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Abstract: Cooperative communication in wireless sensor network (WSN) explores the

energy efficient wireless communication schemes between multiple sensors and data

gathering node (DGN) by exploiting multiple input multipleoutput (MIMO) and multiple

input single output (MISO) configurations. In this paper, anenergy efficient cooperative

MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is

used as an error correcting code. The rate of LDPC code is varied by varying the length

of message and parity bits. Simulation results show that thecooperative communication

scheme outperforms SISO scheme in the presence of LDPC code.LDPC codes with different

code rates are compared using bit error rate (BER) analysis.BER is also analyzed under

different Nakagami fading scenario. Energy efficiencies are compared for different targeted

probability of bit errorpb. It is observed that C-MIMO performs more efficiently when

the targetedpb is smaller. Also the lower encoding rate for LDPC code offersbetter error

characteristics.
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1. Introduction

Recent advances in micro-electro-mechanical systems technology have enabled the development of

wireless sensor nodes in a wireless sensor network (WSN). These tiny sensor nodes are able to sense,

process and communicate with each other [1,2]. Since the battery capacity in each node is limited and

the goal is to maximize the lifetime of the network, there arestrict energy consumption constraints in

WSNs [3]. The size of sensors is typically small but the functions inside the sensor are complex. Recent

hardware advancements allow more signal processing functionality to be integrated into a single sensor

chip. RF transceiver, A/D and D/A converters, base band processors, and other application interfaces

are integrated into a single device to be used as a smart wireless node. A wireless sensor network

typically consists of a large number of sensor nodes distributed over a certain region. Monitoring

node (MN) monitors its surrounding area, gathers application-specific information, and transmits the

collected data to a data gathering node (DGN) or a gateway. Energy issues are more critical in the

case of MNs rather than in the case of DGNs since MNs are remotely deployed and it is not easy to

frequently change the energy sources. Therefore, the MNs have been the principal design issue for energy

limited wireless sensor network design. One prospective solution is the use of MIMO [4,5] for energy

efficient design with a targeted probability of bit error at the receiver. Also LDPC-coded MIMO optical

communication is mentioned in [6]. But the MIMO techniques require complex transceiver circuitry

and signal processing leading to large power consumptions at the circuit level. Moreover, physical

implementation of multiple antennas at a small-size sensornode may not be feasible. The solution came

in the form of cooperative MIMO (C-MIMO) [4–8]. C-MIMO is a kind of MIMO technique where

the multiple inputs and outputs are formed via cooperation in a network of single antenna nodes. The

sensors cooperate with each other to form a MIMO structure and in fact lead to better energy efficiency

and smaller end-to-end delay. The basic idea of C-MIMO was first proposed by S. Cui in [4]. Later this

idea has been improved in [5] by Jayaweera considering channel estimation (training overhead) in the

DGN side and is further modified in [9] by Y. Gai and in [8] by M. Rakibul.

The issue of applying error control codes in WSNs is the topicof recent interest. The performance of

block codes and Viterbi decoded convolutional codes is investigated in [10,11]. The iterative decoding

algorithm using turbo code is used to prolong the network lifetime [12]. Low-density parity-check

(LDPC) codes are more reliable than the block and convolutional codes and are serious competitors of

turbo codes. In particular, LDPC codes exhibit an asymptotically better performance than turbo codes

and admit a wide range of trade-offs between performance anddecoding complexity [13]. Sartipi and

Fekri [14] compare the performance of the LDPC codes and the Reed Solomon (RS) codes [15]. From

the recent works, it is known that LDPC codes are attractive in WSNs because of their applications in

compression, joint sourcechannel coding and distributed source coding [14,16]. However, to the best

knowledge of the authors, there has been no document on the implementation of LDPC encoder/decoder

in a wireless sensor node using cooperative communication.More precisely, none of the recent works

have addressed the problem of reducing the energy consumption using error control coding. In this

paper, LDPC code is incorporated in cooperative communication as an error control code. Later the idea

is compared with SISO communication. In Section2, the system model is shown and the error correction

using LDPC code is analyzed in Section3. Section4shows the energy model for both cooperative MIMO



Sensors 2011, 11 9889

and SISO considering error correction codes. In Section5, simulation results are shown and discussed.

Finally, Section6 concludes the paper.

