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Abstract: Cooperative communication in wireless sensor network (W&kplores the
energy efficient wireless communication schemes betweehlipteusensors and data
gathering node (DGN) by exploiting multiple input multippeitput (MIMO) and multiple
input single output (MISO) configurations. In this paper, arergy efficient cooperative
MIMO (C-MIMO) technique is proposed where low density paiheck (LDPC) code is
used as an error correcting code. The rate of LDPC code isd/ény varying the length
of message and parity bits. Simulation results show thattoperative communication
scheme outperforms SISO scheme in the presence of LDPCIcD&&E codes with different
code rates are compared using bit error rate (BER) anal$i® is also analyzed under
different Nakagami fading scenario. Energy efficienciesa@mpared for different targeted
probability of bit errorp,. It is observed that C-MIMO performs more efficiently when
the targetedg, is smaller. Also the lower encoding rate for LDPC code ofteeter error
characteristics.
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1. Introduction

Recent advances in micro-electro-mechanical systemadémly have enabled the development of
wireless sensor nodes in a wireless sensor network (WSNseTtiny sensor nodes are able to sense,
process and communicate with each otHg?][ Since the battery capacity in each node is limited and
the goal is to maximize the lifetime of the network, there strect energy consumption constraints in
WSNs [3]. The size of sensors is typically small but the functiorsde the sensor are complex. Recent
hardware advancements allow more signal processing amadtty to be integrated into a single sensor
chip. RF transceiver, A/D and D/A converters, base bandgzsmrs, and other application interfaces
are integrated into a single device to be used as a smarteasrelode. A wireless sensor network
typically consists of a large number of sensor nodes digiib over a certain region. Monitoring
node (MN) monitors its surrounding area, gathers appboasipecific information, and transmits the
collected data to a data gathering node (DGN) or a gatewagrgynssues are more critical in the
case of MNs rather than in the case of DGNs since MNs are réyndéployed and it is not easy to
frequently change the energy sources. Therefore, the Midshieen the principal design issue for energy
limited wireless sensor network design. One prospectiltisa is the use of MIMO 4,5] for energy
efficient design with a targeted probability of bit error la¢ receiver. Also LDPC-coded MIMO optical
communication is mentioned iG], But the MIMO techniques require complex transceiver Wiy
and signal processing leading to large power consumptiomiseacircuit level. Moreover, physical
implementation of multiple antennas at a small-size semsde may not be feasible. The solution came
in the form of cooperative MIMO (C-MIMO)4-8]. C-MIMO is a kind of MIMO technique where
the multiple inputs and outputs are formed via cooperatma network of single antenna nodes. The
sensors cooperate with each other to form a MIMO structuderafact lead to better energy efficiency
and smaller end-to-end delay. The basic idea of C-MIMO was fiiroposed by S. Cui ir]. Later this
idea has been improved iB][by Jayaweera considering channel estimation (trainirgrtoead) in the
DGN side and is further modified i®] by Y. Gai and in B] by M. Rakibul.

The issue of applying error control codes in WSNs is the toprecent interest. The performance of
block codes and Viterbi decoded convolutional codes isstigated in 10,11]. The iterative decoding
algorithm using turbo code is used to prolong the networtiifie [L2]. Low-density parity-check
(LDPC) codes are more reliable than the block and convailatioodes and are serious competitors of
turbo codes. In particular, LDPC codes exhibit an asymgaditi better performance than turbo codes
and admit a wide range of trade-offs between performancedandding complexity13]. Sartipi and
Fekri [14] compare the performance of the LDPC codes and the Reed 8nl@RE) codes]5]. From
the recent works, it is known that LDPC codes are attractivd/ENs because of their applications in
compression, joint sourcechannel coding and distributedice coding 14,16]. However, to the best
knowledge of the authors, there has been no document on ghermantation of LDPC encoder/decoder
in a wireless sensor node using cooperative communicakitwre precisely, none of the recent works
have addressed the problem of reducing the energy consumysing error control coding. In this
paper, LDPC code is incorporated in cooperative commuoitais an error control code. Later the idea
is compared with SISO communication. In Sectiythe system model is shown and the error correction
using LDPC code is analyzed in SectidirSection4 shows the energy model for both cooperative MIMO
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and SISO considering error correction codes. In Se&j@imulation results are shown and discussed.
Finally, Sectior6 concludes the paper.

