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Abstract: Recently, the range of available Radio Frequency Identification (RFID) tags has 

been widened to include smart RFID tags which can monitor their varying surroundings. 

One of the most important factors for better performance of smart RFID system is accurate 

measurement from various sensors. In the multi-sensing environment, some noisy signals 

are obtained because of the changing surroundings. We propose in this paper an improved 

Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter 

is determined by a measurement and system noise covariance which are usually called the 

R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is 

one of the most important design factors for better performance of the Kalman filter. For 

this reason, we proposed an improved Kalman filter to advance an ability of noise 

reduction of the Kalman filter. The measurement noise covariance was only considered 

because the system architecture is simple and can be adjusted by the neural network. With 

this method, more accurate data can be obtained with smart RFID tags. In a simulation the 

proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error 

(MSE) than the conventional Kalman filter method for a temperature sensor, humidity 

sensor and oxygen sensor, respectively. The performance of the proposed method was also 

verified with some experiments. 
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1. Introduction 

In the field of Radio Frequency Identification (RFID) technology, a tremendous variety of novel 

RFID sensor tags has emerged. The RFID sensor tags also known as smart RFID tags are able to 

measure and compute data from the environmental such as temperature, humidity, oxygen 

concentration, pressure, tampering, shock, etc. These three functions of intelligent RFID tags: sensing, 

computation, and communication, can be combined into a single and small device. The great needs for 

new sensing solutions is further highlighted by the fact that legislation, regulatory and quality demands 

are setting requirements for certain branches such as pharmaceuticals, explosives, transportation of 

dangerous goods, foods, etc. Cold chain compliance is a key requirement for pharmaceuticals, hospital 

transfusions, clinical trials, foods and perishable items. RFID can be used to fight counterfeiting and 

can provide the electrical pedigree of various products [1]. As modern RFID systems become 

incredibly complex and demand for smart RFIDs is increasing, and RFID tag monitoring systems 

based on a single sensor are often unable to meet the new societal needs. Smart RFID tags combined 

with multi sensors and attached on a box or package of diverse products can provide integrated 

information to managers and customers by combining various sensor data from its sensing materials. 

For example, integrated data from temperature, humidity and oxygen sensors from an RFID tag 

attached on food or vegetable packaging can provide the conditions of products and can protect people 

from consuming spoiled food. Until now, the smart RFID tags with single sensors provided this 

integrated information by using several tags. However, if various sensors are integrated into a single 

RFID tag, low-cost, -power and -area can be realized to implement the RFID system [2]. 

Multi-sensors such as resistive, capacitive and inductive type sensors can be combined into smart 

RFID tags. These diverse sensor data can represent the freshness and vitality of living organism. In a 

multi-sensing RFID tag environment, the tags can obtain data of multi-sensors using both just one port 

or several ports. In a multi-sensor system that correlates noises caused by multiple sensors, accuracy of 

sensor data is one of the most important factors to evaluate the monitoring system. The Kalman filter 

has been widely applied to solve the noise problem of measurement systems [3]. The Kalman filter can 

optimally estimate the states of the model with known parameters. However, variance of the 

measurement noise which should be evaluated from empirical noise data is hard to derive in most 

actual measurement environments. If the statistics of the measurement noise are unknown, the Kalman 

filter cannot guarantee optimality and freedom from divergence problems [4]. In order to solve this 

problem, we propose an adaptive filtering method of colored noise based on the Kalman filter 

employing neural network. The neural network of this method can evaluate the states of the plant even 

without actual measurement noise statistics. Computed statistical noise variables are used as an input 

of the neural network. Certain noise covariance of each sensor from a lot of measured data is applied to 

the target value. The improved method presented in this paper is applied to reduce measurement noise 

of empirical sensor data from a multi-sensing environment. Various simulation and experimental 
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results demonstrate the possibility and good performance of the proposed method. This paper is 

organized as follows: in Section 2, a multi-sensing environment which causes disturbances and sensor 

data noises is described. Section 3 represents common the Kalman filter method and the proposed 

method using a neural network. Section 4 shows several simulation results to compare the performance 

of common the Kalman filter method and the proposed method. Section 5 gives the experimental 

results of the improved Kalman filter on an experimental system using a TMS320F28X EVM to 

evaluate the performance. Some concluding remarks are given in Section 6. 