2. Cooperative MIMO Communication

2.1. System Model

The system model for C-MIMO communication is a centralized wireless sensor network where there

is a data gathering node (DGN) and several clusters with several sensors in each cluster. Sensors in

one cluster transmit the data to the sensors in adjacent cluster and step by step the data reach the DGN.

Figure1 shows the cluster to cluster communication where two clusters are shown. The system considers

Nt number of sensors in the transmitting cluster,Nr number of sensors in the receiving cluster and one

antenna is placed at one sensor. Also, each element in the channel matrixH is assumed to be a zero-mean

circularly symmetric complex Gaussian random variable with unit variance and can be considered as

follows.

H =













h11 h12 . . . h1Nr

h21 h22 . . . h2Nr

...
...

...
...

hNt1 hNt2 . . . hNtNr













.

Figure 1. System model for cluster to cluster communication in wireless sensor network.
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The problem here is stated from the receiver point of view, soa loss model is used to estimate the

received energy. To calculate the total energy consumption, both the circuit and transmitter power are

taken into count. The same transmitter and receiver blocks shown in [4] are used in this paper. Source

coding, pulse shaping, and modulation block are as well omitted from the design. Throughout the

paper, a system with narrowband, frequency-flat Rayleigh fading channels and perfectly synchronized

transmission/reception between wireless sensor nodes is assumed. The fading is assumed constant during

the transmission of each frame. In our model, a sensor with high residual energy is deployed as a cluster



Sensors 2011, 11 9890

head and it remains the cluster head until the network dies. The cluster head broadcasts its status to

the other sensors in the network. Each sensor node determines to which cluster it wants to belong by

choosing the cluster head that requires the minimum communication energy. Once all the nodes are

organized into clusters, each cluster head creates a schedule for the nodes in its cluster. This allows the

radio components of each non-cluster-head node to be turnedoff at all times except during its transmit

time, thus minimizing the energy dissipated in the individual sensors.

2.2. Cooperative Communication

The physical phenomena monitored by sensor networks, e.g.,forest temperature, water

contamination, usually yield sensed data that are stronglycorrelated. Data aggregation is the tool by

which the correlated data size can be significantly reduced depending on the correlation factor. Figure2

explains the cooperative communication where the sensors at cluster 1 send the information data to the

cluster head os cluster 2. At the first step, the sensors at cluster 1 send the data to their cluster head.

The cluster head then aggregates the data in the second step.After the aggregation, the cluster head

send the aggregated data back to all the sensors in that cluster. This is the step three in cooperative

communication. At this stage, all the sensors at cluster 1 have the same information data. At the fourth

step, the sensors transmit the aggregated data to the cluster 2. After receiving the data at the receiving

cluster, sensors at cluster 2 transmit the received data to their cluster head locally and complete the

cooperative communication.

Figure 2. Cooperative communication.
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3. Error Correction Codes in Wireless Sensor Network

Error control coding (ECC) introduces redundancy into an information sequenceu of lengthk by the

addition of extra parity bits. Several different types of ECC exist, but we may loosely categorize them

into two divisions: (1) block codes, which are of a fixed length nC , with nC − k parity bits, and are

decoded into one block or codeword at a time; (2) convolutional codes, which, for a ratek/nC code,

input k bits and outputnC bits at each time interval, but are decoded in a continuous stream of length

L >> nC . Block codes include repetition codes, Hamming codes [17], Reed Solomon codes, and BCH

codes [18]. Short block codes like Hamming codes can be decoded by syndrome decoding or maximum

likelihood (ML) decoding by either decoding to the nearest codeword or decoding on a trellis with the

Viterbi algorithm or maximum a posteriori (MAP) decoding with the BCJR algorithm. Algebraic codes

such as Reed Solomon and BCH codes are decoded with a complex polynomial solver to determine

the error locations. Convolutional codes are decoded on a trellis using either Viterbi decoding, MAP

decoding, or sequential decoding.