2. Cooperative MIMO Communication
2.1. System Model

The system model for C-MIMO communication is a centralizecklgss sensor network where there
is a data gathering node (DGN) and several clusters withraesensors in each cluster. Sensors in
one cluster transmit the data to the sensors in adjacerteckusd step by step the data reach the DGN.
Figurel shows the cluster to cluster communication where two ctastee shown. The system considers
N, number of sensors in the transmitting clustf€r,number of sensors in the receiving cluster and one
antenna s placed at one sensor. Also, each element in thaelaatrixH is assumed to be a zero-mean
circularly symmetric complex Gaussian random variabldwinit variance and can be considered as
follows.

hll hlg e thT
H— hgl hgg . . hQINT
hna hne oo b,

Figure 1. System model for cluster to cluster communication in wgglsensor network.

Sensor 2
(Cluster Head)

Sensor 2
(Cluster Head)

Cluster 1 Cluster 2

The problem here is stated from the receiver point of viewa $oss model is used to estimate the
received energy. To calculate the total energy consumgptiotih the circuit and transmitter power are
taken into count. The same transmitter and receiver bldota/s in [4] are used in this paper. Source
coding, pulse shaping, and modulation block are as well tethitrom the design. Throughout the
paper, a system with narrowband, frequency-flat Rayleigméachannels and perfectly synchronized
transmission/reception between wireless sensor nodssuseed. The fading is assumed constant during
the transmission of each frame. In our model, a sensor wgth tgsidual energy is deployed as a cluster
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head and it remains the cluster head until the network didse cluster head broadcasts its status to
the other sensors in the network. Each sensor node detextainvehich cluster it wants to belong by
choosing the cluster head that requires the minimum comeation energy. Once all the nodes are
organized into clusters, each cluster head creates a detfedthe nodes in its cluster. This allows the
radio components of each non-cluster-head node to be twfhat all times except during its transmit
time, thus minimizing the energy dissipated in the indiabsensors.

2.2.  Cooperative Communication

The physical phenomena monitored by sensor networks, dagest temperature, water
contamination, usually yield sensed data that are stroogkelated. Data aggregation is the tool by
which the correlated data size can be significantly reduepeilding on the correlation factor. Figire
explains the cooperative communication where the sensataster 1 send the information data to the
cluster head os cluster 2. At the first step, the sensors stecldt send the data to their cluster head.
The cluster head then aggregates the data in the secondAstep.the aggregation, the cluster head
send the aggregated data back to all the sensors in thag¢rclushis is the step three in cooperative
communication. At this stage, all the sensors at clustewvg bizde same information data. At the fourth
step, the sensors transmit the aggregated data to thercusdter receiving the data at the receiving
cluster, sensors at cluster 2 transmit the received datheio ¢luster head locally and complete the
cooperative communication.

Figure 2. Cooperative communication.
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Sensor 2 Sensor 2

Sensor N | | Cluster 1 head | | Sensor 1 | | Cluster 2 head | | Sensor 1| [SensorN
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3. Error Correction Codesin Wireless Sensor Networ k

Error control coding (ECC) introduces redundancy into darimation sequence of lengthk by the
addition of extra parity bits. Several different types of EExist, but we may loosely categorize them
into two divisions: (1) block codes, which are of a fixed ldngt,, with no — k parity bits, and are
decoded into one block or codeword at a time; (2) convolati@odes, which, for a rate/n. code,
input k& bits and output. bits at each time interval, but are decoded in a continuagesust of length
L >> n¢. Block codes include repetition codes, Hamming cod&g Reed Solomon codes, and BCH
codes [L8]. Short block codes like Hamming codes can be decoded byrggreldecoding or maximum
likelihood (ML) decoding by either decoding to the nearesienord or decoding on a trellis with the
Viterbi algorithm or maximum a posteriori (MAP) decodingtiwvthe BCJR algorithm. Algebraic codes
such as Reed Solomon and BCH codes are decoded with a congileromial solver to determine
the error locations. Convolutional codes are decoded ogllgstusing either Viterbi decoding, MAP
decoding, or sequential decoding.