2. Multi-Sensing Environment 

When a system designer organizes a multi sensor system, each sensor may not work properly 

because of some factors that disturb their work. Those factors are noise and interference, which are 

caused by the measurement system in a multi-sensing environment. The multi-sensing RFID system 

used was composed of a EVB90129 by Melexis Microeletronic Systems and a sensor board combined 

with a temperature sensor, humidity sensor and oxygen sensor as shown in Figure 1. The EVB 90129 

is an RFID sensing platform and it was read by a RFID reader connected with a PC through a USB 

port to measure sensor data and plot figures. Figure 2 shows graphs of the empirical data obtained 

from a single sensor and each sensor in a multi-sensing environment. Each data set from the single 

sensor and the multi-sensing environment was measured under the same condition in the same 

surroundings. 

Figure 1. Measurement system configuration based on EVB 90129. (a) Picture.  

(b) Block diagram. 

 
(a) 

 
(b) 
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Figure 2(a–c) show measurement data obtained from the temperature sensor, humidity sensor and 

oxygen sensor, respectively. The solid line of Figure 2 represents single measurement data, and the 

dotted line shows the measurement data in the multi-sensing environment.  

Figure 2. Compare sensor data between the single (solid line) and multi-sensing 

environment (dotted line). (a) Temperature sensor. (b) Humidity sensor. (c) Oxygen sensor. 

 
(a) 

 
(b) 

 
(c) 
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The measurement data of the multi-sensing environment has more noise and disturbances than  

the single measurement as shown in Figure 2. The multi-sensing environment measurement system 

cannot obtain accurate data from each sensor because several sensors are connected to a single device. 

Also, the oxygen sensor presents more sensor data measurement noise than the other two sensors data 

[see Figure 2(c)]. Therefore, a novel noise reduction technique was required for a smart RFID tag 

multi-sensing environment to obtain accurate data and information. The measurement noise variance 

of each sensor was calculated from the above data to use as a target value for the neural network. 

3. Improved Kalman Filter 

The Kalman filter requires that all the plant dynamics and noise processes be known exactly and 

when the noise processes are zero it means there is white noise. If the theoretical behavior of a filter 

and its actual behavior are not matched, a divergence problem will occur. When the error covariance is 

computed from the actual error in the measurement, satisfactory results are obtained without 

divergence. Noise covariance in the Kalman filter acts as in the role of controlling the bandwidth and 

modulates the Kalman gain. Abnormal choice of noise covariance is one of the most important factors 

which make Kalman filters diverge. The purpose of the proposed method is the estimation of the noise 

covariance by using neural networks to prevent divergence of Kalman filter. 

3.1. The Kalman Filter  

The Kalman Filter is an algorithm which makes optimal use of imprecise data in a linear system 

with noises to continuously update the best estimate of the system’s current state. Kalman filter theory 

is based on a state-space approach in which a state equation models the dynamics of the signal 

generation process and an observation equation models the noisy and distorted observation signal. 

The random variables ݓ௞ and ݒ௞ represent the process and measurement noise respectively. They 

are assumed to be independent of each other, white, and with normal probability distributions [5,6]: ݔ௞ାଵ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ௞ݓ ௞ݖ(1) ൌ ௞ݔܪ ൅ ௞ݒ (2)

The matrix A in the difference Equation (1) relates the state at the previous time step k−1 to the state 

at the current step k, in the absence of either a driving function or process noise. The matrix B relates 

the optional control input. The matrix H in the measurement Equation (2) relates the state to the 

measurement ݖ௞: ܲ(ݓ)~ܰ(0, ܳ) ,0)ܰ~(ݒ)ܲ(3) ܴ) (4)

In practice, Q represents the process noise covariance and R is the measurement noise covariance. 

