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Abstract: The automated collection of data (e.g., through sensor networks) has led to a 
massive increase in the quantity of environmental and other data available. The sheer 
quantity of data and growing need for real-time ingestion of sensor data (e.g., alerts and 
forecasts from physical models) means that automated Quality Assurance/Quality Control 
(QA/QC) is necessary to ensure that the data collected is fit for purpose. Current automated 
QA/QC approaches provide assessments based upon hard classifications of the gathered 
data; often as a binary decision of good or bad data that fails to quantify our confidence in 
the data for use in different applications. We propose a novel framework for automated 
data quality assessments that uses Fuzzy Logic to provide a continuous scale of data 
quality. This continuous quality scale is then used to compute error bars upon the data, 
which quantify the data uncertainty and provide a more meaningful measure of the data’s 
fitness for purpose in a particular application compared with hard quality classifications. 
The design principles of the framework are presented and enable both data statistics  
and expert knowledge to be incorporated into the uncertainty assessment. We have 
implemented and tested the framework upon a real time platform of temperature and 
conductivity sensors that have been deployed to monitor the Derwent Estuary in Hobart, 
Australia. Results indicate that the error bars generated from the Fuzzy QA/QC 
implementation are in good agreement with the error bars manually encoded by a  
domain expert. 
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1. Introduction 

Computerization of modern science and technology has raised many concerns about the methods 
traditionally used to ensure the integrity and utility of data ([1], and references therein). It is 
particularly important that sensor deployments and their associated information systems follow 
scientific fundamentals to ensure the integrity and validity of the data collected and presented. These 
principles were recently formalized by the U.S. National Academy of Sciences Committee on Ensuring 
the Utility and Integrity of Research Data in the Digital Age in their report [2]. 

Addressing the report recommendations and the basic principles of scientific research, this paper 
develops a methodology and implementation procedures for automatically assessing the quality of 
research data gathered from sensors. In particular, it concentrates on calculating and presenting data 
quality metrics along with the research data themselves, crucial as modern measurement theory and 
practice assumes getting a measurement result along with some characteristics of its uncertainty [3]. 
Since the early 1990s and in particular since the publication of the ISO Guide [4], there has been an 
increasing recognition that the uncertainty of a measurement is no less critical than the value of the 
measurement result itself. Uncertainty may have a number of different components. Some of these 
may be evaluated by statistical methods but others may require expert estimates, reasoning and 
judgment ([4], and references therein). This paper combines both approaches. It derives the total 
uncertainty characteristics from statistical processing of the available data and includes a contribution 
from domain expert judgment. 

The paper’s goal is twofold: 

• to describe, for the first time, an automated method that uses a prototype fuzzy rules expert 
system to generate error bars. This will provide a more meaningful measure of uncertainty than a 
hard classification using data flags; 

• to demonstrate this approach’s success through its application to marine water monitoring. 

2. Research Data Quality and its Evaluation through Measurement Uncertainty 

Standards, e.g., International Guide to the Expression of Uncertainty in Measurement [4] (or GUM as 
it is now often called) and its US equivalent ANSI/NCSL Z540-2-1997 US Guide to the Expression of 
Uncertainty in Measurement [5] request the provision of a quantitative indication of the quality of the 
measurement result along with the result itself, so those who use the measured data can assess its 
reliability. The GUM standard’s approach groups the components of uncertainty in the result of a 
measurement into two categories according to the way in which their numerical value is estimated: 
those which are evaluated by statistical methods are classified as “Type A”, and those which are 
evaluated by other means are classified as “Type B”. A Type B evaluation of standard uncertainty is 
usually based on scientific judgment using all of the relevant information available, which may 
include:  



Sensors 2011, 11 9591 
 

 

• previous measurement data; 
• experience with, or general knowledge of, the behavior and property of relevant materials and 

instruments;  
• manufacturer’s specifications; 
• data provided in calibration and other reports, and uncertainties assigned to reference data taken 

from handbooks. 

As real-time sensor platforms become the norm in environmental sensing, there is a need to develop 
automated procedures to incorporate scientific judgments of the streamed data in the evaluation of the 
measurement uncertainty and associated data quality. As the judgments are often based on experts’ 
opinions and estimates, the data quality assurance systems could be designed within an expert system 
framework that uses fuzzy rules to characterize the properties and sources of the judgment.  