Another categorization is based on the decoding algoriti{fsnon-iterative decoding algorithms,
such as syndrome decoding for block codes or maximum ligetih(ML) nearest codeword decoding
for short block codes, algebraic decoding for Reed SolormthECH codes, and Viterbi decoding or
sequential decoding for convolutional codes; (2) itemtiecoding algorithms, such as turbo decoding
with component MAP decoders for each component code, anduimeproduct algorithm (SPALP]|
or its lower complexity approximation, min-sum decodir&f|[ for low density parity check codes
(LDPCs). The non-iterative decoding category may be furtheided into hard and soft decision
decoders; hard decision decoders output a final decisiorhenmost likely codeword, while soft
decision decoders provide soft information in the form aflgabilities or log-likelihood ratios (LLRS)
on the individual codeword bits. Viterbi decoding can béeithard decision or soft decision, with
a 2dB gain in performance for soft decision decoding. Categojyaf2 all soft decision algorithms
by nature, as iterative decoding requires soft informaéiea priori input for each iteration. Iterative
decoding algorithms provide significant coding gain, at ¢bet of greater decoding complexity and
power consumption. With the recent technological advarces; all these ECC techniques can be used
in WSN. However, LDPC code is considered in this paper as ab ©0l at WSN for its superior error
correcting capabilities.

3.1. Low Density Parity Check Codes

Low density parity check codes are codes specified by a matniaining mostly 0's and relatively
few 1’'s. A standard bipartite graph based ensemble whichaws in [21,22] is used in this paper. The
code length is designated lyand number of constraints by. Therefore, there are variable nodes
andm check nodes. Each variable node corresponds to one bit aoh@vord and each check node
corresponds to one parity check equation. Edges in the gi@puiect variable nodes to check nodes and
represents the nonzero entriesinmatrix. The term “low density” conveys the fact that the frawc of
nonzero entries irlf is small, in particular it is linear in the block length as compared to “random”
linear codes for which the expected fraction of ones grokesii? [23).
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For regular codes, the correspondigmatrix hasd, ones in each row andl. ones in each column.
It means that every codeword bit participates in exagtlparity-check equations and that every such
check equation involves exactly codeword bits. Low density parity check codes have beenarisd
mostly using regular random bipartite graphs.

Example 1. Here is an example of a regular parity check matrix wjth= 6 andé,. = 3.

111001100010
111110000001
g_ 000001110111
100100011101
010110111000
(001011001110,

The bipartite graph corresponding to this parity check marshown in Figures.

Figure 3. Bipartite graph corresponding to a regular parity checkrmat

Variable nodes

Check nodes

For irregular codes), andd, are not fixed for every row and column of the parity check mate
consider that the irregular bipartite graph has a maximunabke side degre&. and a maximum check
side degreé...

Example 2. The following H matrix is an example of an irregular parity check matrix wéh
maximume, = 6 and a maximun, = 3.

101001100010
110110000001
g_ 000001110111
100100011101
010110111000
(001011000100,

The bipartite graph corresponding to this parity check marshown in Figuret.

For this paper, H matrix shown in Figues used for simulation. This H matrix is a special matrix
used in 802.11n standard. WSN is energy constraint in natodethe sensors work as intermediate
devices when the data are transferred from a designatedatiea data gathering node (DGN). Since
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decoding can be performed in the DGN, energy efficient degptichnique is not a concern for this
paper. Encoding is one critical issue considered in thel@gsesensor network. In this paper, Richardson
encoding scheme is used as a tool for using LDPC code in WSksangblained in the next subsection.

Figure 4. Bipartite graph corresponding to an irregular parity chekrix.

Variable nodes

QL
Check nodes

Figure5. H matrix used in the simulation.
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3.2. Richardson Scheme as the Encoding Technique

The encoding method proposed by Richardsbal. [13] assumes thai/ can be converted to an
approximate lower triangular matrix. The authors workedaamn x n parity check matrix over F'
wheren is the number of variable nodes andis the number of check nodes. The parity check matrix
H is transformed in the form of

ABT
CDFE
whereAis (m — g) x (n —m), Bis(m —g) x g, T'is(m —g) x (m —g),Cisg x (n —m),Dis
g x g,and E isg x (m — g) whereg is denoted as the gap. Further, all these matrices are spailgé
is lower triangular with ones along the diagonal. This nxaisimultiplied from the left by

