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Abstract: In this paper we present a quaternion-based Extended Kalman Filter (EKF) for
estimating the three-dimensional orientation of a rigid body. The EKF exploits the
measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial
magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated
by including them in the filter state vector. We employ the observability rank criterion
based on Lie derivatives to verify the conditions under which the nonlinear system that
describes the process of motion tracking by the IMU is observable, namely it may provide
sufficient information for performing the estimation task with bounded estimation errors.
The observability conditions are that the magnetic field, perturbed by first-order
Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the
IMU is subject to some angular motions. Computer simulations and experimental testing
are presented to evaluate the algorithm performance, including when the observability
conditions are critical.
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1. Introduction

Accurate tracking of the orientation of rigid bodies moving in a three-dimensional (3D) space is
important in several applications, including navigation of man-made vehicles, robotics, machine
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interaction and, of main interest to us in this paper, ambulatory human motion analysis. Several
approaches are available to create trackers that determine orientation based on measurements from,
e.g., acoustic, mechanical, optical, inertial and magnetic sensors [1]. One popular approach is based on
the principles behind inertial/magnetic sensing.

A state-of-the-art Inertial Measurement Unit (IMU) consists of a tri-axial accelerometer, a tri-axial
gyro, and a tri-axial magnetic sensor, henceforth referred to as an integrated IMU. The 3D orientation
can be computed by time-integrating the gyro output from known initial conditions. Due to
low-frequency gyro bias drift this operation is subject to errors that tend to grow unbounded over time.
On the other hand, gyros may help achieving accurate orientation estimates for highly dynamic
motions. The initial conditions needed for gyro integration are usually given by the accelerometer used
in combination with the magnetic sensor. The accelerometer can provide drift-free inclination
estimates by sensing the gravity vector; the magnetic sensor, which would sense the earth magnetic
field vector, helps providing drift-free heading estimates. Serious limitations affect their operation
when applied to ambulatory human motion tracking [2-4]. First, the difficulty of correctly interpreting
the acceleration signals exists, when the component due to the gravity field (vertical reference)
coexists with the component related to the body motion [5]. Second, ferromagnetic materials nearby
the IMU are critically disturbing sources when the magnetic sensor output is used to build the
horizontal reference for heading estimation [6,7].

Accurate estimates of the three-dimensional (3D) orientation of a rigid body by inertial/magnetic
sensing require that the complementary properties of gyros, accelerometers and magnetic sensors are
exploited [8]. Sensor fusion techniques are needed in order that the aiding sensors (accelerometer and
magnetic sensor) help mitigating the low-frequency gyro bias errors, while, in turn, the signals from
the aiding sensors, which are prone to relatively high-frequency errors, are smoothed using gyro data.
Different approaches are available to design sensor fusion algorithms [8]. In [9] a simple time-domain
first-order complementary filter is designed: it performs low-pass filtering on the signals from the
accelerometer-magnetic sensor pair and high-pass filtering on the signals from the gyro. Another
possible approach is represented by the use of deterministic single-frame estimation techniques [8].
They all are based on the concept of vector matching, which requires, in principle, the measurements
of constant reference vectors (e.g., gravity and the Earth’s magnetic field) [10]. Mostly, these
techniques have been employed in gyro-free systems for tracking static or slowly moving bodies in
environments containing only small magnetic sources [3,4,11]. In their original formulation, they are
unable to provide sequential estimates of a time-varying orientation and of other parameters than the
orientation, such as sensor biases [12]. In contrast with the previous approaches, which bypass at all
statistical modeling in the estimator design, extended stochastic linear estimation techniques use a
model for predicting aspects of the time behavior of a system (dynamic model) and a model of the
sensor measurements (measurement model). There appears to be wide consensus that the Kalman filter
is “perhaps the perfect tool for elegantly combining multisensory fusion, filtering, and motion
prediction in a single fast and accurate framework™ [13]. Since orientation determination is
intrinsically a non-linear problem, Extended Kalman filters (EKFs) are the tools to work with [14].