Fuzzy systems have been used in applications where the solution is highly dependent on human 
experience; because of either imprecise information being available or the empirical nature of the 
problem (e.g., [6], and references therein). Using a fuzzy system, it is possible to encode linguistic 
rules and heuristics, reducing the solution time since the expert’s knowledge can be built in directly. In 
addition, its qualitative representation form makes fuzzy interpretations of data very natural and an 
intuitively plausible way to formulate and solve several problems. Qualitative aspects can be 
implemented and can also be updated making this system useful to solve problems that are very 
difficult or impossible to solve analytically. 

Fuzzy heuristics can be applied to model a measurement result and its uncertainty [7,8], classifying 
the existing models of measurement uncertainty into the following groups:  

1. Statistical model (standard model of uncertainty): the measuring function f is a random function 
and the measurement results Xi are real numbers. NB In this model the type B component of 
inexactness may not be well represented.  

2. Fuzzy set model: the measuring function is fuzzy, and the space Y of measured results are the 
fuzzy intervals JY characterized by the membership function µ(x) = µJ(x) (x). In this model:  

(a) The result of a single measurement is a fuzzy interval; the uncertainty of this measurement 
is described by a membership function; 

(b) The mathematical operations performed on the measurement results are operations on fuzzy 
intervals. Arithmetic operations on fuzzy intervals could be defined in a variety of different 
ways.  

3. Random-fuzzy model: the measuring function f is a random function, and the space Y of 
measurement results is the set of fuzzy intervals J. In this model, the results of measurements 
are random fuzzy intervals. It is possible to define the extended uncertainty for a given 
significance level using the fuzzy α-cut technique [9]. 

Over the last few years, new applications demonstrating more complicated schemes for using fuzzy 
formalized expert information in measurement procedures have been published. Mahajan et al. [10] 
describe an intelligent fusion measurement system in which the measurement data from different types 
of sensors with various resolutions are fused together based upon a measure of their confidence. This 
confidence was derived from information not commonly used in data fusion, such as operating 
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temperature, frequency range and fatigue cycles, which are fed as additional inputs to a fuzzy inference 
system (FIS) with predefined membership functions. The outputs of the FIS are weights that are 
assigned to the different sensor measurement data reflecting the confidence in the sensor’s behavior 
and performance. In [8] the fuzzy and interval analysis models of a two-dimensional navigation map 
and rough estimates of a robot position are applied to improve robot guidance and navigation.  
Mauris et al. [11] aim at reproducing the linguistic evaluation of comfort perception provided by a human 
through aggregation of relevant physical measurements such as temperature, humidity, and luminosity. 

These systems all combine different aspects to achieve a quick assessment of interest and our work 
shares this same objective by combining qualitative and quantitative assessments of sensor measurements 
to produce an automated data quality assurance system for marine sensor deployments. 

3. Automated Data Quality Control for Marine Sensors 

Despite a lack of data quality assessment in deployed near real-time marine sensors, there have been 
some notable exceptions. For example, the Argo float project has deployed over 3,000 profiling floats 
with satellite communications capabilities throughout the world’s oceans, and could be regarded as one 
of the largest sensor networks in operation worldwide. A key aspect of the project is both automated 
and manual QC of the data collected by the floats [12]. In recent years, a series of workshops have also 
been held in the USA to address the quality assurance of real-time marine data. Whilst recommending 
quality assurance procedures to improve the raw data quality, the participants also recognized the 
importance of automated QC including range and gradient checks on data as well as routines to 
remove data spikes and to take into account the output of nearby sensors [13]. Koziana et al. [14] 
describe their approach which also makes use of range and gradient checks on data. In all these cases, 
the outcome of the QC process is a data quality flag associated with each measurement; information on 
which quality checks have been passed or failed is often also made available. 

Whilst the provision of a data quality assessment is a significant improvement over its absence, it 
still leaves a challenge for the data user (who may not be a domain expert) in determining whether the 
data is fit for their purpose. For example, a swimmer or surfer looking at real-time water temperature 
data from local beaches may be content with uncertainties of 0.5 °C (0.9 °F) in the quoted data. But, 
can they rely on data flagged as “probably good”? In practice, the swimmer or surfer would need to 
consult a domain expert (impractical in most cases) to know whether data flagged “probably good” is 
fit for their purpose. In contrast, the work reported here seeks to quantify the uncertainty of individual 
measurements, effectively encoding domain expertise in the stored data themselves. 