: (1)
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I 0
2
—ET I @
And the  matrix is found as
A B T
L . : (3)
—ET*A+C -ET*B+DO0

They then break the codeword:as- (s, p1, p2) Wheres denotes the systematic part,andp, denote
the parity partp, has lengthy, andp, has lengthim — g). After that, the equatiod/z” = 07 is used to
state the following two equations

A5T+Bp1T+Tp2T =0, (4)

(~ET'A+C)s" + (-ET'B+ D)p] = 0. (5)
Taking(—ET~!'B + D) as nonsingular, it is concluded that

pi = —(—=ET'B+ D) ' (—ET'A+C)s". (6)

py =—T"'(As" + Bpy). (7)

By using the step by step procedure, it is shown that the cexitglof calculatingp; andp, are
O(n + ¢g*) andO(n) respectively. The matrix used in our simulation can also H&em in ALT form
and is shown in Figur®é.

4. Energy Model for Cooperative Communication Using LDPC Code

The total power consumptioR; for a single node consists of two main parts, namely, the powe
consumption of all the power amplifief® 4 which is a function of transmission powéy,,;, and the
power consumption of all other circuit block%;. Thus one can write

PT:PPA+PC- (8)
The power consumption of all the power amplifiers can be ¢aled using the following equation
PPA = (1 + a)Poutu (9)

wherea = (% — 1), wheren is the drain efficiencyg4] and ¢ is the peak to average ratio. When the
channel only experienceskd' power path loss with additive white Gaussian noise (AWGR), can
be calculated using the link budget relationship as follows

(47)2d*

Py = EbRb X Mle7 (10)
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whereE, is the average energy per bit required for a given bit errter (RER) specificationR, is the
transmission bit rate] is the transmission distanc@; andG, are the transmitter and receiver antenna
gains respectively is the carrier wavelengthy/; is the link margin compensating the hardware process
variations and other background noisg,is the receiver noise figure defined/sis = %O whereN, is the
power spectral density (PSD) of the total effective noisthatreceiver input and/, is the single-sided
thermal noise PSD at the room temperature.

The power consumption in the circuit block includes trartggmiand receiver power consumption
P., and P,,, respectively. This power consumption is due to severalgpdocks such a#,,;,, Psyn,
Prity Prir, Pona, Prra, Ppac, and Pype which are the power consumption values of the mixer, the
frequency synthesizer, the active filters at the transnattd at the receiver side, the low noise amplifier,
the intermediate frequency amplifier, the D/A and A/D coteerespectively. The power consumption
block for error correction is not considered as it is samectmperative case and SISO case. The total
energy consumption per bit can be written as

(11)

where R, is the actual bit rate and can be replacedﬂi‘{/f = %Rb whenpNr training symbols
are inserted in each block to estimate the channel at the/megeluster or DGN side. The block size
is equal toF’ symbols and can be obtained by settifig= |7 Rs|, whereRg is the symbol rate and
T¢ is the fading coherence time. The fading coherence time eastimated fromMy = ﬁ where
the maximum doppler shiff,, is given by f,, = { with v being the velocity and being the carrier
wavelength 25]. The total energy consumption is estimated by multiplylygby the number of bitd,
to be transmitted. Now we develop the mathematical modetewve estimate total energy consumption
for cooperative communication.

The total energy consumption in cooperative case is modsed

N¢—1 Ny NtL‘
E = LzEt Ea Lz Eenc _zi
SEPIECRED DY
NtL'
N, — 1)E®Y oy,
+(t )ZZ.ZIT/Y
N
L:
Ely Y —v
+M;r7

N¢ Ny

-%1ZZ%W% (12)

b,
mimo ,—1 T4

The energy per bi! is needed to transmit the data from sensors to the clustetr. hEg, is the
energy dissipation per bit required in the cluster head &ba dggregation. It depends on the algorithm
complexity and can be expressed as

CQ+01 X L—f-Og X L2 fOI’O(nQ)

