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Abstract: The presence of toxic metals in drinking water has hazardous effects on human 
health. This study was conducted to develop GFP-based-metal-binding biosensors for on-site 
assay of toxic metal ions. GFP-tagged ArsR and CadC proteins bound to a cis element, and 
lost the capability of binding to it in their As- and Cd-binding conformational states, 
respectively. Water samples containing toxic metals were incubated on a complex of  
GFP-tagged ArsR or CadC and cis element which was immobilized on a solid surface. 
Metal concentrations were quantified with fluorescence intensity of the metal-binding 
states released from the cis element. Fluorescence intensity obtained with the assay 
significantly increased with increasing concentrations of toxic metals. Detection limits  
of 1 μg/L for Cd(II) and 5 μg/L for As(III) in purified water and 10 µg/L for Cd(II) and 
As(III) in tap water and bottled mineral water were achieved by measurement with a  
battery-powered portable fluorometer after 15-min and 30-min incubation, respectively. A 
complex of freeze dried GFP-tagged ArsR or CadC binding to cis element was stable  
at 4 °C and responded to 5 μg/L As(III) or Cd(II). The solid phase biosensors are sensitive, 
less time-consuming, portable, and could offer a protocol for on-site evaluation of the toxic 
metals in drinking water. 
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1. Introduction  

Humans are widely exposed to various environmental pollutants which cause major health concerns 
in the developing World. The detection and monitoring of those pollutants in water are very important 
for human safety and security [1]. Some such threats to human health are sometimes associated with 
exposure to toxic metals like lead, cadmium, mercury and arsenic through contamination of drinking 
water and their entrance to the food chain [2-4]. The WHO drinking water guidelines recommend 3 μg/L 
for cadmium and 10 μg/L for arsenic along with the national regulatory standard (e.g., 50 μg/L As in 
India and Bangladesh) [5,6]. Long term exposure to arsenic through groundwater has been recognized 
as a major public health hazard in developing countries where unmonitored groundwater is the primary 
source of drinking water [7]. 

One effective way to reduce such risks is monitoring of toxic metals in drinking water. Standard 
laboratory-based traditional analytical methods such as atomic absorption spectrometry (AAS) and 
atomic fluorescence spectrometry, neutron activation analysis, inductively coupled plasma (ICP) 
techniques, and high-pressure liquid chromatography are routinely used for metal quantification, but 
those traditional methods require expensive and bulky laboratory equipment, analytical expertise, 
sample transportation and pre-treatment(s) [8-10].Therefore, field-applicable, simple and inexpensive 
detection methods need to be developed to compensate for the shortcomings of traditional  
laboratory-based techniques. Biosensors have already proved to be simple and cost-effective tools for 
quantification of toxic metals [11]. Biosensors are integrated devices that consist of a biological 
molecule for recognition in direct contact with a transduction element [1]. 

The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring 
gene expression, protein localization and protein-protein interaction [12]. It has been demonstrated that 
in vitro interaction takes place between a trans factor and a cis element of bacterial transcriptional 
switches [13]. The report indicates that a degree of the interaction can be quantified by fusing GFP to 
the C-terminus of a trans factor and immobilizing a cis element on solid surface, and the fluorescent 
intensity decreases with an increase in toxic metal concentrations. In the assay, E. coli cell lysates 
containing ArsR-GFP or CadC-GFP were pre-incubated with As(III) or Cd(II) solution, loaded into 
wells, on which ars promoter-ars operator (Pars-Oars) or cad promoter-cad operator (Pcad-Ocad) were 
immobilized, respectively, incubated for 15 min and removed from the wells (Figure 1(a)). Then, the 
wells were washed off once by phosphate buffer to remove extra proteins and filled with measurement 
buffer to dissociate proteins from the cis element. The supernatant was removed from the wells and 
poured into a measurement vial. Finally, fluorescence intensities of ArsR-GFP or CadC-GFP of the 
supernatant in the measurement vial were measured. Thus, the process required many steps for 
measurement of metals, therefore lessening of the number of steps in the procedure is essential for easy 
application of the biosensors to field tests (Figure 1(b)). To minimize storage and transportation costs, 
lyophilization is one of the most popular techniques for preserving proteins under normal refrigeration 
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conditions, compared to −20 °C or −80 °C. Moreover, in the previous study [13], lyophilized lysates 
had to be rehydrated by addition of purified water before use. 