In deriving the Kalman filter formulation, we begin with the goal of finding an equation that computes 

an a posteriori state estimate as a linear combination of an a priori estimate and a weighted difference 

between an actual measurement and a measurement prediction [5,7]. 
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The time update equations are responsible for projecting forward (in time) the current state and 

error covariance estimates to obtain the a priori estimates for the next time step. The measurement 

update equations are responsible for the feedback, i.e., for incorporating a new measurement into the  

a priori estimate to obtain an improved a posteriori estimate: ݔො௞/௞ ൌ ො௞/௞ିଵݔ ൅ ௞ݖ௞ሼܭ െ ො௞/௞ିଵሽݔܪ (5)

We define ݔො௞/௞ିଵto be our a priori estimate at step k from the previous prediction of ݔ௞, and ݔො௞/௞to 

be our a posteriori state estimate at step k given measurementݔ௞. ݖ௞ is the noisy observation vector. ݔܪො௞/௞ିଵ is a presumption of the pre-measurement value. ݔො௞/௞ can be expressed as in Equation (6): ݔො௞/௞ିଵ ൌ ො௞ିଵ/௞ିଵݔܣ ൅ ௞ݑܤ (6)

The Kalman gain, ܭ௞, is selected to minimize the a posteriori state estimate by incorporating the 
measurement. ܧ൛݁௞/௞݁௞/௞்ൟ is the equation for the Kalman filter, the goal of this equation is finding a 

Kalman gain, ܭ௞. E is an operator of expectation value. Equation (7) is the equation that expresses the 

a posteriori estimate errors: ݁௞/௞ ൌ ௞ݔ െ ො௞/௞ݔ (7)

Derivation of the equation of estimate error covariance to compute the Kalman gain, ܭ௞ , is 

presented by Equation (8): ܧ൛݁௞/௞݁௞/௞்ൟ ൌ ௞ܲ/௞ିଵ ൅ ܪ௞ܭ ௞ܲ/௞ିଵܭ்ܪ௞் ൅ ௞்െܭ௞ܴܭ ௞ܲ/௞ିଵܭ்ܪ௞் െ ܪ௞ܭ ௞ܲ/௞ିଵ (8)

The above expected value is equivalent to minimizing the trace of the a posteriori estimate 

covariance matrix. The trace is minimized when the matrix derivative is zero, as in Equation (9). 

Solving Equation (9) for ܭ௞ yields the Kalman gain as shown in Equation (10). This gain is the optimal 

Kalman gain ܭ௞: ߲ܧ൛݁௞/௞݁௞/௞݁௞/௞்ൟ߲ܭ௞ ൌ ܪ2 ௞ܲ/௞ିଵܭ்ܪ௞் ൅ ௞்ܭ2ܴ െ ܪ ௞ܲ/௞ିଵ െ ൛ ௞ܲ/௞ିଵ்ܪൟ் ൌ 0 (9)

௞ܭ ൌ ௞ܲ/௞ିଵ்ܪ൛ܪ ௞ܲ/௞ିଵ்ܪ ൅ ܴൟିଵ
(10)

The a posteriori estimate covariance matrix ௞ܲ/௞ is presented in Equation (11):  P୩/୩ ൌ E൛e୩/୩e୩/୩Tൟ ൌ (I െ K୩H)P୩/୩ିଵ (11)
The a priori estimate covariance matrix of the next step from the Equation (12) step is shown as: 

௞ܲାଵ/௞ିଵ ൌ ൛݁௞ାଵ/௞ିଵ݁௞ାଵ/௞ିଵ்ൟܧ ൌ ܣ ௞ܲ/௞்ܣ ൅ ܳ (12) 

The complete operation of the Kalman filter is described in Figure 3 [8]. The Kalman filter 

estimates a process by using a form of feedback control, in other words the filter estimates the process 

state at same time and then obtains feedback. In common parlance, the equations for the Kalman filter 

can be divided into two groups: time update equations and measurement update equations. The time 

update equations can also be thought of as predictor equations, while the measurement update 

equations can be thought of as corrector equations [9]. Indeed the final estimation algorithm resembles 

that of a predictor-correct or algorithm for solving numerical problems as shown in Figure 3. 
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Figure 3. The operation of the Kalman filter.  

 

 

3.2. Improved Kalman Filter Using a Neural Network 

The measurement equation from the system state equation is shown in Equation (13): ݖ௞ ൌ ௞ݔܪ ൅ ௞ (13)ݒ

When we develop the Equation (13) in the measurement noise ݒ௞ aspects, the Equation results in 

Equation (14): ݒ௞ ൌ ௞ݖ െ ௞ (14)ݔܪ

Equation (14) means an error between measurement value and state value. Theoretical estimate 

value of error covariance is yielded by deriving Equation (15): ෠ܴ௞ ൌ 1ܰ െ 1 ෍ሾݒ௜ െ ௜ݒҧሿ்ሾݒ െ ҧሿேିଵݒ
௜ୀ଴  (15)
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 :ҧ is average of v , and it could be presented as Equation (16)ݒ