13
CO +Cy x L for O(n) 7 ( )

Eda(L) = {
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where L is the number of transmission bits &g C; andC;, are coefficients depending on the software
and CPU parametersz,,,. is the encoding energy per bit and is taken.J [26]. £ denotes the local
transmission energy cost per bit for transferring the aggpesd data to the remaining active sensgiis,
the percentage of remaining data after aggregation anélette the correlation between data amongst
different sensorsr is the rate of LDPC encoding. Since the use of a rate 1/2 makes the size of
the data after encoding,times the original data size, thﬁ;e term is used to represent the data size after
encoding a message sizelofwith rater. The same energy per Lit° is needed to transmit a command
signal from the cluster head to the selected sensors. Adtaiving all the bits, the nodes encode the
transmission sequence according to some diversity schamhb,as the STBCZY, denotes the energy
cost per bit for the long haul MIMO transmissiof] Zfﬁl LT% is divided by the optimal bit size of the
long haul transmissioh,,;,., to find the number of symbols present in the received sigria. Aumber
of symbols is then multiplied by the optimal bit size of thedbtransmissiom,;, to find the total bit
length. £7 is the energy per bit required to transmit the data from awetosthe cluster head at the
receiver sidelV,. is the number of sensors at the receiving cluster.

For the SISO approach, sensors transmit their data to tiséeclbead and as there is no burden for
channel estimation, the cluster head will transmit all thgragated data directly to the destination node
without any cooperation. So the total energy consumpticoines

Ni—1 N N Ne g
Esiso = LiE! + By Y Li+Eue Y —y+EYY Ty 14
SISO ; i T d; + ;TW‘F sizlr% (14)
where EX denotes the SISO long haul transmission and can be caldudata special case of MIMO
transmission withV, = 1 andN, = 1. In both SISO and C-MIMO case, fixed constellation size igluse
Since the encoding energy using Richardson scheme is sarhetfoC-MIMO and SISO approach, it
is not considered in the equation for C-MIMO and SISO.

5. Simulation Results and Discussion

In order to get the total communication energy consumptiumaverage energy per bit required for a
given BERP,, I, needs to be determined. In this approach, the valu®, & found by using a numerical
search. Ten thousand randomly generated channel samgpledkan and averaged to find the desired bit
error rate at each transmission distance. The value of thetekation size is kept fixed. For the long
haul communication, SISO is taken as a special case of MIM@tsire. A list of system parameters
used in our simulation is shown in Taldavhere the power consumption values of various circuit bdock
are quoted from4].

5.1. Energy Issue

Total energy consumption and energy efficiency are the keysdo evaluate the energy efficient
performance. For simulation, it is considered that all thesers in a cluster are transmitting the same
data size of; = 10 kb. The simulation is performed based on the cluster siz¥,6f 4. In Figure6, the
total energy consumption over distance is shown for clusteluster data transmission. From Figére
it is clear that the cooperative MIMO is more energy efficidgran SISO transmission. The simulation
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is taken for two different code rates= 1/2 andr = 3/4. When the code rate increases, parity bits
compared to message bits are reduced. Therefore, totgyec@nsumption reduces. This is verified in
Figure®6.

Table 1. System Parameters.

fe=25GHz n=0.35

GG, =5dBi Ny =-171 dBm/Hz

B =10KHz k = 2 for local com
P,=1073 k = 3 for long haul com
N;=10dB M; = 40dB

P,,, =50.0 mW Piz = 30.3 MW

E4, =5 nd/bit/signals Py =20 mW

Ppi, =2.5mW P, =2.5mW

Figure 6. Total energy consumption over distance.
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5.2. Delay Issue

The total delay required is defined as the total transmis$etery. For a fixed transmission bandwidth
B, we assume that the symbol period is approximalélys 1/B. The total delays in the case of SISO
communication is defined as

Tsrso = T, i% ! iL i (15)
siso = 1g o~ b, be1so T% das

i=1
Whereb,, is the transmission bit size at the transmitter side localrooinication andg;so is the
transmission bit size for long haul SISO transmissiQpis the time taken for data aggregation.
The total delays in the case of cooperative MIMO communicei defined as
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= Nt .
o -1y (3o 305 LS )

i1 bMIMO

1 [ K L
Tg— —_ " taa + ten, 16
Tisy {ZT7}+d+h (16)