Figure 1. Comparison of the assay procedures of toxic metals using GFP-tagged trans 
factor and cis element in microplate wells. The previously developed procedure is 
composed of (I) mixing and 15-min pre-incubation of GFP-tagged trans factor with 
sample; (II) addition of the mixture to the well and 15-min incubation with immobilized cis 
element; (III) removal of the mixture and washing the well surface; and (IV) addition of 
measurement buffer (a). A newly developed procedure is composed of addition of sample 
mixture to the well and 15-min or 30-min incubation with GFP-tagged trans factor binding 
to immobilized cis element (b). Fluorescence of the supernatants can be measured with a 
handheld, battery-powered portable fluorometer. 

 

Figure 2. Expected association/dissociation statuses between GFP-tagged trans factor and 
cis element or metal. A sample mixture is loaded into (I), a well in which a biosensor 
composed of GFP-tagged trans factor binding to an immobilized cis element is constructed. 
Then; (II) the mixture is incubated in the well; and (III) the supernatant, which might 
contain the GFP-tagged trans factor dissociated from the cis element, was transferred to a 
well of another microplate or a glass vessel to measure its fluorescence intensity. 
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The aim of this work is to develop solid phase biosensors, in which water samples could be directly 
added to a complex of GFP-tagged trans factor and immobilized cis element and toxic metals could be 
quantified with fluorescence of GFP-tagged trans factor released from the cis element (Figure 2). As, 
in the new method the number of steps in the assay procedure are reduced and the complex is 
rehydrated by direct addition of sample, these solid phase biosensors could be advantageous for simple 
and on-site detection of toxic metals compared to traditional analytical methods. 

2. Materials and Methods  

2.1. Construction of Expression Vectors of Gene Encoding GFP-Tagged trans Factor 

A specific reporter has been constructed in which the arsenic-binding regulatory protein gene,  
arsR originated from Escherichia coli K12 DNA, and the cadmium-binding regulatory protein gene, 
cadC from Staphylococcus aureus NCTC50581 plasmid pI258 have been fused to the structural gene 
for green fluorescent protein. A gene encoding green fluorescent protein from the marine species  
Aequorea coerulescens (excitation maximum: 475 nm; emission maximum: 505 nm) was excised from 
pAcGFP1 (Takara, Shiga, Japan), and ligated to an expression vector, pET-3a (Novagen-Merck, 
Darmstadt, Germany), to construct expression vectors of genes encoding ArsR-GFP or CadC-GFP, as 
described previously [13]. Cells of Escherichia coli BL21 (DE3) pLysS were transformed with the 
expression vectors. 

2.2. Preparation of GFP-Tagged trans Factor 

Cells of recombinant E. coli were grown in a Sakaguchi flask containing 300 mL of autoclaved 
Luria-Bertani (LB) medium supplemented with 50 μg/mL ampicillin and 34 μg/mL chloramphenicol  
at 25 °C for 24 h in an orbital shaker at 140 rpm. The cells were harvested from a culture  
containing 2 × 109 cells/mL by centrifugation at 4 °C, and washed twice with 50 mM Tris-HCl buffer 
pH 7.4. The cells were resuspended into 4 mL TG buffer (50 mM Tris-HCl pH 7.4, 15% (v/v) 
glycerol) and frozen at −80 °C at least 1 h. After thawing, cells in a glass vial placed on ice were 
disrupted for 5 min with an ultrasonic disruptor equipped with a microtip probe (UD-201, Tomy, 
Tokyo). Sonication was repeated four times with 5-min interval. After centrifugation at 16,000 ×g  
for 15 min at 4 °C to remove cell debris, the lysate was divided into small aliquots and stored  
at −80 °C. The approximate concentration of GFP-tagged trans factor in cell lysate was calculated 
from fluorescence intensity [13]. 

