding area division for collision avoidance. 

I

II
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The traffic rules applied by robot i  are listed below:  

(1) If the nearest robot j  appears in zone I, robot i  turns right; 

(2) If robot j  appears in zone II, robot i  stops; 

(3) If robot j  appears in zone III, and 0 ji rr
 , then robot i  moves right;  

(4) If robot j  appears in zone III, and 0 ji rr
 , then robot i  turns left;  

(5) If robot j  appears in zone IV, and 0 ji rr
 , then robot i  moves left; 

(6) If robot j  appears in zone IV, and 0 ji rr
 , then robot i  turns right; 

(7) If robot j  appears in zone V, then robot i  does not respond. 

The multi-robot system can realize basic collision avoiding functions by applying the above traffic 

rules, but the radii and angles of the five zones need to be adjusted in advance.  

7.5. Experiment Arena 

Figure 12 shows the experiment setting and coordinate framework. A humidifier filled with liquid 

ethanol was used as the odor source. The release rate was 25.35 mg/s. It was placed in the vicinity of 

the upper left door from which the wind came. The resultant odor plume spread diagonally from the 

odor source in the upper left corner to the opposite corner where the wind blew out through the  

other door.  

Figure 12. Real-robot experiment arena as seen from the overhead camera. 

 

 

Multi-robot CPT experiments were conducted in the laboratory of the Institute of Robotics and 

Autonomous System at Tianjin University. The laboratory had two doors and two windows. The area 

of the lab was 5.3 m  5.0 m (the detailed dimensions can be seen in Figure 13). There were computer 

desks and chairs along the four sides of the laboratory. An overhead CCD video camera (3.6 m off the 

ground) was used to localize the robots and record the experiment processes. The coverage area of the 

CCD camera was about 4.8 m  4.8 m. 
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7.6. Airflow Field Measurement 

The robots moved in two different airflow fields, i.e., the artificial wind produced by an electric fan 

placed 1.5 m from the source and natural wind that blew when the two doors were open (the windows 

were closed). Before the gas-source localization experiments, the two airflow fields were measured 

and analyzed using nine two-dimension ultrasonic anemometers (Windsonic, Gill). The average wind 

speed and direction measured in the artificial and natural airflow fields by anemometer over 300 s are 

shown in Figure 13, where the length and direction of each blue arrow represent the average wind 

speed and direction, respectively. 

Figure 13. The average wind speed and direction of each anemometer over 300 s.  

(a) Artificial wind; (b) Natural wind. 
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(a)       (b) 

As Figure 13 shows, the flow directions in the lower-left corner of artificial and natural flow fields 

both changed greatly because of the indoor boundary, so that a big and stable eddy was formed (see 

Figure 13, the red circle with arrow). The flow fields were not homogeneous in the big eddy region or 

the room boundary, the assumption of estimating the separate gas source probability presented in 

Section 2 does not fit here. In other region of the room, the flow directions had little change in a small 

area, so we could consider the flow fields in other regions as approximate homogeneous. 

7.7. Experiment Results 

In the experiments, the robots moved in a run-stop-run-stop mode (running for 5 s and stopping  

for 5 s). The motion speed of each robot was set to 2.5 cm/s–~4 cm/s. Both the airflow and gas 

concentration were sampled five times during the 5-second-stop.  

The robots searched in two different indoor environments, one is artificial airflow, and the other is 

natural airflow. For each airflow environment, the robots started from the right side and the lower right 

corner of the search area. Thus, there are four different experimental situations. The gas source 
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localization experiments were run 40 times in total, 10 trials for each situation. Before each new 

experiment was run, the doors and windows were opened till the detected gas concentration was less 

than 5 ppm. If the three robots did not approach the gas source (i.e., did not come within 50 cm) within 

15 min, it was thought the gas source localization processes failed. 

Figure 14 presents two of the collective OSL and search processes when the three robots started 

from the lower right corner. The grids by which the robots passed and in which the measured 

concentration was higher than a threshold (the initial value was 50 ppm, and was increased in 

proportion with the maximum concentration) were marked with dashed lines, with darker lines 

indicating higher concentrations. The red, blue and orange curves indicate the trajectories of the three 

robots, respectively. To find a plume, the robots moved toward three different directions (30 between 

adjacent directions) at the beginning. The initial coordinates of the blue robot were (200, 200), with 

centimeters as the coordinate units. When the gas concentration detected by any robot was higher than 

50 ppm, the gas plume was thought to be found and the robots moved on the basis of the proposed 

estimation and searching algorithm. When the distance between each robot and the gas source was less 

than 50 cm, the searching was stopped manually. The tracing trajectories in natural wind [Figure 14(b)] 

are more tortuous than that in artificial wind [Figure 14(a)], indicating that it takes more time to search in 

natural wind environment. That is, it is more difficult to localize the odor source in natural airflow field. 

