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Abstract: Mobile autonomous systems are very important for marine scientific investigation 
and military applications. Many algorithms have been studied to deal with the computational 
efficiency problem required for large scale Simultaneous Localization and Mapping 
(SLAM) and its related accuracy and consistency. Among these methods, submap-based 
SLAM is a more effective one. By combining the strength of two popular mapping 
algorithms, the Rao-Blackwellised particle filter (RBPF) and extended information filter 
(EIF), this paper presents a Combined SLAM—an efficient submap-based solution to the 
SLAM problem in a large scale environment. RBPF-SLAM is used to produce local maps, 
which are periodically fused into an EIF-SLAM algorithm. RBPF-SLAM can avoid 
linearization of the robot model during operating and provide a robust data association, 
while EIF-SLAM can improve the whole computational speed, and avoid the tendency of 
RBPF-SLAM to be over-confident. In order to further improve the computational speed in 
a real time environment, a binary-tree-based decision-making strategy is introduced. 
Simulation experiments show that the proposed Combined SLAM algorithm significantly 
outperforms currently existing algorithms in terms of accuracy and consistency, as well as 
the computing efficiency. Finally, the Combined SLAM algorithm is experimentally 
validated in a real environment by using the Victoria Park dataset. 

OPEN ACCESS



Sensors 2011, 11                            
 

 

10198

Keywords: RBPF-SLAM; EIF-SLAM; submap; consistency; computational efficiency 
 

1. Introduction 

Mobile autonomous system are often required to operate in highly uncertain and dynamic 
environments, such as a battle zone, with minimal or no external help such as GPS or human 
intervention. Other applications range from disaster relief in areas such as the 9/11 WTC site, to 
underwater and planetary exploration. Hence, the development of true autonomy in such systems can 
have very wide military, societal and scientific impact. In order to be “truly autonomous”, any such 
autonomous system needs to be capable of accomplishing two sub-tasks: (1) it needs to model its 
environment, along with its attendant uncertainties, as well as find its own location within the 
environment, using only the noisy observations from its on-board sensors, and (2) it needs to use the 
environment model to intelligently plan its actions within the environment such that it accomplishes its 
objectives in a robust and timely fashion. Problem 1 above is known as the Simultaneous Localization 
and Mapping (SLAM) problem, while the addition of planning to the problem of SLAM in Problem 2 
results in the so-called Simultaneous Planning, Localization and Mapping (SPLAM) problem [1,2]. 
Thus, the SLAM problem is a fundamental problem in enabling “true autonomy”. 

After the first closed formulation was introduced, the SLAM problem has attracted immense 
attention in the mobile robotics fields [3-6]. SLAM approaches can be roughly classified according to 
the map representation and estimation algorithm used. Popular methods for representing environment 
maps include the feature-based approach [7], the grid-based approach [8], and the topological  
approach [9]. A large variety of estimation techniques has been proposed to address the SLAM 
problem, including the Extended Kalman Filter (EKF) [10], Rao-Blackwellized Particle Filter  
(RBPF) [11], Unscented Kalman Filter (UKF) [12,13], EIF [14] and several other techniques that have 
been applied to estimate the trajectory of robots as well as map the environment. Rapid and exciting 
progress has been made in solving the SLAM problem together with many compelling implementations 
of SLAM methods during the past decades. However, enabling real-time SLAM implementation in an 
increasingly unstructured large-scale environment is still a great challenge. With the goal of addressing 
this problem, submap-based methods are proposed, simultaneously, improving the computational 
efficiency of SLAM problem [15]. 

Some scientists have studied the submap-based solution to SLAM problem in large scale 
environments, e.g., by mixing RBPF with UKF [16], PF with Gaussian filters [17], EKF with EIF [18], 
and FastSLAM (i.e., RBPF) with EKF [19] etc. In this paper, a novel mixed SLAM method, mixing 
RBPF with EIF, is presented. Its accuracy and consistency outperform the previous mixed methods 
significantly, especially the computational efficiency. The major contributions of this work are as follows:  

(a) Based on the theoretical analysis, the Combined SLAM, a novel submap-based solution to 
SLAM problem, is proposed for mobile system sensing in large scale environments. The 
proposed algorithm combines the strength of two popular mapping algorithms: RBPF and EIF. 
As RBPF-SLAM can avoid linearization of the robot model during operation and provide a 
robust data association, it is used to produce local maps which are periodically fused into an 
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EIF-SLAM algorithm. Specifically, the sparse information matrix together with the recovery of 
state vector and covariance submatrix of EIF algorithm significantly improves the whole 
computational efficiency, and simultaneously avoids the tendency of RBPF-SLAM to be  
over-confident.  