2.3. Preparation of Promoter-Operator DNA and Its Immobilization on Microplate Well 

Oligonucleotide sequences for Pars-Oars-50 [13] and DNA fragments containing Oars designed in this 
study were shown in Figure 3(a). The sequence for Pcad-Ocad-50 was indicated previously [13]. 
Twenty-five picomoles per 100 µL double-stranded DNA fragments modified with biotin at the 5'  
or 3' end in 25 mM Tris-HCl buffer (pH 7.4) were poured and immobilized onto Reacti-bind  
streptavidin-coated high binding capacity black 96-well microplate wells (Thermo Fisher Scientific, 
Yokohama, Japan) as described previously [13]. After immobilization, excess unbound DNA was 
rinsed off three times by 25 mM Tris-HCl buffer pH 7.4. 
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Figure 3. Nucleotide sequences of the oligonucleotides containing Oars (a) and effects  
of their sequence difference on the biosensor response to As(III) (b). The ArsR binding 
sites are shown in red (a). The putative promoter sequences at the −35 and −10 recognition 
sites and the Shine-Dalgarno sequence (SD) are underlined. The oligonucleotide ends, to 
which biotin was bound, was shown. Fluorescence was measured with fluororeader (b). 
Average fluorescence intensities are shown with blue bars for no addition of As(III)  
and red bars for 100 μg/L As(III) in purified water. Statistical significance was shown as  
* p < 0.01; ** p < 0.001. 

 

2.4. Preparation of the Solid Surfaces Including GFP-Tagged trans Factor 

A solid surface was prepared by contacting ArsR-GFP to Oars-containing immobilized 
oligonucleotides. A mixture containing ArsR-GFP was prepared at final concentrations of 50 mM  
potassium phosphate buffer pH 7.4 (KPB), 50 μg/mL salmon sperm DNA, 40 mM NaCl and 
approximately 20 μg/mL ArsR-GFP. On the other hand, another solid surface was prepared by 
contacting CadC-GFP to immobilized Pcad-Ocad-50. A mixture containing CadC-GFP was prepared 
with a similar composition as that described in case of ArsR-GFP, except that 50 mM Tris-HCl buffer 
pH 7.4, instead of 50 mM KPB, was used. One hundred microliters of ArsR-GFP or CadC-GFP 
mixture were poured to each well in which oligonucleotide was immobilized, and incubated  
for 15 min. Free proteins were once washed off with 200 μL KP-T buffer (10 mM potassium 
phosphate buffer pH 6.0, 0.05% (w/v) Tween20). 

2.5. Sample Preparation and Assay Procedure 

As(III) and Cd(II) solutions were prepared by dissolving 98% NaAsO2 and CdCl2·2.5H2O (both 
from Sigma-Aldrich) in ultrapure water (Simplicity UV, Milipore-Japan, Tokyo), bottled natural 
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mineral water, or tap water collected at Utsunomiya University. For the As(III) assay, 93.5 volumes of 
sample was mixed with 5 volumes of 1 M KPB pH 6.7, 0.5 volumes of 10 mg/mL salmon sperm DNA 
and 1 volume of 4 M NaCl (final concentrations; 50 mM KPB, 50 μg/mL salmon sperm DNA, 40 mM 
NaCl). For the Cd(II) assay, the sample was mixed with a solution of similar composition with the 
exception that 1 M Tris-HCl pH 7.9 was used instead of 1 M KPB. Ninety microliters of sample 
mixture were added to each well in which either of the solid surfaces was prepared, and incubated  
for 30 min in As(III) assay and for 15 min in Cd(II) assay, respectively, with orbital shaking at 120 rpm 
to release the GFP-tagged trans factor binding to metal from immobilized cis element. The 
supernatants were transferred to wells in another black plate when fluorescence intensity was measured 
with a microplate fluororeader at excitation/emission wavelengths of 490/530 nm (MTP-601, Hitachi 
High Technologies, Tokyo). The supernatants were transferred to glass vials when fluorescence 
intensity was measured with a handheld, battery-powered portable fluorometer (GFP-pen GFP 100, 
Photon Systems Instruments, Brno, Czech Republic). Student’s t-test was used to evaluate probability 
between two groups including data obtained with ultrapure water. 

2.6. Lyophilization of the Solid Surface 

For lyophilization, solid surfaces on wells after removal of washing buffer were frozen at −80 °C 
for at least an hour. Then, the solid surfaces were lyophilized with a freeze dryer (VD-500F, Taitec, 
Saitama, Japan) and stored in a refrigerator for 24 h. The lyophilized solid surfaces were evaluated by 
directly loading the sample mixtures. 