In [15] an indirect-state formulation of the EKF for an inertial head-tracker is described; it operates
on errors in the primary variables of Euler angles, angular velocity and gyro bias. The indirect-state
formulation is chosen to provide fast response, i.e., low latency due to computational demands of the
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algorithm. However, no expedient is provided to guard against the effects of body accelerations and
magnetic disturbances. Very interesting is the work in [16], where the authors use one tri-axial
accelerometer to measure inclination during dynamic tasks without requiring additional sensors, be
they gyros or magnetic sensors. A KF-based algorithm is designed to estimate the different
acceleration components, namely gravity and inertial acceleration, plus the accelerometer bias, based
on few reasonable assumptions about the properties of human motion. In a later paper by the same
group, an integrated IMU is used to estimate the full orientation matrix [17]. The KF for body segment
orientation in [16] is thus extended with models of gyro and magnetic sensor biases, in the attempt to
prevent heading drift and to compensate magnetic disturbances. A direct-state EKF is developed
in [18], where the quaternion and the angular velocity are included in the vector state. Dynamic models
of human limb motion in terms of first-order Gauss-Markov stochastic processes are used in
developing the filter equations. The linear measurement equations include the components related to
gyro measurements and components that are formulated in the quaternion space; this latter part of the
measurement equations uses a deterministic single-frame estimation technique, i.e., a Gaussian
Newton optimizer, that computes the corresponding quaternion for each set of accelerometer and
magnetic sensor measurements. No compensation of sensor errors or protection against magnetic
effects is provided in this work. A direct-state quaternion-based formulation of the EKF is developed
in [2], where angular velocity is considered a control input and active compensation (gyro bias and
magnetic effects) is achieved by using state-augmentation techniques. Since the angular velocity is not
part of the state vector, models of human motion dynamics are not necessary in the development of the
filter equations [19]. The non-linear measurement equations are formulated by rotating the reference
vectors in the body-frame using the estimated orientation matrix. The EKF is made adaptive
by introducing vector selection schemes that work on the measured gravity and magnetic field
vectors [4,20,21]: the measurement noise variances are increased in value, thus giving more weight to
the filter predictions, when variations are found between the measured acceleration and the gravity, or
between the measured magnetic field and the earth magnetic field.

The use of state-augmentation techniques is the preferred approach within the KF framework to
take sensor errors and magnetic disturbances into account. At one point or another, however, the
dimension of the state vector may create problems of system observability. Issues of system
observability have sometimes been addressed, e.g., [21,22], without a formal analysis being carried
out. A primary contribution of this paper is to elucidate under which conditions a KF-based algorithm
for orientation determination using an integrated IMU is observable; in other words, the conditions
when sufficient information is available for estimating a state vector that includes, in the present case,
the quaternion of rotation, the magnetic variation superimposed to the magnetic reference vector and
the gyro bias vector. To the best of our knowledge, this is the first time an observability analysis based
on tools from the nonlinear control theory, namely the Lie derivatives, is performed in this regard. We
take inspiration from the work described in [23], where the observability analysis is applied to a
problem of IMU-camera calibration. The observability conditions are that the magnetic field vector,
perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear,
and that the IMU is subject to some angular motions. Computer simulations and experimental testing
are presented to evaluate the algorithm performance, including when the observability conditions are
critical.
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2. Theoretical Background
2.1. Using Quaternions to Represent the Orientation

The 3D orientation of a rigid body is represented using two right-handed coordinate systems: the
earth-fixed frame E = {e; e, e;} and the body-fixed frame B = le e ¢} In applications of motion

tracking the motion of the E-frame due to the earth’s rotation is usually negligible; the E-frame is
therefore an inertial frame. In the following, we also assume that the sensitivity axes of the IMU
sensors are aligned with the axes of the B-frame, and the physical location of the accelerometer is
where the origin of the B-frame is located, i.e., no centripetal acceleration effects exist.

An arbitrary vector x in the 3D space can be represented in terms of the coordinates (or
components) with respect to either of the frames:

X, = CX,. (1)

The subscripts E, B denote in which frame the vector x is represented. The columns of the
orientation matrix iC are the representations of the e, i=1,..,3 with respect to B, while its rows are

the representations of the e'i, i=1,...,3 with respect to E. The orientation matrix and its transpose allow

moving vector representations from (to) E to (from) B, respectively. The orientation matrix is a 3 X 3
orthogonal matrix with unit determinant, which belongs to the 3D special orthogonal group SO(3) of
rotation matrices. The quaternion is a more parsimonious representation of orientation than the
orientation matrix [24]; it is derived by formulating the orientation matrix as a homogeneous quadratic
function of the Euler symmetric parameters ¢;, i = 1,...,4:

£C(6)213x3_2‘h [qx]+2[q><]2, @)
where the operator:
0 -9, ¢,
l[ax]=| ¢ 0 —q 3)
-4, 4 0

is the standard vector cross product and I,,x, is the n X n identity matrix. It is commonplace to refer to q
. _ T
as the vector part and to g4 as the scalar part of the quaternion q = [qT q 4] :

a=[0, . 4,]" =sin(6/2)n", g, =cos(6/2). @)

Here, the axis and angle of rotation (n,8) are another valid representation of the orientation, closely
related to the rotation vector 8 =6 n [24]. As implied by Equation (4), in order to represent a valid
rotation the quaternion must comply with the normalization constraint:

4
|ﬁ|=,/zqu =\ld +4; =1. (5)

In the quaternion space the multiplication between two generic quaternions q and q is defined as

follows:
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. . . T . 7
q®q :[(q4q+q4q+[qx]q) ‘I4q4_q'q} ) (6)

where the symbol - denotes the standard vector dot product.

T
Given the vector quaternion X, = I:X; O} , namely a quaternion with null scalar part associated

with the vector x,, the vector quaternion:
[ T —— [ [e—
XB:[X% 0] =q ' ®%, ®q (7)

is associated with the vector x,, rotated about the n-axis through an angle 6, see Equation (4). The

inverse quaternion q ' in Equation (7) is given by:

T
Q‘l ®q= [OT IJT - ﬁ_l =—[ q_ qu. (8)
[l
When the unit norm constraint Equation (6) is enforced, a quaternion is left with the three degrees
of freedom consistent with the SO(3) dimensionality. The four-component unit quaternion has thus
the lowest dimension of any globally non-singular orientation parameterization. However, the
representation is redundant, since the quaternion —q represents the same rotation as q.

2.2. Kinematic Equations

These describe the relations between the temporal derivatives of an orientation representation such
as the quaternion q and the angular velocity ®_, namely the angular velocity of the B-frame relative to
the Z-frame, as it is measured by a tri-axial gyro fixed to the body:

d_ 1_ 1| -[ogx] @, |- _
—q =— ® () r 0 = — B & = Q ®, D
—a=—a%[w, 0] 2{_T q=Q(w,)q )

In the following the time argument will always be dropped to make the notation a little easier.
Q(mp) is a 4 x 4 skew symmetric matrix. The kinematic Equation (9) do not involve nonlinear
computationally expensive trigonometric functions and are not affected by the presence of singularity

points, in contrast to the formulation using representations of orientation such as the Euler angles.
The discrete-time equivalent of Equation (9) is given by:

q)=oq(7,_), (10)
with:
sin (|uB| / 2)

<I)=c0s(|u,3|/2)l4X4 + |“B|/2

Q(0(4))- (11)
If the angular velocity is assumed constant in the sampling interval 7, =¢, —¢,_,,we have:

uy=[" @,(0)d7= 0,7, (12)
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2.3. Observability Analysis

A system is observable when, for any possible sequence of state and control input vectors, the
current state can be inferred by measuring the output variables. In other words, the output variables
contain all the information needed to determine the behavior of the system. For continuous time-
varying nonlinear systems the observability analysis, namely the analysis needed to verify whether a
system is observable or not, requires the development of specific tools [25].

Consider a nonlinear system X described, in state space form, by a set of equations of the following
form:

L=t (xu)=1,(x)+ 21 ()

dt i=1 (13)
y=h(x)

The time argument in x, w, and y is dropped. x =[x,,x,,...,x,]" € X R", u=[u,,u,,...u,]" e R',
Y=[¥, ¥y, v, € R"are, respectively, the state vector, the control input vector and the measurement

vector. The process function f is input-linear, i.e., it can be decomposed into a sum of independent
functions f;, each one corresponding to a different component u; of the control input vector u. The
process function f and the measurement function h are assumed smooth in their arguments, namely
they possess continuous partial derivatives of any order.