(b) In contrast with sequential submap joining strategy, a binary-tree-based decision-making 
strategy is proposed to merge the submaps efficiently in order to reduce the computational cost 
and improve the real-time performance. It has been illustrated that the strategy will result in a 
total computation cost that is less than O(nlogn). 

The remainder of this paper is structured as follows: after an overview of related work in the next 
section, the overall structure of the proposed Combined SLAM algorithm is outlined in Section 3. 
Section 4 describes the probability distribution of RBPF-SLAM algorithm and its conversion, while in 
Section 5 we provide a brief review of the EIF-SLAM algorithm for fusing local submaps into a global 
map. Section 6 presents the binary-tree-based decision-making strategy, as well as its computational 
cost. In Section 7 we carry out a set of experimental comparisons in terms of accuracy and consistency 
by using simulated and the Victoria Park datasets, while the results are also discussed. Finally,  
Section 8 summarizes the most important conclusions of this work.  

2. Related Works 

Considering the estimation algorithm for SLAM problem, the most popular one is EKF. The 
effectiveness of the EKF approach comes from the fact that it estimated a fully correlated posterior 
over feature maps and robot poses. However, the EKF-based SLAM algorithm suffers from three  
well-known drawbacks which complicate its application to large real-world environments: quadratic 
complexity with respect to the size of the map; inconsistency due to its linearization approximation and 
sensitivity to failures in data association. Many approaches have been developed to overcome these 
shortcomings, and the most common ones are: (a) RBPF-SLAM, first proposed by Murphy [11], is an 
effective approach which describes the vehicle motion model as a set of samples of a more general 
non-Gaussian probability distribution. The RBPF-SLAM algorithm overcomes the linearization 
problem and is also more robust in data association. Based on the RBPF framework, FastSLAM [20] 
uses particle filtering to address non-linearity and factorization to avoid large state vectors;  
(b) EIF-SLAM, an alternative newer method, has been used as a recursion for the inverse of the 
covariance matrix which has been shown to be exactly sparse with no generation of inaccuracies 
through sparsification, but abandoning the odometry information.  

In order to improve the computational efficiency of SLAM, with the goal of being able to map large 
scale environments in real time, the global map is decomposed into smaller submaps in the popular 
algorithms, and then submap joining is implemented to form a global map [21]. The notion has been 
studied successfully in some references, e.g., The Constrained Local Submap Filter (CLSF) [22], the 
Hierarchical SLAM [23] or the recent D&C SLAM [24], etc., are conducted in realistic environments. 
Given a map of n features, the classical EKF SLAM algorithm is known to have a cost of O(n2) per 
step. Two recent algorithms have provided important reductions in computational cost: with an 
amortized cost of O(n) per step, SLSJF SLAM [25] reports a cost O(n1.5) per step in the worst cases. 
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The Treemap algorithm [26] has a cost of O(logn), although with topological restrictions on the 
environment, and a rather complex implementation. 

The aforementioned works have solved the large scale SLAM problem in a number of different 
forms. In this paper, we present a novel combined SLAM: a submap-based approach to SLAM 
problem which combines the strengths and avoids the weaknesses of two popular mapping strategies: 
RBPF-SLAM and EIF-SLAM. Local map building is carried out by using the RBPF-SLAM algorithm 
which does not suffer from linearization problems and is much more robust in association ambiguity 
situations. After a sequence of submaps is built, each of them is assembled in a single multi-dimensional 
Gaussian fashion for the subsequent process of submap joining from the RBPF-SLAM results. Then, 
submap joining is implemented for fusing the built local submaps into a global map by using the  
EIF-SLAM algorithm, which not only has the advantages of EKF-SLAM, but also decreases the 
computational complexity and improves the consistency of estimation. 

3. The Overall Structure of Combined SLAM  

The submap-based SLAM problem is how to slice the whole running time of a robot into 
consecutive periods, and each period has its own beginning. Suppose a local map is expressed by  
(XL, QL), where XL (the superscript ‘L’ here stands for the local submap) is an estimation of the state 
vector and QL is the associated covariance matrix. State vector XL contains the final robot pose  ܺ௦௅ = (x, y, φ)T which includes the robot position x, y as well as its orientation φ and all the local feature 
positions which are shown as ଵܺ௅, …, ܺ௡௅. The coordinate frame of a local submap is defined by the 
first robot pose when building of this submap started. It is assumed that in real applications the robot 
will start to build the (k + 1)th local map as soon as local map kth is finished, thus the robot ending 
pose in the kth local map is the same as the robot starting pose in the (k + 1)th local map. The 
configuration of the proposed Combined SLAM algorithm is outlined in the following flow chart 
(Figure 1). More details about the highlights will be given in the following sections. 