3. Results and Discussion 

In this study, solid surface biosensors comprising ArsR-GFP binding to the Oars sequences or  
CadC-GFP binding to the Ocad sequences were used to analyze As(III) and Cd(II) solutions, respectively. 

3.1. Development of Solid Phase Biosensors for Arsenic Detection 

A solid phase biosensor constructed with Pars-Oars-50 and ArsR-GFP did not show a marked 
increase in the fluorescence intensity obtained with 100 μg/L As(III) (Figure 3(b)). Therefore,  
other solid phase biosensors were constructed using the oligonucleotides containing the different 
regions of Oars and their responses to 100 μg/L As(III) were evaluated with a fluororeader. The  
biosensor comprising ArsR-GFP and Oars-30-down showed the highest fluorescence intensity, and the 
difference between the fluorescence intensities obtained with and without As(III) was more marked, 
compared to the differences in the biosensors comprising Oars-40 or Pars-Oars-50 (Figure 3(b)). On the 
other hand, only background levels of fluorescence were detected in the biosensor comprising  
Oars-30-up, regardless of the presence or absence of As(III). From the result, higher capacity of the 
Oars-30-down-immobilized solid surface for ArsR-GFP can be expected. Therefore, Oars-30-down was 
selected for the following experiments. 

Significant increases of fluorescence in response to 100 μg/L As(III) were observed with both 
fluororeader (p < 0.001) and fluorometer (p < 0.01) (data not shown). Therefore, a dose-dependent 
relationship between As(III) concentration and fluorescence intensity was investigated with the 
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(p < 0.01) and 1 μg/L (p < 0.001) with comparison to the average of all kinds of water tested  
(Figure 4(d)). A significance difference was found at 10 μg/L (p < 0.05) using mineral water brand B. 
Significant differences were observed at 5 μg/L based on comparison within individual water. 
Therefore, the solid phase biosensor is also available for monitoring of Cd(II) in drinking water. 

Kawakami et al. [13] reported a detection limit of 1 μg/L for Cd(II) in the previous assay procedure, 
which is composed of 15-min pre-incubation of cell lysates containing CadC-GFP with samples, 15-min 
incubation of the mixtures in wells where Pcad-Ocad-50 was immobilized, and measurement of 
fluorescence, as shown in Figure 1(a). Therefore, it would be possible to conclude that the solid phase 
biosensor reduces the assay time and lessens the steps of assay procedure in the previously reported 
CadC-GFP biosensor while keeping the sensitivity to Cd(II). 

3.3. Responsiveness of the Lyophilized Solid Phase Biosensors 

The solid phase biosensors were lyophilized to enable preservation in the refrigerator. A microplate 
modified with lyophilized ArsR-GFP binding to Oars-30-down or lyophilized CadC-GFP binding to 
Pcad-Ocad-50 was used to evaluate fluorescence intensities obtained with different concentrations of 
As(III) or Cd(II), respectively. Detection limits for As(III) and Cd(II) were 5 μg/L with a fluorometer 
(Figure 5(a,b)). Therefore, the lyophilized solid phase biosensors were preserved stably at 4 °C without 
lyoprotectants. The dose-dependent increase of fluorescence by the lyophilized biosensors was more 
marked in Cd(II) than in As(III). Lyophilization increases shelf life, flexibility and stability of the 
fluorescence protein [14,15]. Therefore, lyophilization is required to produce the stable solid phase 
biosensors available for practical use. 

Figure 5. Dose-response relationships between As(III) (a) or Cd(II) (b) concentration and 
fluorescence intensity of the lyophilized solid phase biosensors. Fluorescence was 
measured with fluorometer. A solid line and two broken lines show a mean ± SD of data 
obtained with ultrapure water. Statistical significance was shown as * p < 0.05; ** p < 0.01; 
*** p < 0.001. 

 

3.4. Features of the Solid Phase Biosensors 

Escherichia coli ArsR [11] and Staphylococcus aureus CadC [16] lose binding capability to Oars or 
Ocad in their metal-binding conformations, respectively [11,16-19]. It is worth to note that in the 
previously developed biosensors, the association process between trans factor and cis element was 
evaluated [13] whereas, in the solid phase biosensors, their dissociation process was evaluated. Another 
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important fact demonstrated in this study is that the binding capacity and association/dissociation ratio of 
ArsR-GFP in response to As(III) are markedly affected by the nucleotide sequences chosen from the 
promoter−operator region. The response of the solid phase biosensor to As(III) was successively 
improved by choosing Oars-30-down.  