L

Wheret,., andt,, are the channel estimation and data aggregation delaysatesgy. The term
Ts SN b? is for the delay due to the local transmission from sensotise@luster head. The next term

is due to the local transmission from cluster head to theosrenﬁ”sm S Li term is caused by
the long haul MIMO transmission. The next term is due to tl@ldransmission at the receiver side.
The assisting nodes first quantize each symbol they receiwe:} bits, then transform all the bits into
symbols using,; and transmit to the cluster head to do the joint detection.
The delay difference is calculated using the following e We assume the value tf, ~ 0.
DD = Tsiso —Tco

—i%
=15 <bSISO Z_ B Z b, )

=1

1 .
—T ) iy 17
s Z 7= T >3 (17)
The value ofn, is chosen at the receiver based on the optimized transnaittestellation size. The
delay difference is a measure of delay performance by winetcboperative MIMO can be compared
with SISO. Positive delay difference indicates the SIS@sirfg larger delay compared to C-MIMO. In
Figure7, delay difference is compared where proposed C-MIMO otitpers SISO after 60 meters.

bMIMO

Figure 7. Delay difference over distance for code rate 3.

2.5t : : 1
2, 4

Delay Difference (sec)
=

0 20 40 60 80 100
Distance (m)

5.3. Constellation Sze Issue

Since Energy efficiency= {Es;so — Fe-mimol}/Esiso, positive energy efficiency indicates
{Esiso > Ec_mimo}- In Figure 8, energy efficiency is simulated over distance for different
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constellation sizes. The simulation results show thatdter = 1/2, cooperative MIMO outperforms
SISO after 80 meters for constellation size: 1 whereas it takes 10 meters for constellation sizeS.

Figure 8. Energy efficiency for different constellation sizes.
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5.4. Bit Error Rate Issue

Using the parity check matrix provided in IEE#2.11n standard shown in Figurg comparative
error performance studies have been taken for differerdading rates and are shown in Figl@eAlso
the C-MIMO is compared with SISO in thl; rate case. The codeword length is kept fixed and the
number of decoder iteration is taken d#¥). Bit error rate (BER) is taken as performance parameter in
this paper. BPSK modulation and AWGN channel are used fosithelation. Like the other wireless
channels, simulation using cooperative MIMO shows sinolaicomes.

Figure 9. Bit error rate over SNR curve for different encoding rate.

—6e—r=1/2 C-MIMO
—a—1r =1/2 SISO

—*—r = 2/3 C-MIMO
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Eb/No (dB)
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The same BER analysis is taken in Figdi@in a Nakagami fading channel scenario. The result
shows that the decrease in Nakagami coefficierttegrades the error performance.

Figure 10. Error performance for different Nakagami coefficientin Nakagami fading
channel.

10 : :
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_E,_Nakagn:lBER
5 & —o—Nakag _ BER |,
Nakaqn:lOOBER
—o— Nakag__. BER
S Y=2
10°F — 1
o
L
om
103k 1
10+ 1
10°
0 1 2 3 4 5 6 7 8

Eb/No (dB)

Figure 11. Energy efficiency for different targeted probability of bitrorp,.
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5.5. Reception Quality Issue

Targeted BER is the parameter that indicates the receptiatity of the signal. The cooperative
MIMO communication used in this paper is simulated with adixalue of targeted BER. FigurElL
shows that the change in targeted BER changes the effici¢rmopoperative communication over SISO
transmission. Result shows that the cooperative commiimicés more energy efficient than SISO
transmission in smaller targeted BER.

6. Conclusions

Energy efficient data transmission is one of the key factorsehergy constraint wireless sensor
network. An energy efficient cooperative technique congidelow density parity check codes is
modeled and simulated using Matlab. The results show tlkeatdbperative communication outperforms
SISO transmission at the presence of error correction colee energy efficiency remains almost
unchanged in different encoding rates but it largely vawi@h the change in constellation size. BER
analysis is also taken to show the similar error chara¢tesisn the cooperative MIMO environment.
Data with smaller encoding rate shows better BER results Bager encoding rate for a fixed SNR.
Simulation is also performed in the situation of a fadingismvment. It is also found that cooperative
communication is more energy efficient than SISO transmssi smaller targeted BER. Therefore it
can be concluded that cooperative MIMO with LDPC can be a gdace for high reception quality
signals.
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