Another categorization is based on the decoding algorithms: (1) non-iterative decoding algorithms,

such as syndrome decoding for block codes or maximum likelihood (ML) nearest codeword decoding

for short block codes, algebraic decoding for Reed Solomon and BCH codes, and Viterbi decoding or

sequential decoding for convolutional codes; (2) iterative decoding algorithms, such as turbo decoding

with component MAP decoders for each component code, and thesum product algorithm (SPA) [19]

or its lower complexity approximation, min-sum decoding [20], for low density parity check codes

(LDPCs). The non-iterative decoding category may be further divided into hard and soft decision

decoders; hard decision decoders output a final decision on the most likely codeword, while soft

decision decoders provide soft information in the form of probabilities or log-likelihood ratios (LLRs)

on the individual codeword bits. Viterbi decoding can be either hard decision or soft decision, with

a 2dB gain in performance for soft decision decoding. Category (2) are all soft decision algorithms

by nature, as iterative decoding requires soft informationasa priori input for each iteration. Iterative

decoding algorithms provide significant coding gain, at thecost of greater decoding complexity and

power consumption. With the recent technological advancements, all these ECC techniques can be used

in WSN. However, LDPC code is considered in this paper as an ECC tool at WSN for its superior error

correcting capabilities.

3.1. Low Density Parity Check Codes

Low density parity check codes are codes specified by a matrixcontaining mostly 0’s and relatively

few 1’s. A standard bipartite graph based ensemble which is shown in [21,22] is used in this paper. The

code length is designated byn and number of constraints bym. Therefore, there aren variable nodes

andm check nodes. Each variable node corresponds to one bit of thecodeword and each check node

corresponds to one parity check equation. Edges in the graphconnect variable nodes to check nodes and

represents the nonzero entries inH matrix. The term “low density” conveys the fact that the fraction of

nonzero entries inH is small, in particular it is linear in the block lengthn, as compared to “random”

linear codes for which the expected fraction of ones grows liken2 [23].



Sensors 2011, 11 9892

For regular codes, the correspondingH matrix hasδr ones in each row andδc ones in each column.

It means that every codeword bit participates in exactlyδc parity-check equations and that every such

check equation involves exactlyδr codeword bits. Low density parity check codes have been constructed

mostly using regular random bipartite graphs.

Example 1. Here is an example of a regular parity check matrix withδr = 6 andδc = 3.

H =





















1 1 1 0 0 1 1 0 0 0 1 0

1 1 1 1 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1 0 1 1 1

1 0 0 1 0 0 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 0

0 0 1 0 1 1 0 0 1 1 1 0





















The bipartite graph corresponding to this parity check matrix is shown in Figure3.

Figure 3. Bipartite graph corresponding to a regular parity check matrix.
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For irregular codes,δr andδc are not fixed for every row and column of the parity check matrix. We

consider that the irregular bipartite graph has a maximum variable side degreeδr and a maximum check

side degreeδc.

Example 2. The following H matrix is an example of an irregular parity check matrix witha

maximumδr = 6 and a maximumδc = 3.

H =








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

1 0 1 0 0 1 1 0 0 0 1 0
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1 0 0 1 0 0 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0


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



The bipartite graph corresponding to this parity check matrix is shown in Figure4.

For this paper, H matrix shown in Figure5 is used for simulation. This H matrix is a special matrix

used in 802.11n standard. WSN is energy constraint in natureand the sensors work as intermediate

devices when the data are transferred from a designated areato the data gathering node (DGN). Since
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decoding can be performed in the DGN, energy efficient decoding technique is not a concern for this

paper. Encoding is one critical issue considered in the wireless sensor network. In this paper, Richardson

encoding scheme is used as a tool for using LDPC code in WSN andis explained in the next subsection.

Figure 4. Bipartite graph corresponding to an irregular parity checkmatrix.

Variable nodes

Check nodes

Figure 5. H matrix used in the simulation.
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3.2. Richardson Scheme as the Encoding Technique

The encoding method proposed by Richardsonet al. [13] assumes thatH can be converted to an

approximate lower triangular matrix. The authors worked onanm × n parity check matrixH overF

wheren is the number of variable nodes andm is the number of check nodes. The parity check matrix

H is transformed in the form of

H =

[

A B T

C D E

]

, (1)

whereA is (m − g) × (n −m), B is (m − g) × g, T is (m − g) × (m − g), C is g × (n −m), D is

g × g, and E isg × (m− g) whereg is denoted as the gap. Further, all these matrices are sparseandT

is lower triangular with ones along the diagonal. This matrix is multiplied from the left by
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[

I 0

−ET−1 I

]

(2)