A suitable tool for studying the observability properties of X is the observability rank condition
based on the Lie derivatives of the measurement functions 4, (x),k=1L,...,m. The zero-order
Lie derivative of a scalar function is, by definition, the function itself, L°4, (x) = &, (x),k =1,...,m. The
first-order Lie derivative of the measurement function /4, (X) with respect to the component f; of the
process function f is given by:

\ oh :
L, ()= (x) £, (x) = XS (3) £, (), =0, (14)
J=L R
where V denotes the gradient operator. Since the first-order Lie derivative is a scalar function itself, the
second-order Lie derivative of /,(X) with respect to f; is defined in a similar fashion to (14):

Lh (x)=VLh (x) £ (x). (15)

The definition of higher-order and mixed Lie derivatives with respect to different components f;, f;
of the process function f follows the same route as above. For instance, the second-order Lie
derivatives with respect to f; and f;, given their first-order derivatives with respect to f;, are given by

erfthk (x) :thk (x)f,(x), 4,j=0,...0; k=1..m. (16)
The observability matrix is constructed by stacking the gradients of the Lie derivatives:
O(x)= {Vﬁé__‘f/_hk (x)|6,j=0,...;k=1,...m;s€ N}. (17)

The number of columns of the observability matrix is equal to the dimension n of the state vector x,
while the number of rows may grow unbounded with the order of the computed Lie derivatives. Since
the input and measurement functions are smooth, the number of rows of O can be thus virtually infinite.
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For nonlinear systems the observability property is related to the concept of indistinguishability of
states with respect to the control inputs. Two states x; and x, are said indistinguishable when, for every
admissible control input, the system produces the same outputs in a given interval of time when
starting from either x; or x,. The system X is weakly observable at the state X, if for every open
neighborhood U of x, Xo can be distinguished from states in U(Xy), or weakly observable if it is so for
every x € X. The system X is locally weakly observable at the state x if X¢ can be distinguished from
states in an open neighborhood V(xy) < U(x¢) when admissible control inputs lead to paths within
U(xo), or locally weakly observable if it is so for every x in X. A sufficient condition for the system X
to be locally weakly observable at x( is that O(x¢) is full rank, namely the gradients of the Lie
derivatives of the measurement functions computed at x = X, must span the state space X. If it is so for
every x € X the system X is locally weakly observable. It should be noted that the full-rank condition
of the observability matrix O(x) is only sufficient to say that the system is locally weakly observable.
In the case that the observability matrix O(x) is rank-deficient, the system’s behavior has to be verified
through computer simulations and experimental testing.

3. Method
3.1. Sensor Modeling

In response to the time-variant body angular velocity @yoqy, acceleration (constant gravity g and
time-variant body acceleration ay.qy), and local magnetic field (constant earth’s magnetic field h and
any time-variant magnetic variation”b acting nearby the sensor) the measured outputs of the gyro, the
accelerometer and the magnetic sensor from an integrated IMU can be written as follows:

0, =Ko, +°b+°v
am=”K§C(—g+abody)+“b+”v (18)
h,="K;C(h+"b)+"b+"v,

*K, ‘K, "K are the matrices of the scale factors (ideally, they are equal to Is43); b, “b,”b are the bias
vectors (ideally, they are null); ¢v, “v,”v are assumed independent white Gaussian measurement
noises, with null mean and covariance matrixX, = 0.1, X, = o1, ,and & =o0_1,,. Equation (18)
1s a simplified model that does not account for additional error sources, such as cross-axis sensitivity,
gyro g-sensitivity, nonlinearity, hysteresis and misalignment [26]. In the context of MEMS sensors, the
component in the gyro output due to the Earth’s rotation can be neglected as compared to sensor
errors, and therefore it does not appear in Equation (18).

The scale factor and bias of inertial and magnetic sensors are functions of environmental conditions,
in particular ambient temperature. Across the thermal variations typically encountered in practice,
thermal effects on accelerometers are of relatively lower quantitative relevance than on gyros, and they
are usually negligible on magnetic sensors. Moreover, scale factor drifts of inertial and magnetic
sensors usually affect the accuracy of the measurement process to a much lesser extent than the bias
drifts of these sensors, in particular gyros. Scale factor and bias errors of accelerometers can be
compensated on time scales up to few hours, using the procedure described in [26]; the procedure
described in [27] can be used to calibrate scale factors and hard iron offsets ” b, on similar time scales.
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A more serious problem concerns the bias errors of gyros and how they develop over time. This
problem is well received in the literature, where orientation estimators are oftentimes developed with
built-in devices for gyro-bias compensation. A random-walk vector random process with statistically
independent components is widely used for carrying the compensation task in a Kalman filtering
framework [28]:

<bw,, (19)
where w, is white Gaussian noise, with null mean and covariance matrix bEg = boj, I, .. We consider the
implementation of these devices essential for a proper operation of the filter, especially when the
opportunity to perform on-line bias capture are precluded by the nature of the tracked motions [29].
For slowly moving bodies in magnetically clean environments, gyro-free orientation determination
systems have been developed with mixed success [3,11]. In these systems a further simplification is

made in the sensor model Equation (18), where the only acceleration measured by the accelerometer is
gravity. Henceforth, we make the simplifying assumption that a, , =0.