Figure 1. The overall structure of the Combined SLAM algorithm. 

 



Sensors 2011, 11                            
 

 

10201

4. RBPF-SLAM Algorithm: Probability Distributions and Its Conversion  

In this section, we will address the Rao-Blackwellized particle filter used in submap building and 
particularly discuss the probability distribution of RBPF-SLAM and its conversion. 

4.1. Probabilistic SLAM 

In probabilistic form, the SLAM algorithm can be described by [3]: 

),,|,( tttt ACZMSp  (1)

where St = S1, S2, …, St stands for the path of robot; M = θ1, θ2, …, θn denotes the positions of a set of 
features which have been identified in the map; Zt represents the set of all observations; Ct refers to the 
set of controls; At denotes the data associations. The subscript t is used to indicate the variable at each 
time-step t, while the superscript t indicates the set of variables for all time-steps up to t and including 
time-step t. Marginalizing out the past poses, SLAM algorithms only estimate: 

),,|,( ttt
t ACZMSp  (2)

When a submap is fusing into the global map, EIF-SLAM algorithm requires this submap be 
subject to the above distribution in the form of a single multi-dimensional Gaussian. However, the 
probability distribution of RBPF-SLAM algorithm is a Gaussian Mixture Model (GMM; it will be 
presented in Section 4.2). Therefore, we should convert the Gaussian Mixture Model of RBPF-SLAM 
into a single multi-dimensional Gaussian model for the usage of EIF-SLAM. 

4.2. Gaussian Mixture Model (GMM) of RBPF-SLAM 

In the RBPF-SLAM algorithm, Equation (1) can be factored as follows [20]: 

1
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where the first factor represents the robot pose and the subsequent factors indicate feature positions 
given the robot pose. Generally, this factored distribution is represented as a set of K particles, with the 
jth particle ௧ܲ௝ consisting of an importance weight ݓ௧௝ , a robot pose ܵ௧௝ , and n Gaussian feature 
estimations described by their mean ߤ௧௝ and covariance ߑ௡,௧௝ , and the form is as follows: 
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In order to represent the distribution of each particle as low-dimensional Gaussians, the particle can 
equivalently be represented as: 

>=< j
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t QxwP ,,  (5)

where ݔ௧௝ = [ܵ௧௝, ߤଵ,௧௝ ௡,௧௝ߤ ,… , ] denotes the concatenation of the robot poses with all feature states, and ܳ௧௝ denotes a block-diagonal covariance matrix which is constructed from the robot covariance and the 
covariance of each feature, which is shown as: 
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where ܳௌௌ,௧௝  denotes the robot covariance and it is zero because each particle has no uncertainty 
associated with the robot pose. 

4.3. Conversion to a Single Multi-Dimensional Gaussian 

A single multi-dimensional Gaussian model with mean tx  and covariance Qt can be obtained from 
the GMM by using a process known as moment matching [27]: 
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The first term in the square bracket of Equation (8) denotes the covariance of individual particle 
which is caused by sensor noise, while the second term shows the variation between particles caused 
by robot noise. 

In the real implementation, every particle of RBPF-SLAM has its own data association decisions, 
consequently, both the number of features and their ordering may differ between particles. In order to 
convert the Gaussian Mixture Model (GMM) of RBPF-SLAM into a single multi-dimensional 
Gaussian model for the usage of EIF, i.e., carry out Equations (7) and (8) successfully, it is necessary 
to track the correspondences between features of each particle. To achieve this conveniently, related 
processes are ordered as the following: 

(1) Assign a unique index to each observation. The form of each particle can be augmented with a 
set of extra correspondence variables ߣ௜,௧௝ , then ߣ௜,௧௝ = Θ represents that the ith feature in the jth 
particle at time step t corresponds to the Θth observation in the environment. Therefore the form 

of each particle can be reformed as: 

1, 1, 1, , , ,, , , , ,..., , ,j j j j j j j j j
t t t t t t n t n t n tP w S μ λ μ λ=< Σ Σ >  (9)

(2) Apply the maximum likelihood data association in every particle. After the process of data 
association, we can use its results to implement particle updating and particle augmenting for 
each particle showed in Equation (9). 