ҧݒ ൌ 1ܰ ෍ ௜ேିଵݒ
௜ୀ଴  (16)

The discrepancy between the predicted measurement and the actual measurement R is called the 

measurement residual. A residual of zero means that the two are in complete agreement. We use the 

residual as a performance index of a multi-layer neural network model with the mean-square error 

estimator [9]: ݁ோ௞ ൌ ܴ௞ ൅ ෠ܴ௞ (17)

A neural network can obtain the optimal noise covariance estimate ෠ܴ௞  by learning. The 

measurement noiseݒ௞, could be used as input values of neural network. Using the measurement noise 

covariance ܴ௞ is possible to substitute for the output of the neural network. In the proposed algorithm, 

the structure of the neural network is shown as Figure 4. 

Figure 4. Neural network for evaluating measurement noise covariance. 
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In the proposed algorithm, the structure of the neural network is a multi-layer neural network 

model. We used the error back propagation algorithm (EBA) [9]. To minimize the performance index, 

the EBA controls the strength of the links of each layer. The performance index selects the mean 

square error as the covariance error value: ܨ(݁) ൌ ሾሼܴ௞ܧ െ ෠ܴ௞ሽ்ሼܴ௞ െ ෠ܴ௞ሽሿ (18)

In Equation (18), ෠ܴ௞ means a target value vector. The term ܴ௞ is the output vector of the neural 

network and E is an operator of expected value. Firstly, performing EBA is disseminated an input 

signal to the neural network and could be presented as in Equation (19): ܽ଴ ൌ ,௞ݒ ܽଵ ൌ ଵ݂( ଵܹܽ଴ ൅ ܾଵ), ܴ௞ ൌ ܽଶ  (19)

In this case, ݒ௞ is an input vector of the neural network, ܽ଴ is the output vector of the input-layer in 

the neural network, and ܽଵ is the output vector of a hidden-layer neuron. ଵܹis a weight-sum vector, 
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and ܾଵ  is the bias vector of the hidden-layer output vector. ܽଶ  indicates the output vector of the  

output-layer in the neural network. ܴ௞ is the output value of the neural network, and ଵ݂ is a nonlinear 

function of the hidden-layer neurons. The hidden-layer function is a log-sigmoid function and could be 

expressed as in Equation (20): ݂(݊) ൌ 11 ൅ ݁ି௡ (20)

In this case, n is pure linear input value. The original network utilized multiple layers of weight-sum 

units of the type ܽଵ ൌ ଵ݂( ଵܹܽ଴ ൅ ܾଵ), where f was a sigmoid function or logistic function such as used 

in logistic regression. Training was done by a form of stochastic gradient descent. The use of the chain 

rule of differentiation in deriving the appropriate parameter updates results in an algorithm that seems 

to “back propagate errors”, hence the nomenclature. However it is essentially a form of gradient 

descent. Determining the optimal parameters in a model of this type is not trivial, and local numerical 

optimization methods such as gradient descent can be sensitive to initialization because of the presence 

of local minima of the training criterion: ݏଵ ൌ െ2ܨሶଵ(݊ଵ)( ଶܹ)்ݏଶ, ଶݏ ൌ െ2ܨሶଶ(݊ଶ)( ෠ܴ௞ െ ܴ௞) (21)

The term ݏଶ is the sensitivity units of the output layer neuron, and the ݊ଶ is a linear output vector of 

the output layer neurons. The term ෠ܴ௞ is a target value vector, and ܴ௞ is the output vector of the neural 

network. The term ܨሶଶ(݊ଶ) is a derivative of the nonlinear function of the output layer neuron. ݏଵ is  

a sensitivity unit of the input layer neuron, and ܨሶଵ(݊ଵ) is a derivative of the input layer neuron.  

Lastly, weighted value and bias are updated by the steepest descent rule. It could be formulated as 

Equation (22): 

௠ܹ(݇ ൅ 1) ൌ ௠ܹ(݇) െ ,்௠(ܽ௠ିଵ)ݏߟ ܾ௠(݇ ൅ 1) ൌ ܾ௠(݇) െ ௠ (22)ݏߟ

௠ܹ(݇ ൅ 1) is a weight-sum vector of the nest state m-layer neuron. ௠ܹ(݇) is the current state 

weight-sum vector and the ܾ௠(݇ ൅ 1) is a bias vector about the m layer neuron in the following state. ܾ௠(݇) is a bias vector of current state, and η  is the learning rate. The learning rate is a weighted factor 

which determines the degree of progress. 