3.2. Modeling the Magnetic Variation

A magnetic sensor measures the Earth’s magnetic field plus any other magnetic field superimposed
to it. For the purpose of orientation determination, an accurately known homogeneous magnetic field
in the environment surrounding the tracked body is needed as the horizontal reference for heading
estimation. Especially indoors, magnetic homogeneity is difficult to achieve, due to construction iron
in floors, walls and ceilings, or to various equipment. The magnetic distortions occur in both the
horizontal and vertical plane [6,7]. Suppose that, albeit not homogeneous, the magnetic field existing
in a given region of space is at least time-invariant. In this case, an interesting possibility to deal with
the problem of magnetic distortions would consist, in principle, of calibrating and mapping the
measurement volume. Besides being complicated and time-consuming, this approach is also in contrast
with the development of ambulatory sensor systems, whose prior knowledge of existence and location
of disturbances cannot be taken for granted: for instance, current IMUs do not produce position
information, which makes critical using the magnetic maps of the measurement volume.

IMUs are exposed to magnetic fields that can rapidly change in direction and magnitude, when
they move relative to their surroundings in a magnetically non-homogeneous environment. These
magnetic distortions, generically denoted with the term magnetic variation”b, can be expressed in the

earth-fixed frame. In order to prevent heading drift, the orientation estimator has to be developed with
a built-in device for compensation of magnetic variations. A first-order Gauss-Markov vector random
process with statistically independent components is chosen to model the magnetic variation:

ihb:

0 - "b+w,, (20)

where « is a positive constant, and w;, is white Gaussian noise, with null mean and covariance matrix
%, ="071, . This model is the same considered in [17], and generalizes the random-walk model
adopted in our previous research [2]. The random-walk model is obtained by Equation (20) by taking
a=0.
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3.3. Filter Implementation

The main difficulty of using quaternion-based state vector components in an EKF lies in the
formulation of the filter equations. For a review of these equations with a generic state-space model
see [30]. The origin of the problem lies in the lack of independence of the four components of a
quaternion, since they are related by the unit-norm constraint. Constraints imposed on the estimated
state variables cannot be preserved by EKFs in their standard development [19]. A popular method to
preserve the quaternion unit-norm property is to normalize the a posteriori estimate after the
measurement update stage (“brute-force” approach). Even though it is neither elegant nor optimal [31],
the "brute-force" approach is proven to work generally well [32]. The EKF developed in this paper
enforces the unit-norm constraint by the “brute-force” approach [2].

Since the angular velocity is measured from a body-fixed tri-axial gyro, the kinematic equations of
a rigid body can be used to obtain the orientation state [19]. Gyro data are treated as external inputs to
the filter rather than as measurements, and gyro measurement noise and bias enter the filter as process
noise rather than as measurement noise. An advantage of this choice is the reduction in the dimension
of the state vector, which may lead to minimal-order, computationally efficient filter implementations.

An important feature of EKFs is the possibility they offer to estimate unknowns by state vector
augmentation techniques. In this paper, we concentrate on the self-compensation of gyro bias and
magnetic variation, both accounted for in the filter as additional state vector components.

The continuous-time system model combines (9)-(19)-(20) together:

d

—q=Q(mw)q

dtq ( )q

L P

5 P= h 1)
dg

Ztph=w,.

dt £

The state vector in Equation (21) is x = [QT "b" ¢p” ]T. The equations for propagating the state

estimates in the model are obtained by applying the expectation operator to Equation (21).
By rearranging the equations in a format suitable for computing the Lie derivatives [23], we obtain:

_dL_ B T

a 1 _/a\e

q _ o=y 1__ el

it | 520 [1=

Ebh = -« bh + 03><l (")m 4 (22)
d A 03><1 03><1

darf] L

q9, —49; 4,
= (= q4I3X3+[q><]} q; 9, —4 — -
=(q)= = =|Ss, S S 23
@) { —q’ -4, ¢ 4, 5% 5] (23)
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In the following we drop the caret, which denotes the expectation of a random variable, to avoid
unnecessary cluttering in the notation. The discrete-time model allows employing the sampled
measurements of the IMU for state propagation:

x(k) f(k-1) x(k=1) w(k-1)

q(k) D(k-1) Cqk-1) Cw(k-1)
"b(k) =[exp<—aﬂ)l3xg 0} "k 1) |[ "w(k~1) (24)
“b(k) 0., L || *b(k-1) || *w(k—-1)
where:
o sin(|@(k-D|7,/2)
(k1) =cos(|@(k -1 |T,/2)L,, + PUSTTAE (d(k-1)) 25)

d(k-1)=0 (k-1)-b(k-1).