(3) Re-arrange and re-modify each particle according to a standard which is decided by the particle 
with the highest importance weight, so as to produce a common features set. The process is 
accomplished as follows: 

Let δ denote the reverse function of ߣ௜,௧௝ , and equation δt(Θ, j) = i indicates that the Θth observation 
in the common feature set corresponds to the ith feature in the jth particle. Given these variables, the 
mean in Equation (5) can be represented as:  

t t(1, ), ( , ),[ , ,..., ]j j j j
t t j t n j tx S δ δμ μ= (10)
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and its related covariance is: 

(1, )

( , )

,

,

,

jt

n jt

i
SS t

j
tj

t

j
t

Q

Q δ

δ

⎡ ⎤
⎢ ⎥Σ⎢ ⎥= ⎢ ⎥
⎢ ⎥

Σ⎢ ⎥⎣ ⎦

 (11)

In such case that a common feature may have no corresponding feature in any particle, then  
the particle will be discarded. Through the above three steps, each particle obtains a single  
multi-dimensional mean and covariance, and a single Gaussian distribution can then be produced by 
using Equations (7) and (8). 

5. Submap Joining Procedure 

After submaps are established, the submap joining will be implemented. In this section, we will 
describe the submap joining algorithm based on an extended information filter. 

5.1. Problem Description 

In the local submap joining, the input is an estimation only related to “local” information. If the 
features among the sequent local submaps are not dense, then the sparsification can be implemented to 
achieve the map joining effectively. The most important thing is that when the distance among the 
submaps becomes farther, the correlation between the features of the submaps will be lower. This will 
result in an exactly sparse information matrix without any approximation, so the EIF-SLAM algorithm 
will maintain lower computational complexity than EKFSLAM. The state vector of the global map in 
the proposed algorithm contains feature positions and robot ending poses of each local submap. As 
usual, the starting point of the first local map is also taken as the starting point of the global map. After 
the kth local map is built, it will be fused into the global map. Suppose the current global state vector is 
given as XG(k) (the superscript ‘G’ here stands for the global map), it can be expressed as follows: 

1
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=

 (12)

where ଵܺீ , …, ܺ௡ଵீ, ଵܺ,௘ீ  are the global positions of environment features and the robot ending global 
pose (ݔଵ,௘ீ ଵ,௘ீݕ , ଵ,௘ீ׎ , ) of the 1st local map which is also the starting global position of the 2nd local 
map. Correspondingly, ܺ௡ଵାଵீ , …, ܺ௡ଵା௡ଶீ , ܺଶ,௘ீ , are the global positions of those detected features in 
the 2nd local map but not in the 1st local map, together with the robot ending pose. Here the subscript 
‘e’ stands for ‘ending pose’. Instead of the global state vector estimation XG(k) and its associated 
covariance matrix QG(k) used in EKFSLAM, an information vector i(k) and an associated information 
matrix I(k) are defined to express the Gaussian distribution in EIFSLAM, because EIF is an algebraic 
equivalent to the EKF. The relationship between them can be denoted by: 

1( ) ( ) ( ), ( ) ( )G GI k X k i k Q k I k −= = (13) 
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When the Extended Information Filter is applied to the estimation problem, an off-diagonal element 
of the information matrix is non-zero only when the two related objects (the features and the robot 
starting/ending poses) are within the same local map. Since the size of each local map is limited, any 
objects will only link to their nearby objects, no matter how many (overlapping) local maps are fused. 
This results in an exactly sparse information matrix without any approximation. Since all the objects 
involved in the local maps are included in the global state vector, no marginalization is required in the 
map joining process and thus the information matrix I(k) will stay exactly sparse all the time and can 
be computed efficiently. Then XG(k) can be recovered by Equation (13). Even for data association, 
only a small part of information matrix is handled, so the whole dense covariance matrix doesn’t need 
to be recovered. After the (k + 1)th local map is built completely, features that have not been included 
in the global map of this local map yet together with the robot ending pose of this local map are fused 
into the global map, so the new state vector becomes: 
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(14) 

5.2. Implementation of Joining 

When the (k + 1)th local submap is built, it will be implemented by the four following steps to 
produce a new global map. 