In related work, Faradjian et al. [15] proposed abstract data types (ADT) and data structures for 
“indexing” noisy sensors. Data from the sensors are represented as probability density functions to take into 
account the uncertainty associated with each data point. However they do not generate the uncertainties but 
assume the measurement mean and standard deviation as inputs for their data types and algebra. 

A number of theoretical papers in the computer science literature have dealt with the challenge of 
dealing with incomplete and imprecise information. Parsons [16] provides a good review of this work in 
the research fields of databases and artificial intelligence. Of most relevance is the work of Umano [17] 
who combines the use of possibility distributions to model uncertainty in the value of an attribute and 
fuzzy degrees of membership to model the degree of association between values.  
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The work of Doong et al. [18] is the most closely related to the work presented here. They point out 
that “Data quality control is based on both objective criteria and human experience” and outline an 
automated data QC procedure for their coastal ocean monitoring network. A key difference in our 
approach is the use of fuzzy logic to result in a continuum in the data quality assessment and hence the 
ability to automatically assign error bars to data. This capability is crucial for data re-purposing, meaningful 
comparisons with models, prediction of sensor failure and scheduling of network maintenance.  

Parsons concludes that “it would be both interesting and useful to study the imperfections in data 
that real systems come up against from the perspective of actually building such a real system rather 
than studying the problems of imperfect data in a theoretical vacuum.” Bettencourt et al. [19] 
demonstrate this maxim with a practical anomaly detection scheme for wireless networks and, in the 
present paper; we develop and apply our approach to data from the Tasmanian Marine Analysis Network. 

4. Case Study: The Tasmanian Marine Analysis Network 

The Tasmanian Marine Analysis Network (TasMAN) [20] has been developed and deployed to help 
manage the multiple uses of the estuaries and coastal regions of southern Tasmania, Australia (Figure 1). 
These regions are used by industry, shipping, aquaculture and tourism operators along with commercial 
and recreational boaters and fishers. The network is designed to collect real-time data that will help monitor 
the health of the estuaries, as well as to provide warnings to industry and the general public. 

Figure 1. Location of node deployments and planned nodes in the TasMAN network. 

 

South-eastern Tasmania is home to two estuaries with very different histories. The Derwent estuary 
flows through the Tasmanian capital of Hobart. While the water quality is now improving, it has been 
greatly impacted in the past by urban stormwater and sewerage, industry (including a zinc smelter and 
paper mill), dense agricultural activity in the catchment, shipping, and commercial and recreational 
boating and fishing. In recent years, regulations and programs have led to a dramatic increase in water 
quality; however the riverbed sediment remains amongst the most polluted in the developed  
world [21]. The neighbouring Huon estuary has its headwaters in a World Heritage Area that makes up 
the southwest of the state. This region is largely untouched, mainly because of its remoteness  
and ruggedness. While there is some agriculture in the lower reaches of the catchment, and some 
aquaculture (salmon farming) near the mouth of the estuary, it is in a near pristine condition.  
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The TasMAN network consists of fixed and mobile nodes and uses mobile (3G) communications to 
deliver real-time data from the two estuaries, and the D’Entrecasteaux Channel which joins them, back 
to the CSIRO site in Hobart where they are integrated with models to produce nowcasts and forecasts 
of river conditions. It is also a demonstration infrastructure where sensor data are exposed for different 
applications and through different platforms. In these applications, data quality should be assured.  

4. Data Quality Control in TasMAN Using Fuzzy Rules 

4.1. Sensor QAQC Inputs 

A fuzzy rules-based system was implemented to assess the data quality at the sensor level. The 
system includes provisions for both Type A (rate of change of output values, cumulative rate of change 
of output values and node differences) and Type B (time since last calibration and time since last 
maintenance) uncertainty parameters. The rules’ inputs are as follows: 

4.1.1. Time since Last Calibration 

The output of a sensor drifts over time with a given rate. These drifts are generally related to the 
quality of a sensor and, hence, sensors require regular calibration. If a sensor is not calibrated 
according to the schedule outlined by the manufacturer, confidence in data obtained from the sensor  
is reduced. 

4.1.2. Time since Last Maintenance 

Sensors will be affected, to a greater or lesser degree, by the environment in which they are 
deployed. Sensors exposed to excessive heat or dust for long periods of time may degrade in 
performance. This parameter is particularly important in a marine environment because of the presence 
of high salt concentrations and biofouling (algal growth, shellfish attachment, etc.). 