And theH matrix is found as

[

A B T

−ET−1A + C −ET−1B +D 0

]

. (3)

They then break the codeword asx = (s, p1, p2) wheres denotes the systematic part,p1 andp2 denote

the parity part,p1 has lengthg, andp2 has length(m− g). After that, the equationHxT = 0T is used to

state the following two equations

AsT +BpT
1
+ TpT

2
= 0, (4)

(−ET−1A+ C)sT + (−ET−1B +D)pT
1
= 0. (5)

Taking(−ET−1B +D) as nonsingular, it is concluded that

pT
1
= −(−ET−1B +D)−1(−ET−1A+ C)sT . (6)

pT
2
= −T−1(AsT +BpT

1
). (7)

By using the step by step procedure, it is shown that the complexity of calculatingp1 andp2 are

O(n + g2) andO(n) respectively. The matrix used in our simulation can also be written in ALT form

and is shown in Figure5.

4. Energy Model for Cooperative Communication Using LDPC Code

The total power consumptionPT for a single node consists of two main parts, namely, the power

consumption of all the power amplifiersPPA which is a function of transmission powerPout, and the

power consumption of all other circuit blocksPC . Thus one can write

PT = PPA + PC . (8)

The power consumption of all the power amplifiers can be calculated using the following equation

PPA = (1 + α)Pout, (9)

whereα = ( ξ
η
− 1), whereη is the drain efficiency [24] and ξ is the peak to average ratio. When the

channel only experiences akth power path loss with additive white Gaussian noise (AWGN),Pout can

be calculated using the link budget relationship as follows.

Pout = EbRb ×
(4π)2dk

GtGrλ2
MlNf , (10)
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whereEb is the average energy per bit required for a given bit error rate (BER) specification,Rb is the

transmission bit rate,d is the transmission distance,Gt andGr are the transmitter and receiver antenna

gains respectively,λ is the carrier wavelength,Ml is the link margin compensating the hardware process

variations and other background noise,Nf is the receiver noise figure defined asNf = Nr

N0

whereNr is the

power spectral density (PSD) of the total effective noise atthe receiver input andN0 is the single-sided

thermal noise PSD at the room temperature.

The power consumption in the circuit block includes transmitter and receiver power consumption

Pct andPcr, respectively. This power consumption is due to several power blocks such asPmix, Psyn,

Pfilt, Pfilr, PLNA, PIFA, PDAC , andPADC which are the power consumption values of the mixer, the

frequency synthesizer, the active filters at the transmitter and at the receiver side, the low noise amplifier,

the intermediate frequency amplifier, the D/A and A/D converter, respectively. The power consumption

block for error correction is not considered as it is same forcooperative case and SISO case. The total

energy consumption per bit can be written as

Ebt =
(PPA + PC)

Rb

, (11)

whereRb is the actual bit rate and can be replaced byReff
b = F−pNT

F
Rb whenpNT training symbols

are inserted in each block to estimate the channel at the receiving cluster or DGN side. The block size

is equal toF symbols and can be obtained by settingF = ⌊TCRS⌋, whereRS is the symbol rate and

TC is the fading coherence time. The fading coherence time can be estimated fromTC = 3

4fm
√

π
where

the maximum doppler shiftfm is given byfm = v
λ

with v being the velocity andλ being the carrier

wavelength [25]. The total energy consumption is estimated by multiplyingEbt by the number of bitsL

to be transmitted. Now we develop the mathematical model where we estimate total energy consumption

for cooperative communication.

The total energy consumption in cooperative case is modeledas

ECO =

Nt−1
∑

i=1

LiE
t
i + Eda

Nt
∑

i=1

Li + Eenc

Nt
∑

i=1

Li

r
γi

+(Nt − 1)Et0
i

Nt
∑

i=1

Li

r
γi

+El
M

Nt
∑

i=1

Li

r
γi

+
1

bmimo

Nt
∑

i=1

Nr
∑

i=1

Li

r
γiblrE

t
j, (12)

The energy per bitEt
i is needed to transmit the data from sensors to the cluster head. Eda is the

energy dissipation per bit required in the cluster head for data aggregation. It depends on the algorithm

complexity and can be expressed as

Eda(L) =

{

C0 + C1 × L+ C2 × L2 for O(n2)