5.2.1. Data Association 

Data association aims to find the features in the (k + 1)th local map that already exist in the global 
map. This is a necessary step in SLAM problems using practical data. First, the proposed algorithm 
determines a set of potentially overlapping local maps corresponding to the (k + 1)th local map, and 
then finds the set of potentially matched features in the potentially overlapping local maps by using 
simple Euclidean distance. Second, the covariance submatrix associated with the pose and the 
potentially matched features is recovered based on [28]. In order to improve the computational speed 
and keep the information matrix positive and definite, Cholesky factorization is sometimes applied to 
solve Equation (13), and the factoring process is needed to satisfy the equation F(k)F(k)T = I(k).  
At last, all the feature positions need to be transferred into the same coordinate system to implement 
the simple Nearest Neighbor (NN) method for realizing the final match. Algorithm 1 is listed to 
illustrate the process. 
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Algorithm 1. Algorithm of data association between the global map and the (k + 1)th local map.  

5.2.2. Initialize the New Features in Current Global Coordinate System 

After data association, the new features as well as the ending pose in the (k + 1)th local map are 
initialized into the global map. As a result, a new state vector XG(k) is formed. Zeros are added 
respectively into the information vector i(k), information matrix I(k) and its Choleshy factorization F(k) 
to produce corresponding vector/matrix. 

5.2.3. Update the Global Map 

Suppose we have got the (k + 1)th local map that is given by Equation (12). Then the submap 
joining based on EIF-SLAM involves treating the total information of the (k + 1)th local map as an 
observation with a zero-mean Gaussian observation noise whose covariance matrix is QL. In this paper, 
after data association, we suppose the relationship between the features in the (k + 1)th local map and 
the ones in the global map are denoted as ଵܺ௅ ↔ ܺ௞ାଵ,ଵீ , …, ܺ௡௅ ↔ ܺ௞ାଵ,௡ீ . And the state estimation in 
the (k + 1)th local map ෠ܺ୩ାଵ௅  can be regarded as an observation from robot starting pose ܺ௞,௘ீ  to robot 
ending pose ܺ௞ାଵ,௘ீ  and the features ܺ௞ାଵ,ଵீ , …, ܺ௞ାଵ,௡ீ , which can be represented by the following  
observation equation: 
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Input: the (k + 1)th local map and global map  
(1) Find a set of potentially overlapping local maps 
(i) Compute the distance Di which is from the starting position of the (k + 1)th local 

map to the starting position of the (k + 1)th local map (0 ≤ i ≤ k); 
(ii) Set a threshold TH1 (usually the range of the detection sensor); 
(iii) If Di ≤ 2 × TH1, the ith local map is a potential candidate. 
(2) Find the set of potentially matched features 
(i) Set another threshold TH2; 
(ii) Find the features of the potential local maps whose Euclidean distance are smaller 

than the TH2; 
(3) Recover the covariance submatrix associated with the pose and the potentially 

matched features; 
(4) Use NN method to identify the final match. 
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and wk+1 is the zero-mean Gaussian “observation noise” with covariance matrix QL. Subsequently, 
Equation (15) is used to update the information vector and the information matrix: 

1

1

( 1) ( ) ( )
( 1) ( ) ( ) [ ( ( )) ( )]

T L

T L G G

I k I k H Q H
i k i k H Q Z H X k HX k

−

−

+ = + ∇ ∇
+ = + ∇ − + ∇  (16) 

where ܪ׏ is Jacobian of the transportation matrix H with respect to XG(k). 

5.2.4. State Vector Recovery 

What we need is not the information vector iG(k + 1), but rather the global state estimation XG(k + 1), 
so Equation (12) is used to recover the XG(k + 1). 

6. Binary-Tree-Based Decision-Making Strategy  

During the global map building, in order to reduce the computational cost and improve the real-time 
performance, we use a binary-tree-based decision-making strategy to merge the submaps efficiently. In 
a sense, successful submap building is the first step of successful submap joining. Thus the  
decision-making strategy will be introduced firstly; it is used to generate a sequence of independent 
submaps with unequal size, then the built submaps are joined to produce the final global map 
according to the binary-tree-based strategy. 

