

Supporting Information

Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents

Brandy J. Johnson *, Nicole E. Anderson, Paul T. Charles, Anthony P. Malanoski, Brian J. Melde, Mansoor Nasir and Jeffrey R. Deschamps

Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, USA; E-Mails: nanders2@umd.edu (N.E.A); paul.charles@nrl.navy.mil (P.T.C.); anthony.malanoski@nrl.navy.mil (A.P.M.); brian.melde@nrl.navy.mil (B.J.M.); mansoor.nasir@nrl.navy.mil (M.N.); jeff.deschamps@nrl.navy.mil (J.R.D.)

* Author to whom correspondence should be addressed; E-Mail: brandy.white@nrl.navy.mil; Tel.: +1-202-404-6100; Fax: +1-202-767-9598.

Received: 1 December 2010; in revised form: 5 January 2011 / Accepted: 13 January 2011 / Published: 14 January 2011

The supplementary data supplied here provides complete results of structural characterization and image analysis for exposure of the various materials to hexane, benzene, and toluene. A list of the metal salts used to generate metalloporphyrin variants is provided. Additional absorbance and fluorescence results and reflectance spectra are also included.

magnesium chloride	copper (II) chloride	vanadium (III) bromide
yttrium (III) chloride	zinc chloride	ruthenium (III) chloride
titanium (II) chloride	silver chloride	praseodynium (III) chloride
manganese (II) chloride	cadmium chloride	cerium (III) chloride
iron (III) chloride	tin (II) chloride	europium (II) chloride
cobalt (II) chloride	platinum (IV) chloride	osmium (III) chloride
nickle (II) chloride	gold (III) chloride	

Table S1. Metal salts used in the preparation of metalloporphyrin variants.

Table S2. Results of rapid screening for interaction of porphyrins with targets in solution. For C_1TPP and C_4TPP , results for the four selected candidates and the next four highest performers are provided. For C_1S_3TPP , results for the top six performers are provided.

Porphyrin	Target	Δλ	ΔΙ	Porphyrin	Target	Δλ	ΔΙ
C ₁ TPP	Benzene	8	0.062		Benzene	9	0.078
	Toluene	9	0.134	C_4TPP	Toluene	11	0.215
	Hexane				Hexane	8	0.039
FeC ₁ TPP	Benzene	8	0.502		Benzene		0.038
	Toluene			FeC ₄ TPP	Toluene		0.094
	Hexane	8	0.462		Hexane	10	0.096
CuC ₁ TPP	Benzene	10	0.145	MnC ₄ TPP	Benzene		0.188
	Toluene	12	0.222		Toluene		0.127
	Hexane				Hexane		0.083
	Benzene	10	0.139		Benzene	9	0.073
MnC ₁ TPP	Toluene	8	0.199	ZnC ₄ TPP	Toluene	8	0.054
	Hexane	7	0.030		Hexane		0.095
	Benzene	6	0.083		Benzene	9	0.042
ZnC ₁ TPP	Toluene	7	0.053	CoC ₄ TPP	Toluene	8	0.043
	Hexane	4	0.016		Hexane	10	0.018
	Benzene	8	0.097	CuC ₄ TPP	Benzene	9	0.076
CoC ₁ TPP	Toluene	9	0.033		Toluene	7	0.062
	Hexane	8	0.016		Hexane	7	0.014
MgC ₁ TPP	Benzene	9	0.098	MgC ₄ TPP	Benzene	8	0.058
	Toluene	8	0.084		Toluene	8	0.039
	Hexane	8	0.023		Hexane		0.043
NiC ₁ TPP	Benzene	9	0.093	NiC ₄ TPP	Benzene	10	0.047
	Toluene	10	0.049		Toluene	9	0.084
	Hexane	12	0.056		Hexane		0.026
C ₁ S ₃ TPP	Benzene	6	0.015	MnC ₁ S ₃ TPP	Benzene	9	0.012
	Toluene	6	0.032		Toluene	6	0.009
	Hexane	6	0.01		Hexane	8	0.033
FeC ₁ S ₃ TPP	Benzene		0.018	CuC ₁ S ₃ TPP	Benzene		0.023
	Toluene		0.011		Toluene		0.024
	Hexane				Hexane	6	0.02
NiC ₁ S ₃ TPP	Benzene		0.016		Benzene	8	0.029
	Toluene		0.014	ZnC ₁ S ₃ TPP	Toluene	6	0.008
	Hexane				Hexane		0.004