This study showed that the newly developed solid phase biosensors respond to As(III) and Cd(II). 
However, besides the specific toxic metals, the biosensors must respond to Sb(III), Pb(II) and Zn(II) 
because the specificities of ArsR-GFP to Sb(III) and CadC-GFP to Pb(II), Zn(II) and Sb(III) have been 
demonstrated [13]. The generally recognized advantages of metal-monitoring biosensors over 
traditional methods such as AAS and ICP are their capability of on-site measurement, low cost and 
easy manipulation. In this study, solid phase biosensors with easy manipulation were successively 
developed while maintaining the low detection limits (<10 μg/L) of the previously developed 
biosensors [13] in comparison with the detection limits of flame AAS (~1 mg/L) [20,21], ICP-Atomic 
Emission Spectroscopy (30 μg/L) [22]. 

When the solid phase biosensors are compared with biosensors that utilize transcriptional switches 
to respond to analytes and to trigger signal transduction, their superior features can be highlighted. The  
solid phase biosensors elicit a significant response within 30 min for As(III) and 15 min for Cd(II), 
which are much shorter than the times required by whole-cell based biosensors whose responses usually 
take place within 2 to 3 h [22]. The biosensor based on in vitro reconstitution of the transcriptional 
switch has been reported [23]. In the assay, however, it takes 2 h to bind tetracycline-Renilla 
luciferase-tagged repressor protein (TetR-Rluc) on its repressor-operator site. In addition to this long 
assay time requirement, enzyme reactions of luciferase remaining on the wells is needed to obtain a 
luminescence signal, whereas, in the solid phase biosensors, the fluorescence signal is directly produced 
by GFP-tagged ArsR or CadC protein with an increase in toxic metal concentrations because dissociation 
from cis element becomes pronounced in the presence of As(III) or Cd(II). The capability of direct 
sample addition is another advantage of the solid phase biosensors. In comparison with the previously 
developed biosensors [13,23], the solid phase biosensors are advantageous in terms of the required assay 
time and protocol simplicity. Additionally, their ease of handling and storage are worth mention as the 
whole elements of biosensor can be preserved in a same package without lyoprotectants under normal 
refrigeration conditions, and can be rehydrated by the direct addition of sample. 

Among environmentally found heterogeneous elements, the hardness of water may weaken the 
fluorescence intensity of CadC-GFP to Cd(II) because the tendency was more marked in very hard  
water brand B (203 mg/L as CaCO3) than in soft water, tap water (56.1 mg/L as CaCO3) and brand A 
(42.9 mg/L as CaCO3). Contrary to this tendency, higher fluorescence responses of ArsR-GFP to 
As(III) were found in mineral water brand B. The opposite effects might be caused due to different 
behavior of the trans factors (CadC and ArsR) in very hard water and/or different reactivities of the 
buffers (Tris-HCl and KPB) to minerals. Therefore, in very hard water, dissociation of CadC-GFP 
from the solid phase might be partially hampered, resulting in the lower fluorescence values. In case  
of CadC-GFP, by taking an adequate control adjusted to the hardness of water, the solid phase 
biosensors can be provided as a common tool for monitoring of Cd(II) in drinking water. Thus, it was 
demonstrated that the developed solid phase biosensors offer a simple operating procedure  
and have the portability, stability and sensitivity which are necessary for monitoring of toxic metals in 
drinking water. 
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4. Conclusions  

The dissociation process of the complexes composed of GFP-tagged trans factor and immobilized 
cis element could be applied to a simple and rapid protocol to detect As(III) or Cd(II) in drinking 
water. Prepared protein−DNA complexes are more preferable for lyophilization in a same package and 
can be stored under normal refrigeration conditions after manufacturing a sensor kit for the toxic 
metals with detection limits of <5 µg/L based on ultrapure water and <10 µg/L based on tap water and 
bottled mineral water. The manufactured kits could be handled just by adding samples directly to 
microplate wells, and results would be obtained with 30-min and 5-min incubation for As(III) and Cd(II), 
respectively. Another big advantage is its portability because the handheld battery-powered fluorometer 
can be used anywhere to measure the fluorescence intensity that reflects the toxic metal concentrations.  
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