6.1. Decision-Making Strategy of Submap Building 

Before submap joining, we should ensure the effectiveness of submap building, which depends not 
only on the submap building algorithm itself (RBPF-SLAM), but also whether each submap is 
completed properly. Otherwise, the accuracy of the built submap building will be remarkably reduced 
due to some problems such as error accumulation and particle depletion, thus affecting the accuracy of 
the final global map produced by submap joining. Therefore, in decision-making strategy of submap 
building, several factors should be considered: 

The first concern is the situation when there is no feature to be detected over a long period of time. 
Since the accumulated errors cannot be eliminated while the robot is running, we must reduce the 
running time of the current submap as far as possible. In such case, a constant threshold time TIME is 
set to TIME ൌ max൛ݔߪ ⁄௫,തതതതതݒߪ , ݕߪ ⁄௬,തതതതതݒߪ , ߠߪ ⁄തതതതݓߪ  ൟ according to the pose optimal estimation, where σx, 
σy, σθ are the standard deviation of robot pose and ݒߪ௫തതതതത, ݒߪ௬തതതതത, ݓߪതതതത are the mean measurement noise of 
associated sensors.  

Secondly, particle diversity must be considered. Within the threshold time, along with the appearing 
of features, if the diversity problem occurs, the robot should stop the construction of the current 
submap and start to build a new one. 

The last factor we must consider is the number of features in each submap. Generally, a good rule 
of thumb is that the ratio of feature number to robot pose dimension should be kept between 5 and 20.  
If feature number of the selected standard particle used in Section 4.2 arrives at the threshold 
Num_Feature, then we should cease the construction of current submap immediately. The  
decision-making strategy is illustrated in the following flow chart (Figure 2): 
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Figure 2. Decision-making Strategy. 

{ }TIME max / , / , /x yx v y v wσ σ σ σ σθ σ=

 

6.2. Binary-Tree-Based Strategy of Submap Joining 

Every built submap should be fused into the global map with a binary-tree-based strategy. The 
leaves of the binary tree stand for the sequence of the m local maps of size p1,j. These maps are joined 
pairwise to produce m/2 local maps with size p2,j, which will be joined pair wise into m/4 local maps of 
size p3,j in turn, until finally two local maps of size ݌୪୭୥మ ௠ିଵ,௝ will be fused into one map, which is the 
final global map. The hierarchical binary tree fashion is depicted in Figure 3. 

Figure 3. Hierarchical binary-tree-based strategy. 
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The total computational complexity of CombinedSLAM with the binary-tree-based decision-making 
strategy is: 
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(17) 

where parnum is the number of the particles in the RBPF-SLAM algorithm, m presents the number of 
local maps, n is the total number of the features, and pij denotes the number of the jth submap of the ith 
level in the binary tree. The Combined SLAM algorithm offers a reduction in total computational cost 
that is less than O(݊ logଶ ݊). 

7. Experiments and Analysis 

It can be proven that the EIF is equivalent to the EKF in algebra. EIF has almost the same 
performance with the EKF except for improving the computational efficiency. Therefore, the following 
four algorithms in terms of their accuracy, consistency will be compared: 

(1) The conventional single-map-type EKF-SLAM(EKF); 
(2) The conventional single-map-type RBPF-SLAM(RBPF); 
(3) The submap-based SLAM algorithm which combines EKF and EIF(EKF-EIF); 
(4) The proposed submap-based Combined SLAM: combining RBPF and EIF (RBPF- EIF);  

For the computational efficiency, the proposed RBPF- EIF algorithm will be compared with the 
submap-based SLAM algorithm which combines RBPF and EKF (RBPF-EKF). In order to verify the 
efficiency of the binary-tree-based decision-making strategy, the comparison will be made also between 
the conventional single-map-type EKF-SLAM (EKF-SLAM), sequential submap-type Combined 
SLAM (SS-CombinedSLAM) and binary-tree-based submap-type Combined SLAM (BS-Combined 
SLAM, i.e., RBPF-EIF).  

7.1. Experimental Environments of Simulation 

The experimental environment consists of 554 randomly-generated point features and simulates  
a two-dimensional world with a size of 2 km × 2 km, as shown in Figure 4. The robot moves at the 
speed of 3 m/s with the sampling frequency of 40 Hz, and observes features by using a 180°  
range-bearing sensor with a maximum range of 30 m and an output frequency of 5 Hz. The standard 
deviation of robot speed and heading angular are set to 0.3 m/s and 3° respectively. The standard 
deviations of the observation noise are set to 0.5 m and 5° for range and bearing respectively. The 
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number of the particles is 40 in the particle filter. All algorithms are implemented in Matlab® and 
executed on 2.60 GHz Pentium® Dual-Core CPU E5300 with 2 GB of RAM. 

Figure 4. The results of the four algorithms and the zoomed first ten submaps of RBPF-EIF. 