4. Simulation Results 

In order to evaluate the effectiveness of the proposed method, and using ther measurement system 

represented in Figure 1, we conducted some simulations of the Kalman filter and the improved method 

with each sensor data of the multi-sensing environment. The common Kalman filter can be used to 

reduce the noise in a simple system [10]. Therefore, we can derive the system equation for simulations 

and experiments from Equation (1) represented by:  ݔ௞ାଵ ൌ ݖ௞ (23)ݔ ൌ ௞ݔ ൅ ௞ݒ (24)
Since the measurement system described in Figure 1(b) is a simple measurement system, there is no 

system noise as we can see in the literature. 
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4.1. Simulations for the Kalman Filter 

To compare the results of the common Kalman method and the improved Kalman filter, in this 

section simulations were examined with an assumed measurement noise covariance. The Kalman filter 

can provide optimal solutions if the system model is correctly defined and the noise statistics for the 

measurement and system are completely known [7]. Figure 5 shows the simulation results with 

assumed measurement noise covariance 1 of the Kalman filter to evaluate the performance of the 

common Kalman filter. These results show that the Kalman filter method is good for reducing the 

measurement noise. The previous method of determining the measurement noise covariance (R) for the 

Kalman filter depends on the analysis of empirical data from each sensor and then modifying them, 

which can be described as tuning the Kalman filter. Since there are no perfect sensors, their 

performance varies with time and their changing environment. This causes uncertainty in the 

previously tuned Kalman filter method, which has a considerable impact on the performance of the 

Kalman filter [11].  

The R value of the Kalman filter influences the weight that the filter applies between the existing 

process information and the latest measurements. Mismatch in any of them may result in the filter 

being suboptimal or even cause divergence, as shown in Figure 6 [7], which shows measured data 

from each sensor in a multi-sensing environment and the filtered data with an assumed measurement 

noise covariance of 10. 

Figure 5. Simulation results of common Kalman filter. (a) Temperature sensor.  

(b) Humidity sensor. (c) Oxygen sensor. 

 
(a) 

 
(b) 
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Figure 5. Cont. 

 
(c) 

 

The measurement noise covariance R is a most significant factor when designing a Kalman filter. 

As shown in Figure 6, the Kalman filter can diverge with an erroneous selection of R. 

Figure 6. Simulation results of the Kalman filter with divergence condition. (a) Temperature 

sensor. (b) Humidity sensor. (c) Oxygen sensor. 

 
(a) 

 
(b) 
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Figure 6. Cont. 

 
(c) 

4.2. Simulations for Improved Kalman Filter 

In order to evaluate the performance of the proposed method, we also conducted some simulations 

of a Kalman filter with computed measurement noise covariance using a neural network in this section. 

A complex and large neural network performs better calculations, but its calculation time is long.  

In the simulation of the proposed method, to decrease the calculation time the structure of the neural 

network is composed of a simple three-layer feed forward neural network with one hidden layer which 

is the most widely spread architecture type. The input layer, hidden layer and output layer had 3, 5  

and 3 neurons, respectively. The activation function of the hidden nodes is chosen to be a sigmoid type 

function and the output nodes are linear. The design factor of a neural network can change the 

performance of the system and can be determined through trial and error. In this simulation, the 

learning rate and initial bias of neural network were set at 0.01 and 1, respectively. A random value 

between −1 and 1 is employed as the initial weight which was computed by a trial and error method. 

The input vector of the neural network is determined by the three previous measurement values. 

Variances of 0.01625124 at the temperature sensor, 0.00166088 at the humidity sensor and 

0.00165041 at the oxygen sensor were used as target values of each neural network, respectively. The 

measurement noise variance of each sensor was calculated from several measurement data which was 

varied by the sensing environment. 

As shown in Figure 7, the simulation results of improved Kalman filter indicate better performance 

than the previous method. The quality of the estimator can be assessed by the Mean Squared Error 

(MSE) in terms of its variation and un-biasedness. The MSE of a Kalman estimator ߠ෠ referring to the 

estimated parameter is defined as: ܧܵܯ൫ߠ෠൯ ൌ ෠ߠ)ሾܧ െ ଶሿ (25)(ߠ

The MSE between measured data and a posteri estimated data was represented in Table 1. The 

improved method also represents the least MSE value. The simulation results of the Kalman method 

under divergence conditions which has an R value of 10 has a larger MSE value among the three cases. 