Figure 2. Membership function for the parameter, time since last maintenance, for a 
number of sensors used in the TasMAN network. 
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An example of this membership function, for one of our temperature sensors (EC-250) and the 
Seabird37 conductivity, temperature and pressure sensors, is shown in Figure 2. Here, S (small), M 
(medium) and L (large) refer to the error introduced in the sensor output by this parameter, time since 
last maintenance.  

The shape chosen for the membership functions reflects the observation that measurement quality 
from our marine sensors appears to plateau at various stages as it degrades. Figure 3 shows a 
conductivity time series where this plateau effect is prominent. The reason for the plateau behavior is 
not clear but may be a result of the growth of different organisms on the sensor (e.g., initially algae, 
followed later by shellfish). 

Figure 3. Conductivity data, at a depth of one meter at the CSIRO Wharf, showing an 
example of a plateau followed by a drop in sensor data quality. 

 

4.1.3. Rate of Change of Output Values 

The rate of change of the sensor values (RoC(t) = x(t) − x(t-1)) was used as an input. Given the 
large-scale physical processes under study, rapid changes in sensor output are typically due to faulty 
sensors and not to sudden changes in the environment (e.g., given the high specific heat capacity of 
water and the large volume present, it is unlikely that water temperature in the estuary would rise by 
1 °C over 5 min). Instead, typical timescales for changes in physical parameters are hours or days.  

4.1.4. Node Differences QA/QC 

Node differences QA/QC compares the observations of individual sensors (of the same type)  
co-located within the same node and identifies any large discrepancies. The output from this process is 
used to modify the overall data quality assessment at the sensor level. The modification could be either 
downwards or upwards. For example, if all sensors in the node have recorded a decrease of 2 °C in 
water temperature in the past 30 min, then it may indicate an event at this location and we can have 
more confidence in the data from the individual sensors. However, if only one sensor records this 
decrease, it is suggestive of a fault with that sensor. 

Where there are only two sensor locations on a node, the percentage difference between the sensor 
readings could be used as the metric for Node QA/QC. In cases with more than two sensors it would 
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be preferable to compare the sensor reading with the mean of other sensors on the same node. Table 1 
shows the characteristics of a membership function for a case where there are two sensors of the same 
type at the same node location. 

Table 1. Membership functions for the parameters contributing to data quality. 

Parameter Small Small → Medium Medium Medium → Large Large 
Rate of change of temperature (°C/min) <0.03 0.03 to 0.05 0.05 to 0.07 0.07 to 0.11 >0.11 
Rate of change of conductivity (μS/min) <50 50 to 100 100 to 150 150 to 250 >250 

Time since last calibration (days) <360 360 to 540 n/a 540 to 720 >720 
Time since last maintenance (days): all 
temperature sensors, SBE37 
conductivity and pressure sensors 

<60 60 to 120 120 to 150 150 to 210 >210 

Time since last maintenance (days): 
EC-250 conductivity sensor 

<28 28 to 45 45 to 65 65 to 80 >80 

Percentage difference between sensor 
readings 

<1.5% 1.5% to 3.5% 3.5% to 6.5% 6.5% to 10.5% >10.5% 

This approach should be modified depending on the system under study. In the results presented 
below, the water body was well-mixed and data at the two sensors would be expected to be similar, 
despite their different depths. However, layering typically occurs in estuaries with warmer, less 
brackish water near the surface and cooler, more brackish water at depth. For these cases, it may be 
preferable to calculate water density from sensor readings at each depth and use these to check that the 
measured water column was hydrostatically stable. Contrastingly, a statistical model of the relationship 
between the two sensors in the stratified water column could be utilized as a quality metric. The model 
could be developed from training data and the metric could represent the difference between the model 
prediction and actual different between the two sensors. 