 

 

(a) Global Map of the Four Algorithms. 

 
(b) Zoomed First Ten Submaps of RBPF-EIF. 
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7.2. Experimental Results of Simulation 

To compare the performance of the above mentioned four algorithms in a large-scale environment, 
we use 50 Monte Carlo simulation experiments. The four algorithms run on exactly the same data with 
a loop closure; data association is known in all algorithms. The results of the four algorithms are 
shown in Figure 4(a). The left two figures of Figure 4(a) show the map generated by the two 
conventional sing-map-type SLAM algorithms. One hundred and twenty six small sized submaps are 
built by the two conventional sing-map-type SLAM algorithms. The right two figures of Figure 4(a) 
show the global maps generated by fusing all the 126 submaps using the two submap-based SLAM 
algorithms. In order to compare directly, the estimation results of robot pose and features are displayed 
with their ground truth respectively. For more clarity, the first ten submaps of RBPF-EIF are zoomed 
out as shown in Figure 4(b). In Figure 4, the black hollow diamonds indicate the estimation of robot 
pose, corresponding uncertainty ellipses are given as well. The blue solid dots denote the ground truth 
positions of features. The green stars denote the estimation positions of features, corresponding 
uncertainty ellipses are given as well. 

7.2.1. Estimation Errors 

Estimation errors of the four algorithms are shown in Figure 5, where the red dotted line denotes 
error between the estimation results and the ground truth, and the green solid line shows the 3σ 
uncertainty bound. Obviously, the two conventional single-map-type SLAM algorithms (EKF-SLAM, 
RBPF-SLAM) will become divergent, as shown in Figure 5(a,b), the other two submap-type SLAM 
algorithms (EKF-EIF, RBPF-EIF) perform better, as shown in Figure 5(c,d). In the simulation, the 
robot reduces its localization error and obtains more accurate maps by reviewing old features 
previously detected in the last submap, and it makes the estimation of submaps perform better.  

Figure 5. Error and 3σ uncertainty bound of robot pose by using the four algorithms, 
where the red (dot) is errors and the green (solid) is 3σ uncertainty bound. 
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Figure 5. Cont. 

 

(b) Error and 3σ uncertainty bound of robot pose by RBPF. 

 

(c) Error and 3σ uncertainty bound of robot pose by EKF-EIF. 

 

(d) Error and 3σ uncertainty bound of robot pose by RBPF-EIF.  
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7.2.2. Consistency 

Normalized Estimation Error Square (NEES) and Root Mean Square (RMS) error are used to 
evaluate the consistency of the proposed filter. When the ground truth x for the state vector is available, 
the NEES could be obtained together with the estimated state vector ݔො and the covariance matrix P [27]:  

( ) ( )2 1ˆ ˆTD x x P x x−= − −  (18) 

Consistency is checked up by using the chi-squared criteria: 
2 2

n,1D αχ −<  (19) 

where n is the dimension of the variable, and 1 − α is the confidence level (95% typically). Then we 
could define the consistency index of a given estimation (ݔො, P) with respect to its true value x as [29]: 

2

2
,1n

DCI
αχ −

=  (20) 

When CI < 1, the estimation is consistent with the ground truth, and when CI > 1, the estimation is 
inconsistent with respect to the ground truth. We tested consistency of the previous four algorithms by 
carrying out 100 Monte Carlo runs in the simulated experiments.  

Figure 6. Mean consistency index CI of robot pose and features for the four algorithms. 

 

(a) Mean consistency index CI of robot pose and features by EKF and RBPF. 

 

(b) Mean consistency index CI of robot pose and features by EKF-EIF and RBPF-EIF. 
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The mean consistency index CI of robot pose and features for the four algorithms are presented in 
Figure 6. The two conventional single-map-type SLAM algorithms (EKF-SLAM, RBPF-SLAM) have 
much bigger CI than the two submap-type SLAM algorithms (EKF-EIF, RBPF-EIF), so they are 
arranged into two pictures (Figure 6(a,b)), where CI for robot pose and feature are shown in the upper 
and the lower part of the pictures, respectively. Obviously the estimations of RBPF-SLAM and  
RBPF-EIF are always more consistent than those of EKF-SLAM and EKF-EIF, and what is more, 
EKF falls out of consistency at about the 60th submap, while RBPF-SLAM remains consistent. 