C0 + C1 × L for O(n)
, (13)
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where L is the number of transmission bits andC0, C1 andC2 are coefficients depending on the software

and CPU parameters.Eenc is the encoding energy per bit and is taken1 µJ [26]. Et0
i denotes the local

transmission energy cost per bit for transferring the aggregated data to the remaining active sensors,γ is

the percentage of remaining data after aggregation and it reflects the correlation between data amongst

different sensors.r is the rate of LDPC encoding. Since the use of a rater = 1/2 makes the size of

the data after encoding,2 times the original data size, theLi

r
term is used to represent the data size after

encoding a message size ofLi with rater. The same energy per bitEt0
i is needed to transmit a command

signal from the cluster head to the selected sensors. After receiving all the bits, the nodes encode the

transmission sequence according to some diversity scheme,such as the STBC.El
M denotes the energy

cost per bit for the long haul MIMO transmission [4].
∑Nt

i=1

Li

r
γi is divided by the optimal bit size of the

long haul transmissionbmimo to find the number of symbols present in the received signal. The number

of symbols is then multiplied by the optimal bit size of the local transmissionblr to find the total bit

length. Et
j is the energy per bit required to transmit the data from a sensor to the cluster head at the

receiver side.Nr is the number of sensors at the receiving cluster.

For the SISO approach, sensors transmit their data to the cluster head and as there is no burden for

channel estimation, the cluster head will transmit all the aggregated data directly to the destination node

without any cooperation. So the total energy consumption becomes

ESISO =

Nt−1
∑

i=1

LiE
t
i + Eda

Nt
∑

i=1

Li + Eenc

Nt
∑

i=1

Li

r
γi + El

S

Nt
∑

i=1

Li

r
γi, (14)

whereEl
S denotes the SISO long haul transmission and can be calculated as a special case of MIMO

transmission withNt = 1 andNr = 1. In both SISO and C-MIMO case, fixed constellation size is used.

Since the encoding energy using Richardson scheme is same for both C-MIMO and SISO approach, it

is not considered in the equation for C-MIMO and SISO.

5. Simulation Results and Discussion

In order to get the total communication energy consumption,the average energy per bit required for a

given BERPb,Eb needs to be determined. In this approach, the value ofEb is found by using a numerical

search. Ten thousand randomly generated channel samples are taken and averaged to find the desired bit

error rate at each transmission distance. The value of the constellation size is kept fixed. For the long

haul communication, SISO is taken as a special case of MIMO structure. A list of system parameters

used in our simulation is shown in Table1 where the power consumption values of various circuit blocks

are quoted from [4].

5.1. Energy Issue

Total energy consumption and energy efficiency are the key terms to evaluate the energy efficient

performance. For simulation, it is considered that all the sensors in a cluster are transmitting the same

data size ofLi = 10kb. The simulation is performed based on the cluster size ofNt = 4. In Figure6, the

total energy consumption over distance is shown for clusterto cluster data transmission. From Figure6

it is clear that the cooperative MIMO is more energy efficientthan SISO transmission. The simulation
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is taken for two different code ratesr = 1/2 andr = 3/4. When the code rate increases, parity bits

compared to message bits are reduced. Therefore, total energy consumption reduces. This is verified in

Figure6.

Table 1. System Parameters.

fc = 2.5 GHz η = 0.35

GtGr = 5 dBi N0 = –171 dBm/Hz

B = 10 KHz k = 2 for local com

Pb = 10−3 k = 3 for long haul com

Nf = 10 dB Ml = 40 dB

Psyn = 50.0 mW Pmix = 30.3 mW

Eda = 5 nJ/bit/signals PLNA = 20 mW

Pfilt = 2.5 mW Pfilr = 2.5 mW

Figure 6. Total energy consumption over distance.
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5.2. Delay Issue

The total delay required is defined as the total transmissiondelay. For a fixed transmission bandwidth

B, we assume that the symbol period is approximatelyTS ≈ 1/B. The total delays in the case of SISO

communication is defined as

TSISO = TS

(

Nt
∑

i=1

Li

blt
+

1

bSISO

Nt
∑

i=1

Li

r
γi

)

+ tda, (15)

Whereblt is the transmission bit size at the transmitter side local communication andbSISO is the

transmission bit size for long haul SISO transmission.tda is the time taken for data aggregation.