4.1.5. Cumulative Rate of Change of Output Values 

For the case of the “rate of change” parameter in Equation (1), a further membership function was 
needed. A sudden spike in a parameter (e.g., temperature) may be followed by a gradual decline back 
to its previous level. In this instance, the automated QA/QC system would detect the spike and 
associate a large error with it, but would not associate a large error with the subsequent readings (as the 
rate of change was small on each occasion). To address this issue, a cumulative rate of change function 
was introduced to retain some memory of previous rates of change. For the first measurement, the 
cumulative rate of change (cRoC) membership function was equal to the RoC function. For a 
following data point, at timestep t, it was calculated via: 

if (RoCsmall (t) + 0.5 × RoCmedium (t)) < (cRoCsmall (t − 1) + 0.5 × cRoCmedium (t − 1)) then 
 cRoCi (t) = RoCi (t) 
else 
 cRoCi (t) = (1 − k) × RoCi(t) + k × cRoCi(t − 1) 
i = small, medium, large 
 

(1) 
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where i is the index of the fuzzy set parameters and k is the smoothing time constant. A large value of 
the constant k results in a longer time for the return of confidence in sensor data following a spike. The 
first case in Equation (1) ensures that the cumulative rate of change function is able to quickly respond 
to degradations in sensor quality, while the second case ensures that it takes a longer time  
for confidence to return in the measurements from that sensor once the rate of change of the  
parameter decreases. Table 1 shows the characteristics of the membership functions for sources of 
uncertainty in the TasMAN network. 

4.2. Combination of Fuzzy Sets for Quality Assessment 

For a given measurement, “small”, “medium” and “large” uncertainty values were assigned for each 
of the parameters in Table 1. Empirically determined weightings were provided to the different 
parameters and they were combined according to: 

where TM is the “time since last maintenance” membership function, TC is the “time since last 
calibration” membership function and Ndiff is the “node difference” membership function. 

Once combined, the overall “small” value was referred to as the QC green fraction, the overall 
“medium” value as the QC yellow fraction and the overall “large” value as the QC red fraction. Finally 
the data was compared against thresholds (Table 2) based on the range of historical measurements in 
the region. Where data fell outside the expected range, the small and medium error fractions were 
overwritten with 0 and the large error fraction overwritten with 1. It should be emphasized that the data 
samples are not being altered according to this assessment, quality assessments of the samples are only 
being provided. 

Table 2. Thresholds applied to physical parameters of temperature and conductivity. 

Parameter Minimum value accepted Maximum value accepted 
Temperature (°C) 5 25 

Conductivity (μS/cm) 25,000 60,000 

4.3. Using Fuzzy Assessments for Generating Errors Bars 

The defuzzification process used to provide an overall estimate of data quality assigned 
uncertainties to the green, yellow and red components of the overall membership function. By 
combining these uncertainties, an overall quantitative assessment of uncertainty for each measurement 
was generated via Equation (3): 

αsmall was assigned a value equal to the sensor accuracy quoted by the manufacturer; the other 
coefficients were multiples of αsmall that were chosen empirically by trial and error using early 2008 
data as a training set. Table 3 lists the values of α obtained.  

Overalli = 0.2 × TMi + 0.1 × TCi + 0.25 × RoCi + 0.25 × cRoCi + 0.2 × Ndiffi  

i = small, medium, large (2) 

Error = Σ αI × Overalli 
i = small, medium, large (3) 
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Table 3. Empirically determined coefficients used in Equation (3). 

Parameter Small Medium Large 
Temperature (°C) 0.1 0.3 1.2 

Conductivity (μS/cm) 200 1,000 8,000 

5. Results and Discussion 

The system was initially applied to data collected at the CSIRO Wharf in Hobart between  
25 August and 5 November 2010. This node was composed of two EC-250 temperature and 
conductivity sensors fixed to the wharf, one at a depth of 1.0 m below chart datum and the other at a 
depth of 9.5 m below chart datum (chart datum was at the level of the lowest possible astronomical 
low tide). The sensors were field calibrated in early September 2010, following their deployment on 25 
August 2010. 

The automated data QA/QC procedure described in Section IV was applied to this dataset with the 
constant k assigned a value of 0.8. A subset of this data was also processed manually to generate error 
bars for comparison with the automated system. The subset was picked to represent data collected 
throughout the deployment and included all data collected on 26 to 28 August, 12 to 13 September, 26 
to 27 September, 10 to 11 October and 25 to 26 October; a total of 2,672 datapoints from each sensor. 

Figures 4 and 5 compare the manually calculated error bars and the error bars generated 
automatically for two samples from the shallow temperature dataset, one early in the deployment and 
the other later in the deployment.  

Figure 4. Shallow water temperature with manually calculated and automatically 
generated error bars for a period early in the sensor deployment. 