The evolution of Root Mean Square (RMS) error on robot position and orientation is shown in 
Figure 7(a). RMS errors of features by the four algorithms are shown in Figure 7(b). Obviously, RMS 
errors of submap-based SLAM algorithms are always smaller than the two single-map-based SLAM 
algorithms. Furthermore, RMS errors of RBPF- EIF SLAM proposed in this paper are better than those 
of EKF-EIF SLAM.  

Figure 7. RMS errors of robot pose and feature by using the four algorithms. 

 
(a) RMS errors of robot pose by using the four algorithms. 

 
(b) RMS of features by using the four algorithms. 
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From parts A and B of the experimental results, it can be noted that among the four algorithms our 
proposed RBPF-EIF SLAM algorithm demonstrates better performance, especially in dealing with 
problems as accuracy and consistency in large-scale environment. For the computational cost, the 
corresponding evaluation is reported as below. 

7.2.3. Computational Time 

In addition to evaluate accuracy and consistency of the proposed Combined SLAM, we still need to 
simulate and analyze its computational cost. Table 1 presents the detailed CPU time required for the 
submap joining by using the RBPF- EKF method and the proposed RBPF- EIF algorithm. The total 
time for fusing the 126 submaps is about 23 s for EIF and 1,453 s for EKF. It is obvious that the global 
map updating process takes up most of the computation time in EKF submap joining. Nevertheless, 
with the sparse information matrix, EIF reduces the updating time to 2.4 s. On the other hand, the 
major computation time for EIF submap joining is the process of data association which contains the 
time for covariance matrix recovery. The others including Cholesky factorization and state vector 
recovery also require a great investment of time. The whole computational time used for fusing  
the 126 submaps by the classical EKF algorithm and the sparse EIF algorithm is shown in Figure 8. 

Table 1. The detailed CPU time by using algorithms of RBPF-EKF and RBPF-EIF. 

Algorithm Submap joining 
Data Association Global map Update Others Total 

RBPF-EKF 4.4 s 1,445.1 s 3.4 s 1,452.9 s 
RBPF-EIF 13.2 s 2.4 s 7.2 s 22.8 s 

Figure 8. The computational time used for submap joining by RBPF-EKF and RBPF-EIF. 
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adopt our proposed Combined SLAM algorithm, using RBPF for submap building and EIF for submap 
joining as stated before. The computational costs of conventional single-map-type EKF-SLAM  
(EKF-SLAM), sequential submap-type Combined SLAM (SS-CombinedSLAM) and binary-tree-based 
submap-type Combined SLAM (BS-CombinedSLAM, i.e., RBPF-EIF) are shown in Figure 9. It can 
be seen that computational time of the latter two submap-type Combined SLAM is far less than that of 
the conventional single-map-type EKFS-LAM, while the computation time of the binary-tree-based 
method is shorter than that of the sequential method. It illustrates that the total computation time is 
largely reduced and the computational efficiency of the proposed algorithm is well optimized through 
the binary-tree-based strategy. 

Figure 9. The computation time for three algorithms: conventional single-map-type  
EKF-SLAM (blue), sequential submap-type Combined SLAM (red) and binary-tree-based 
submap-type Combined SLAM (green). 
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Figure 10. Results for the Victoria Park dataset. (a) Estimated map for the Victoria Park 
dataset (vehicle locations are drawn as red triangles, features are shown as black dots with 
ellipse covariance, and Green points are GPS readings). (b) Estimated results by the 
proposed algorithm were projected on Google Earth in order to compare the accuracy 
obtained (vehicle locations are drawn as red triangles, features are shown as yellow dots, 
and Green points are GPS readings). (c) Computational time of execution for the Victoria 
Park data: conventional single-map-type EKF-SLAM (blue), sequential submap-type 
Combined SLAM (red) and binary-tree-based submap-type Combined SLAM (green) 
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8. Conclusions 

An efficient submap-based Combined SLAM algorithm for large-scale environments which 
combines the strengths of both RBPF-SLAM and EIF-SLAM had been studied in this paper.  
The RBPF-SLAM algorithm for local map building provides robust data association and improves the 
estimate validity, and the EIF-SLAM algorithm for submap joining globally allows uncertainty to be 
remembered over long robot trajectories. Simulation results clearly show that the proposed  
submap-based Combined SLAM algorithm has better consistency and accuracy in large-scale 
environments than the current typical algorithms. Furthermore, the proposed algorithm is still 
computationally efficient when the binary-tree-based submap joining strategy is introduced. The well 
known Victoria Park dataset has also been applied to verify the improved validity of the Combined 
SLAM approach and its computation time advantage. 
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