		Rapid Screening		Binding Isotherm			
Porphyrin	Target	Δλ	ΔΙ	K ₁₁	$\Delta \varepsilon_{11}$ Peak	$\Delta \varepsilon_{11}$ Trough	
	Danzana	0	0.062	(1/N1)	(A/M)	(\mathbf{A}/\mathbf{N})	
C ₁ TPP	Belizene	0	0.002	2.1	1,230	2,380	
	loluene	9	0.134	6.3	522	586	
	Hexane						
FeC ₁ TPP	Benzene	8	0.502	1.0	3,500	2,540	
	Toluene						
	Hexane	8	0.462	2.5	5,240	1,340	
CuC ₁ TPP	Benzene	10	0.145	150	20,860	398	
	Toluene	12	0.222	9.8	594	1,440	
	Hexane						
	Benzene	10	0.139	10	19,030	18,680	
MnC ₁ TPP	Toluene	8	0.199	5.1	178,000	12,180	
	Hexane	7	0.030	120	3,210	2,650	
C ₄ TPP	Benzene	9	0.078	2.0	65,910	42,770	
	Toluene	11	0.215	0.9	76,130	43,500	
	Hexane	8	0.039	1.7	107,600	32,550	
FeC ₄ TPP	Benzene		0.038	17		53,420	
	Toluene		0.094	26		25,380	
	Hexane	10	0.096	13		30,450	
MnC ₄ TPP	Benzene		0.188	1.0		132,400	
	Toluene		0.127	7.1		38,060	
	Hexane		0.083	7.3		22,720	
ZnC ₄ TPP	Benzene	9	0.073	0.7	60,900	43,500	
	Toluene	8	0.054	5.5	27,680	12,690	
	Hexane		0.095	8.0		19,030	

Table S3. Interaction of candidate porphyrins with targets in solution.

Figure S1. Structural characterization. Panel A, nitrogen sorption isotherms (DEB shifted by +240 and TM1 shifted by +250). Panel B, pore size distributions. Panel C, XRD spectra. (DEB–blue, TM1–red, Ph1–black, PhE1–green).

Figure S2. BTEX binding capacity. Shown here is the amount of each BTEX component bound by the sorbents (200 mg). BTEX (209 mg—equal volumes benzene, toluene, ethylbenzene, and xylene) binding was evaluated in vapor phase.

Figure S3. Dependence on concentration of the interaction between metalloporphyrins and targets in solution (benzene–red, toluene–green, hexane–blue).

Figure S4. Interaction of FeC_1TPP -embedded B100 with targets. Shown here are the changes in fluorescence characteristics and the dependence of RGB image color values on target concentration for the interaction of targets with FeC_1TPP -embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

Figure S5. Interaction of C_1 TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C_1 TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

Figure S6. Interaction of MnC_1TPP -embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with MnC_1TPP -embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.

Figure S7. Interaction of C_4 TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C_4 TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated based on the emission difference spectra.

Figure S8. Interaction of FeC_4TPP -embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with FeC₄TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences from emission difference spectra.

Figure S9. Interaction of MnC_4TPP -embedded B100 with targets. Shown here are simulated images generated based on average RGB values for FeC₁TPP-embedded B100 following exposure to varying target concentrations and the dependence of RGB image color values on target concentration for the interaction of the targets with MnC_4TPP -embedded B100. No changes in fluorescence were observed upon exposure of MnC_4TPP -embedded B100 to the targets.

Figure S10. Reflectance spectra. Spectra for the seven different colors used for conversion from RGB to reflectance values. For the reason of solution convergence, the algorithm ignores scaling issues when converting from spectra to RGB leading to some reflectance values greater than 1. A penalty factor is added to the cost function whenever any value of the spectrum exceeds 1.

Figure S11. Simulated spectra for interaction of C_1 TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S5) using the color spectra from Figure S10.

Figure S12. Simulated spectra for interaction of FeC_1TPP -embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S4) using the color spectra from Figure S10.

Figure S13. Simulated spectra for interaction of MnC_1TPP -embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S6) using the color spectra from Figure S10.

Figure S14. Simulated spectra for interaction of C_4 TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S7) using the color spectra from Figure S10.

Figure S16. Simulated spectra for interaction of MnC₄TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S9) using the color spectra from Figure S10.