m

The process noise component ? w(k —1) describes how the gyro measurement noise enters the state
model through a quaternion-dependent linear transformation, as follows:

"wik 1) =—§E(a<k—1)) “y(k-1) 26)

The process noise components ‘w(k —1), "w(k —1), *w(k —1) are assumed uncorrelated; hence, the
process noise covariance matrix Q(k — 1) is shown to have the block-diagonal structure:

o. (T, /2)’ (trace(M, )1, — M, ) 0,, 0.,
Qk-1)= 054 o mOR2AL)y 27
200
0y 0 ("o T )
where:
M, =q(k-1)q(k =1 +P’(k~1) (28)

q(k—1) and P?/(k—1) denote, respectively, the expectation and the covariance matrix of the
quaternion component of the state vector [32].

Equation (18) is used to model the sensor measurements. Each reference vector component needed
for vector matching is given a specific equation:

a, (k) _ gC(ﬁ(k)) 0, g + “v(k) 79
b0 0. FC(@@)][h+ b ) | vk *9)
as done in [2]. The measurement equations are nonlinear, which forces to compute their Jacobian
matrices when carrying out the linearization process implied by the EKF. They will be shown in the
next Section, in connection with the problem of computing the Lie derivatives of the nonlinear system

of Equation (22). The measurement noise covariance matrix can be expressed directly in terms of the
statistics of the measurement noise affecting each sensor:

2
o1

3x3 0
R(k){ 0 021”} (30)

No vector selection scheme is introduced in the filter developed in this paper [2].
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The initialization procedure is carried out as follows: the processing of gyro data does not include
the procedure of bias capture; an initialization error is thus introduced by setting the gyro bias
component of the state vector to zero. The magnetic field is not taken from a magnetic field model, but
is rather computed as follows. The aiding sensor measurements are averaged during the initial rest
period (averaging time: 1s). Inclination is estimated by processing the acceleration average vector. The
magnetic average vector is then projected in the horizontal plane using the estimated inclination, which
allows estimating h in the earth-fixed frame. Finally, we apply the TRIAD method to the acceleration
and magnetic average vectors, using the gravity vector g and the estimated value of h as reference
vectors [3,33]. The initial quaternion and its covariance matrix are then computed.

3.4. Filter Observability

The observability test consists of demonstrating that the state space of the system with input-linear
process function described by Equation (22) is spanned by the gradients of the Lie derivatives of the
following measurement functions:

¢,(x)=:C(q)(-g)
¢,(0)=7C(q)(h+"D) G1)
9,(x)=q'q-1

The measurement function ¢;(X) is introduced to account for the quaternion normalization

constraint [23]. For its relevance in performing the observability analysis, we introduce, for a generic
vector p, the function:

_ 0 3~
w(q,p)=£fc(q)p- (32)
Using Equation (2) we obtain:
v(a.p) =] 2q.[px]+2([px][ax]-2[ax][px]) -2[ax]p] (33)

Since the zero-order Lie derivatives are the measurement functions themselves, the gradients of the
zero-order Lie derivatives are the Jacobian matrices of the measurement functions:

V£0(P1 (x)= [‘I’(@ _g) 0,; 0y
VL,(x)=|y(g.h+"b) 7C(q) 0.,] (34)
VL, (x)= qu 0, 01><3:|

The first-order Lie derivatives of @; and @, (with respect to f) can be computed as:

Lfi,(pl(x) = Vl:O(Pl(X)'fo = —%\V(q,—g)a (Q)bg
(35)
L0, =V L9, (), === w(@h+ 'b)Z (@)b, + 1C(a)(~"b)

The gradients of the first-order Lie derivatives of ¢, and @, (with respect to fy) are then taken:
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[1]

@)