The total delays in the case of cooperative MIMO communication is defined as
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TCO = TS

(

Nt
∑

i=1

Li

blt
+

Nt
∑

i=1

Li

r
γi

blt
+

1

bMIMO

Nt
∑

i=1

Li

r
γi

)

+TS

1

blr

{

Nt
∑

i=1

Li

r
γi

}

+ tda + tch, (16)

Wheretch and tda are the channel estimation and data aggregation delays respectively. The term

TS

∑Nt

i=1

Li

blt
is for the delay due to the local transmission from sensors tothe cluster head. The next term

is due to the local transmission from cluster head to the sensors. TS
1

bMIMO

∑Nt

i=1

Li

r
term is caused by

the long haul MIMO transmission. The next term is due to the local transmission at the receiver side.

The assisting nodes first quantize each symbol they receive intonr bits, then transform all the bits into

symbols usingblr and transmit to the cluster head to do the joint detection.

The delay difference is calculated using the following equation. We assume the value oftch ≈ 0.

DD = TSISO − TCO

= TS

(

1

bSISO

Nt
∑

i=1

Li

r
γi −

Nt
∑

i=1

Li

r
γi

blt

)

−TS

1

bMIMO

Nt
∑

i=1

Li

r
γi − TS

1

blr

Nt
∑

i=1

Li

r
γi, (17)

The value ofnr is chosen at the receiver based on the optimized transmittedconstellation size. The

delay difference is a measure of delay performance by which the cooperative MIMO can be compared

with SISO. Positive delay difference indicates the SISO is facing larger delay compared to C-MIMO. In

Figure7, delay difference is compared where proposed C-MIMO outperforms SISO after 60 meters.

Figure 7. Delay difference over distance for code rater = 3
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5.3. Constellation Size Issue

Since Energy efficiency= {ESISO − EC−MIMO}/ESISO, positive energy efficiency indicates

{ESISO > EC−MIMO}. In Figure 8, energy efficiency is simulated over distance for different
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constellation sizes. The simulation results show that for rater = 1/2, cooperative MIMO outperforms

SISO after 80 meters for constellation sizeb = 1 whereas it takes 10 meters for constellation sizeb = 8.

Figure 8. Energy efficiency for different constellation sizes.
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5.4. Bit Error Rate Issue

Using the parity check matrix provided in IEEE802.11n standard shown in Figure5, comparative

error performance studies have been taken for different encoding rates and are shown in Figure9. Also

the C-MIMO is compared with SISO in the1
2

rate case. The codeword length is kept fixed and the

number of decoder iteration is taken as100. Bit error rate (BER) is taken as performance parameter in

this paper. BPSK modulation and AWGN channel are used for thesimulation. Like the other wireless

channels, simulation using cooperative MIMO shows similaroutcomes.

Figure 9. Bit error rate over SNR curve for different encoding rate.
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The same BER analysis is taken in Figure10 in a Nakagami fading channel scenario. The result

shows that the decrease in Nakagami coefficientm degrades the error performance.

Figure 10. Error performance for different Nakagami coefficientm in Nakagami fading

channel.
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Figure 11. Energy efficiency for different targeted probability of biterrorpb.
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5.5. Reception Quality Issue

Targeted BER is the parameter that indicates the reception quality of the signal. The cooperative

MIMO communication used in this paper is simulated with a fixed value of targeted BER. Figure11

shows that the change in targeted BER changes the efficiency of cooperative communication over SISO

transmission. Result shows that the cooperative communication is more energy efficient than SISO

transmission in smaller targeted BER.

6. Conclusions

Energy efficient data transmission is one of the key factors for energy constraint wireless sensor

network. An energy efficient cooperative technique considering low density parity check codes is

modeled and simulated using Matlab. The results show that the cooperative communication outperforms

SISO transmission at the presence of error correction code.The energy efficiency remains almost

unchanged in different encoding rates but it largely varieswith the change in constellation size. BER

analysis is also taken to show the similar error characteristics in the cooperative MIMO environment.

Data with smaller encoding rate shows better BER results than larger encoding rate for a fixed SNR.

Simulation is also performed in the situation of a fading environment. It is also found that cooperative

communication is more energy efficient than SISO transmission in smaller targeted BER. Therefore it

can be concluded that cooperative MIMO with LDPC can be a goodchoice for high reception quality

signals.
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