Figure 14. Two of recorded collective OSL and search processes, the robots started from 

the lower right corner. (a) Artificial wind (the total search time was 413 s); (b) Natural 

wind (the total search time was 862 s). 

 

(a)      (b) 

 

The experimental results are presented in Table 2, in which ―RS‖ and ―LR‖ indicate starting at the 

right side and lower right corner, respectively; and ―AW‖ and ―NW‖ indicate the artificial and natural 

winds, respectively. The performance is evaluated by avT  and aR , where avT  means the average search 

time of 10 trials, and aR  indicates the success times of approaching the source out of 10 trials. Here it 

should be noted that in the real-robot experiments, the success means that all the three robots converge 

near the source, and the search time is calculated from the beginning of one trial to all the three robots 

converge near the source. 
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Table 2. Experimental results for plume finding/tracking experiments. 

 RS-AW RS-NW LR-AW LR-NW 

avT (s) 309 493 521 709 

aR  10 9 9 8 

From the experimental results it can be found that the average search time for the artificial wind 

fields is shorter than that for the natural wind fields. By analyzing the experiment processes and results, 

we think this is due to at least two reasons. First, the variation in the direction of the natural wind was 

greater than that of the artificial wind. Second, in the natural wind field, sometimes there existed  

long-duration weak airflows (less than 5 cm/s, which the anemometer could not detect reliably). The 

reasons that the search time from the right side was shorter than that from the lower right corner might 

be explained from two aspects. First, the distance between the robots and the real gas source is shorter 

for the right-side starting location. Second, the robots starting from the lower right corner were apt to 

fall into the big eddy field, which resulted in useless search for a period of time, so the total time 

increased.  

As mentioned above, the big eddy area (see the red circle in Figure 13) is one of main reasons that 

caused long search times or even search failures. The gas molecules accumulated and a local 

concentration maximum was formed in the big eddy area. To keep the robots from falling into this 

area, the detection threshold of sensor was set to be increased in proportion with the maximum 

concentration during the searching process. In addition, if the posterior probability of gas source 

estimated by other robots was higher than that estimated by the robot fell into the big eddy area, or the 

threshold of gas sensor in that time is already higher than the concentration detected in the big eddy 

area, the robot could escape from the eddy area and finally the gas source could be found; otherwise, 

all the robots could entered the big eddy area and in the limited time period all the robots could not 

escape. Anyway, the multi-robot search, instead of single robot, combining the gas source estimation 

strategy could increase the robustness of the system and reduce the probability of falling into local area. 

Although one run failed owing to the big eddy, the other nineteen experiment runs for the artificial 

airflow field succeeded. For the natural airflow case, two failures (one for RS-NW and one for  

LR-NW) were because of long-duration weak airflow (less than 5 cm/s, which the anemometer could 

not detect reliably), one failure (for LR-NW) was due to the big eddy. 

8. Conclusions 

Simulation results using time-varying and large-scale advection–diffusion plume models 

demonstrate the feasibility and robustness of the proposed odor source localization method via  

multi-robot search and estimation. Compared with the CPSO based method, the plume-tracking 

strategy based on the estimation-searching frame proposed in this paper can find the single odor source 

in less time with a higher success rate. For slow-changing airflow environments (slightly wandering 

large-scale advection–diffusion plumes, for example), relatively few robots using the proposed  

plume-tracking strategy can successfully approach the odor source, and the use of more robots does 

not noticeably decrease the search time. It takes longer to search in the medium-wandering plume 

environment using the P-PSO-based method. Therefore, the P-PSO-based plume-tracking method has 



Sensors 2011, 11                            

 

 

10441 

good robustness regarding different plume environments when the number of robots is sufficient. The 

proposed multiple-robot based collective gas-source localization method is also demonstrated with real 

robots experiments in indoor time-variant airflow environments. Except the extreme airflow conditions 

such as the long-period weak airflow and big eddy areas, the proposed method works well in both the 

natural and artificial airflow fields. Limited by our experimental infrastructure, the proposed OSL 

strategy was only evaluated in a small-scale indoor environment. If the infrastructure is improved, the 

strategy might be extended to large-scale scenarios, even outdoor airflow environments.  

The feasibility and robustness of the proposed multi-robot gas source localization method comes 

from two aspects. First, the tradeoff between exploration and exploitation is achieved in the proposed 

gas source localization strategy. The estimation process exploits the detected information to guide 

multi-robot search, while the multi-robot search updates the estimation result by exploring more areas. 

Second, the gas source probability estimated using both the gas and airflow information, instead of 

simple gas concentration and wind direction, is utilized.  

The proposed P-PSO method might fail in the region where obstacles or boundaries (e.g., wall) 

exist because the hypotheses of homogeneity and isotropy are false. How to estimate gas source 

probability in such situations will be our next research.  
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