We can verify that the proposed method has better performance in reducing noise in a multi-sensing 

environment. 
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Figure 7. Simulation results of the improved Kalman filter. (a) Temperature sensor.  

(b) Humidity sensor. (c) Oxygen sensor. 

 
(a) 

 
(b) 

 
(c) 

Table 1. MSE between measured data and the a posteri estimated data. 

Method Temperature Sensor Humidity Sensor Oxygen Sensor 

Common Kalman method 6.1445 × 10−4 (mV2) 6.1453 × 10−4 (mV2) 0.0012 (mV2) 

Kalman method in  
divergence condition 

0.0013 (mV2) 0.0011 (mV2) 0.0063 (mV2) 

Improved Kalman method 3.6812 × 10−4 (mV2) 2.4310 × 10−4 (mV2) 0.00015 (mV2) 
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5. Experimental Results 

The experiments were conducted with an EVB90129 connected with a TMS320F28X EVM with a 

DSPF2812 microprocessor to evaluate the proposed method in the implemented RFID sensor tag. The 

temperature, humidity and oxygen sensors are connected to the ADC port on the EVM board. A Serial 

Peripheral Interface (SPI) was used to interlock between EVB90129 and the EVM. The data from the 

multi-sensing environment is obtained from the organized module. In the EVM, the sensor data was 

filtered by the improved Kalman filter implemented on the EVM. The filtered data is transmitted to the 

EVB90129 and sent to a RFID reader. Figure 8 shows the measurement system for the experiments in 

a multi-sensing environment. The structure of the neural network was the same as in the simulation 

condition in those experiments. 

Figure 8. Configuration of the system for experiments. 

 
 

The sensor data from the designed module was sent into the EVM. The improved Kalman filter 

which has simple neural network structure to evaluate the measurement noise covariance was realized 

in the EVM. Previous measurement data was an input of the neural network and the target value is the 

same as the simulation conditions. Figure 9 shows the experimental results with the system. The 

improved method performed was in the experimental set up. However, as shown in Table 2, the MSE 

between the measured data and the a posteri estimated data was larger than in the simulation results 

because of the changing actual sensing environment. 

Table 2. MSE between measured data and the a posteri estimated data. 

Temperature Sensor Humidity Sensor Oxygen Sensor 

4.4856 × 10−4 (mV2) 3.6250 × 10−4 (mV2) 0.00018 (mV2) 
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Figure 9. Experimental results of the improved Kalman filter. (a) Temperature sensor.  

(b) Humidity sensor. (c) Oxygen sensor. 

 
(a) 

 
(b) 

 
(c) 
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6. Conclusions 

In order to obtain accurate sensor data in a multi-sensing environment and prevent divergence of the 

Kalman filter caused by disturbances of the measurement environment, we have proposed an improved 

Kalman filter which can estimate its measurement noise covariance using a neural network. The 

improved Kalman filter is realized with a neural network to estimate measurement noise covariance for 

preventing divergence of the Kalman filter and reduction of the measurement noise. The target value 

of the neural network was computed from a large number of measurement data in a multi-sensing 

environment, and the input is the previous measurement data. The proposed method was applied to 

reduce measurement noise and prevent divergence with some simulations and experiments. In the 

simulations of multi-sensing environments, the Kalman filter method and its divergence condition was 

compared to the improved Kalman filter which was proposed in this paper. From several simulation 

results and experimental results, the performance of the improved Kalman filter is good as excellent  

as those of the Kalman filter. The MSE of the improved Kalman filter were 2.4633 × 10−4 mV2,  

3.7143 × 10−4 mV2 and 0.00105 mV2 lower than previous method with temperature sensor, humidity 

sensor and oxygen sensor, respectively, under the simulation conditions. The experimental results 

show that the MSE of the improved Kalman filter were 1.6589 × 10−4 mV2, 2.5203 × 10−4 mV2 and 

0.0.00102 mV2 lower than those of the common Kalman filter with a temperature sensor, humidity 

sensor and oxygen sensor, respectively. 
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