1
Vﬁriq)l(x) = |:X1 0., _E\V(Qs_g)

| (36)
V-[TL(Pz (x)= |:Xz X, _E\V(Qah + hb) c (6):|
The next Lie derivative of interest is the first-order Lie derivative of @, with respect to fi:
| e\ —
£,9,(x) =V L0, (x)-f, = w(a@,h+"b)E(q) (37)

The gradient of the first-order Lie derivative of ¢, with respect to f; is obtained by expanding the
Lie derivatives as column vectors. These column vectors are stacked together as follows:

Vﬁr:(Pz(X):[r T 09><3]

i a h =(a | i a — h _ = i
r aq(\v(q’h+ b)"'(q)e‘) v ahb(w(q’ b)':(q)el)
1 1
1| 0 _ - 1| 0 — == 38
=T, =3 ﬁ(w(q,h+hb):(q)e2) Y=|T, =3 ahb(\p(q,’b):(q)ez) (38)
r3 Y}
20 _ i d i \m (=
_ﬁ(\y(q,h+hb):(q)e3)_ _ahb(w(q’ b)_(q)es)_
where e, =[100]",e,=[010]",e, =[001]".
Finally, we obtain the 22 X 10 observability matrix O(x):
_VLO(pl(X)_
VLo, (%)
V£/0(P1 (x) C6><7 06><3
O(x) = V£/6(P2(X) =| Dgy  Ags (39)
V[r(p (X) B10><7 01O><3
P2
_V£0¢3(X)_
where the following matrices are introduced:
| - _—
{A“} -5 v(3.-2)E(@) { r v
A: = B: _r 0
A, _l — = (= 2q 1x3

C=

W(qa_g) 03><3 :l D= |:X1 03><3:|

v(q.h+"b) FC(q) X, X,

The salient steps of the observability proof are reported in Appendix A, where the matrices X, Xa,
X3, and hence the matrix D, do not need to be computed explicitly. In short, the system of
Equation (22) is certainly locally weakly observable when: (a) the magnetic field has components in
the horizontal plane, which is necessary to have the horizontal reference for heading estimation; (b) at
least one degree of rotational freedom is excited. Remind that the magnetic dip angle, also called
magnetic inclination, is the angle the Earth’s magnetic field makes with the surface of the Earth; the
observability condition (a) fails when the dip angle is £90° (e.g., close to the Poles). Running the
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estimation algorithm during periods when the observability is not guaranteed—when the magnetic dip
angle is close to £90° or the IMU is in quasi-static conditions—is likely to degrade seriously the state
estimation accuracy. This fact has to be verified by assessing the system’s behavior by computer
simulations and experimental testing.

3.5. Filter Assessment

The performance metrics are based on computing the error quaternion Aq=q,' ®q, where q, and
q are the true and the estimated quaternion, respectively. In the present context the term #rue implies
the use of synthetic or experimental motion data to carry out the test procedure. An obvious advantage
of working with synthetic signals is that the errors incurred in estimating the state vector components
can be compared with the bounds that are predicted by the error covariance matrix produced by the
EKF. This is a useful feature to assess the filter convergence and to diagnose a number of potential
problems arising in its numerical implementation. Experimental motion data can be captured, e.g.,
from an optoelectronic motion tracker, so as to define the ground truth reference for filter assessment.

The error quaternion represents the rotation that brings the estimated body frame onto the true body
frame. Its scalar component can be used to derive the orientation error A6, according to the equation
A8 = 2arccos(Ags) The performance metrics are expressed in terms of the root-mean-square-value of
the orientation error (RMSE,), averaged over the number of either the Monte Carlo simulation runs or
the experimental trials available. Alternatively, a set of estimated and reference Euler angles (roll,
pitch, yaw or heading) can be computed from q, and q using standard conversion formulas, and the
filter performance can be summarized by presenting the RMSEs of the Euler angles, again averaged
over the number of either the Monte Carlo simulation runs or the experimental trials available.
Although the calculations for orientation are not performed using Euler angles, the results can be
presented in this way for better interpretation.

3.6. Computer Simulations

The body-fixed frame has a fixed origin, and it is aligned with the Earth-fixed frame at the initial
time of each simulation trial. Our choice of the earth-fixed frame follows the North-East-Down (NED)
convention: the gravity vector is g = [0 0 g]" (g = 9.81 m/s’), and the earth magnetic field is
h=1[h 0 hZ]T (hy = 0.26 Gauss; h. = 0.37 Gauss). The simulated field strength is approximately 0.45
Gauss, with a magnetic dip angle ¢ = 55°, situations typical of our latitudes. A magnetically perturbed
environment is simulated by adding h with the output of a routine that generates samples from a
Gauss-Markov vector random process with statistically independent components.