 

Prior to the temperature spike in Figure 4, the manually calculated and automatically generated 
error bars are close to identical. This is because this early in the deployment the main contribution to 
error is the accuracy of the sensor itself. The fuzzy set system indicated an overall small uncertainty; 
through Equation (3) this results in a calculated error bar equal to the sensor accuracy. During and 
immediately following the spike, the fuzzy set system slightly overestimates the error associated with 
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the measurement. This is a conservative approach and can be corrected later when the data is inspected 
by a domain expert. 

Figure 5. Shallow water temperature with manually calculated and automatically 
generated error bars for a period late in the sensor deployment. 

 

Later in the deployment, the measurement errors are larger (note the greater range of temperature  
on the y-axes in Figure 5). In this case, the fuzzy set system performs well prior to the jump in 
temperature. During the jump it conservatively overestimates the error. Immediately following the 
jump it slightly underestimates the error, but is still within a factor of two of the manually calculated 
error bars. 

The automatically generated error bars were expressed as a percentage of the manually-determined 
error bars over the 2,672 datapoints for each of the four sensors. Table 3 presents the distribution of 
these calculated percentages.  

Table 3. Ratio of automatically generated to manually determined error bars (expressed as 
a percentage) for eleven days chosen to be representative of the sensor deployment period. 

Automatically generated 
error bar/Manually 

determined error bar  

Temperature 
(−1 m) 

Temperature 
(−9.5 m) 

Conductivity  
(−1 m) 

Conductivity  
(−9.5 m) 

Above 300% 13 (0.5%) 1 (0.0%) 547 (20.5%) 537 (20.1%) 
Between 200 and 300% 166 (6.2%) 339 (12.7%) 268 (10.0%) 365 (13.7%) 
Between 150 and 200% 119 (4.5%) 84 (3.1%) 336 (12.6%) 342 (12.8%) 
Between 66.7 and 150% 2,131 (79.8%) 2,224 (83.2%) 980 (36.6%) 993 (37.2%) 
Between 50 and 66.7% 108 (4.0%) 9 (0.3%) 99 (3.7%) 138 (5.2%) 
Between 33.3 and 50% 92 (3.4%) 7 (0.3%) 177 (6.6%) 140 (5.2%) 

Below 33.3% 43 (1.6%) 8 (0.3%) 265 (9.9%) 157 (5.9%) 
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The fuzzy system is much more successful when applied to the temperature sensors than to the 
conductivity sensors. In the case of the temperature sensors, the automatically generated error bars are 
within 50% of the manually determined error bars for approximately 80% of the time, compared with 
approximately 37% in the case of the conductivity sensors. The fuzzy system is also more successful at 
estimating error bars for the deeper sensors than for the shallower sensors. The deeper sensors are less 
susceptible to biofouling than those near the surface, and biofouling has a much more significant effect 
on the conductivity sensors than on the temperature sensors, so the distributions shown in Table 3 
suggest that further work needs to be done in order to accurately account for biofouling effects in the 
automated process. 

The fuzzy system has a tendency to overestimate the error bars. This is conservative as, in these 
cases, the true value is still likely to lie within the error bars; however the range indicated by the error 
bars is larger than is necessary. 

Overall the novel approach detailed in this paper represents a viable approach to automatically 
generating error bars, producing error bars within 50% of the manually determined value 
approximately 80% of the time, and producing error bars within a factor of three approximately 99% 
of the time, in the case of the temperature sensors which are less susceptible to biofouling. 

6. Conclusions 

The automated collection of data streamed through sensor deployments has led to a massive 
increase in the quantity of environmental and other data available. The real-time requirement of 
streamed data and its sheer quantity means that automated data QC is necessary to ensure that the data 
collected is fit for purpose. 

We have designed and implemented a novel prototype expert system for automated data quality 
assessment, which incorporates not only data statistics, but also the expert knowledge of domain 
specialists. The framework has been successfully applied for evaluating and presenting the quality of 
data collected through a marine sensor network in South-Eastern Tasmania, Australia. Overall, in the 
case of the temperature sensors which are less susceptible to biofouling, the approach detailed in this 
paper produced error bars within 50% of the manually determined value approximately 80% of the 
time, and produced error bars within a factor of three approximately 99% of the time. The approach 
outlined here is able to assess data quality of large datasets in a timely manner and it is being applied 
to real-time data streaming from the TasMAN network. 
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