The angular velocity time functions are given as input to the simulation program. The true
quaternion time functions are obtained by time integrating the kinematic Equation (9) at the sampling
frequency of f; = 4 kHz, which is high enough to make integration errors negligible; the quaternion
time functions are then time-decimated down to f; = 100 Hz (the sampling frequency used in many
popular orientation trackers). Two distinct conditions are tested: static conditions, in which case the
angular velocity is null, and then the IMU does not change the initial orientation; dynamic conditions,
i.e., following an initial period of rest, a pure sinusoidal rotation around the vertical axis is simulated
(amplitude: 100°/s; frequency: 1 Hz). In either case simulation trials last 10 min.
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The magnetic field and the gravity vector can be expressed in the body-frame using the computed
quaternions. White Gaussian noise is then injected into the body-referenced sensor time functions to
simulate the effect of specified amounts of measurement noise: g, = 1 — 5 mg; o0, = 1 mGauss. In
dynamic conditions the value of ¢ is chosen relatively high as compared with values measured during
on-bench calibration tests of MEMS accelerometers, which are less than 1 mg; this is to account for
the minute motions that affect on-body IMUs, even when the body is quasi-static. No scale factor or
bias errors are considered for the IMU sensors, with the exception of the gyro: the gyro time functions
are corrupted by addition of a Gaussian white measurement noise component with standard deviation
0, = 0.4°/s and a fixed offset (e.g., b, =[1 —0.5 0.75]" °/s).

The different treatment of IMU sensors is motivated by the weight an uncompensated gyro bias has
on the error budget of an inertial orientation sensor and consequently by our desire to always enable
the compensation of gyro bias in our filter. The following two EKF implementations are considered:
EKF-M, and EKF-Mg, which differ in enabling the compensation of magnetic disturbances or not;
in order to disable the compensation of magnetic disturbances,’c, =0 and « = 0 are plugged in
Equation (27). The two methods are tested in static and dynamic conditions, when either the magnetic
variation is markovian, namely it follows the Gauss-Markov model of Equation (20) (magnetically
perturbed environment, MPE), or when the magnetic variation is null (magnetically clean environment,
MCE). For each combination of method and condition, N = 10 Monte Carlo runs are performed, and
the values of orientation RMSE, are reported (mean * standard deviation, SD). Another set of
simulations is carried for different values of the magnetic inclination, from 55° to 90° (dynamic
conditions—method M,). The aim is to verify the filter behavior in difficult observability conditions.
The filter parameter setting is given in Table 1.

Table 1. EKF parameter setting (Monte Carlo simulations).

MPE-M, | MCE-M, | MPE-M; | MCE-Mjp
o,,°/s 0.4 0.4 0.4 0.4
‘s, , oI5 0.01 0.01 0.01 0.01
’o, , mGauss/s 10 1 0 0
a,s’! 1 1 0 0
c,,mg 5 5 5 5
o, , mGauss 1 1 1 1

3.7. Experimental Validation

The MTx orientation tracker by Xsens Technologies B.V. (Enschede, The Netherlands) is used for
carrying out the experimental validation. The raw sensor data are delivered through a USB interface to
the host computer at a rate of 100 Hz, together with the Euler angle time functions estimated by the
proprietary EKF, henceforth called the Xsens-EKF. The IMU sensors are calibrated before starting the
experimental session as described in [26,27]; by contrast, no bias capture is considered for the gyro.
The initial orientation of the sensor frame relative to the marker frame is found by taking data during
the rest period when the IMU is still.
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The tests for validation in static and dynamic conditions are carried out within one of our lab rooms.
The static test, whose duration is 10 min, consists of leaving the IMU still on a table that is placed far
from current wires, computer appliances, and ferromagnetic materials. A magnetic disturbance is
induced at the time when a cell phone is placed close to the IMU; the cell phone is left in place for
a while, then it is removed, so as to recover the initial magnetic field. The test for validation in
dynamic conditions is performed as follows. The IMU is fastened to a 50 cm X 50 cm wooden
plate using double-side adhesive tape. The plate is raised by hand slightly over the table and then it is
freely moved around; toward the end of the trial, which lasts about 137 s, the plate is replaced
approximately in the same pose. The working volume visited by the plate dur