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Abstract: This paper describes a sensory system for implementing a human–computer 

interface based on electrooculography. An acquisition system captures electrooculograms 

and transmits them via the ZigBee protocol. The data acquired are analysed in real time 

using a microcontroller-based platform running the Linux operating system. The 

continuous wavelet transform and neural network are used to process and analyse the 

signals to obtain highly reliable results in real time. To enhance system usability, the 

graphical interface is projected onto special eyewear, which is also used to position the 

signal-capturing electrodes.  

Keywords: electrooculography; eye movement; human–computer interface; wavelet 

transform, neural network 

 

1. Introduction  

Much research is under way into means of enabling the disabled to communicate effectively with a 

computer [1,2], as development of such means has the potential to enhance their quality of life 

considerably. Depending on users’ capabilities, systems such as speech recognition, brain-computer 

interfaces [3], and infrared head-operated joysticks [4], etc. may be employed for this purpose. 
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For users with sufficient control of their eye movements, one option is to employ a gaze-direction 

detection system to codify and interpret user messages. Eye-movement detection interfaces may be 

based on videooculography (VOG) [5], infrared oculography (IORG) [6] and electrooculography 

(EOG). Furthermore, this type of interface need not be limited to severely disabled persons and could 

be extended to any individual with sufficient eye-movement control. 

EOG is a widely and successfully implemented technique and has proven reliable and easy to use in 

human–computer interfaces (HCI). Gips et al. present an electrode-based device designed to enable 

people with special needs to control a computer with their eyes [7]. Barea described an HCI based on 

electrooculography for assisted mobility applications [8]. The paper studies the problems associated 

with using EOG to control graphical interfaces and proposes an electrooculographic ocular model to 

resolve these issues. It also discusses graphical interfaces’ various access options (direct, scanning, 

gestures, etc.). Zheng et al. describe an eye movement-controlled HCI designed to enable disabled 

users with motor paralysis and impaired speech to operate multiple applications (such as 

communication aids and home automation applications) [9]. Ohya et al. present development of an 

input operation for the amyotrophic lateral sclerosis communication tool utilizing EOG [10].  

Bulling et al. describe eye-movement analysis for activity recognition using electrooculography [11]. 

EOG-based systems have also been developed in the robotics field to control mobile robots [12,13] 

and guide wheelchairs [14,15].  

Various techniques may be used to model the ocular motor system using EOG and detect eye 

movements. These include saccadic eye-movement quantification [16], pattern recognition [17], spectral 

analysis [18], peak detection deterministic finite automata [19], multiple feature classification [20], the 

Kalman filter [21], neural networks [22-25] and the support vector machine [26]. Notable efforts have 

also been made to reduce and eliminate the problems associated with gaze detection in EOG, such as 

drift, blink, overshoot, ripple and jitter [12,27]. 

Recent new research has focused on using electrooculograms to create efficient HCIs [18,28,29] 

and developing novel electrode configurations to produce wearable EOG recording systems, such as 

wearable headphone-type gaze detectors [21], wearable EOG goggles [17,30,31], or light-weight head 

caps [32]. 

The electrooculographic biopotential value varies from 50 to 3,500 µV with a frequency range of 

about DC-100 Hz. This signal is usually contaminated by other biopotentials, as well as by artefacts 

produced by other factors such as the positioning of the electrodes, skin-electrode contact, head and 

facial movements, lighting conditions, blinking, etc. To minimize these effects, the system requires 

high-quality signal acquisition hardware, and suitable analysis algorithms need to be applied to the 

signal. Signal processing is usually performed on a personal computer. However, a more economical 

option, and one that also consumes less electricity, is to use a microcontroller-based system. 

The purpose of this research paper is to develop a system to capture and analyse EOG signals in 

order to implement an HCI, as shown in Figure 1. The system comprises two electronic modules—the 

signal Acquisition Module (AM) and the Processing Module (PM). Eyewear incorporating a set of 

appropriately positioned dry electrodes captures the EOG signals, which the AM acquires, digitizes 

and transmits using the ZigBee protocol. 
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Figure 1. System architecture. 

 
 

The PM receives the signals from the AM and executes the algorithms to detect the direction of the 

user’s gaze. Simultaneously, it projects the user interface onto the eyewear and, according to the 

selection made by the user, transmits the commands via WiFi to a home automation system or 

performs other tasks (i.e., call a nurse, etc.). 

This paper comprises seven sections. Section 2 describes the signal acquisition and ZigBee-enabled 

transmission circuit (AM), Section 3 describes the PM, Section 4 describes signal processing, and 

Sections 5, 6 and 7 present the results, discussion and conclusions of this paper. 

2. Acquisition System 

2.1. Wearable EOG Goggles 

The eyewear, which is based on a commercially available model (Vuzix Wrap 230) [33] and 

features integrated electrodes, performs two functions—it holds the dry electrodes used to capture the 

EOG signal in position and serves as the medium onto which the user interface is projected. The 

electrooculogram is captured by five electrodes placed around the eyes. The EOG signals are obtained 

by placing two electrodes to the right and left of the outer canthi (A-B) to detect horizontal movement 

and another pair above and below the left eye (C-D) to detect vertical movement. A reference electrode 

is placed above the right eye (E). The eyewear has a composite video input (PAL format) and displays 

high-colour, high-contrast images at 320 × 240 resolution, equivalent to a 46-inch screen viewed at a 

distance of 3 metres. Figure 2 shows the placement of the electrodes in the eyewear. 

 

Figure 2. EOG goggles based on Vuzix Wrap 230 eyewear. 
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2.2. Acquisition System 

The EOG signal is influenced by several factors, including eyeball rotation and movement, eyelid 

movement, and various artefact sources (electrode placement, head and facial movement, lighting, 

etc.). As the shifting resting potential (mean value) changes, it is necessary to eliminate this value. To 

do so, an AC high-gain differential amplifier (1,000–5,000) is used, together with a high-pass filter  

(0.05-Hz cut-off frequency), a relatively long time constant, and a low-pass filter (35-Hz cut-off 

frequency). The signals are sampled 100 times per second. 

A two-channel amplifier has been designed and developed to capture bioelectric signals and 

transmit them using the ZigBee protocol (wireless). This small, portable system’s power supply has 

been optimized to enable battery-powered operation. One of its main advantages is its versatility, since 

it enables each channel to be configured dynamically and individually (active channel adjustment, 

channel offset, gains, sampling frequency or driven-right-leg circuit gain) via commands sent over the 

ZigBee protocol. Figure 3 shows the electrical system diagram for data capture, amplification, 

digitization and transmission.  

Figure 3. Electrical system diagram.  
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The analogue signal acquisition hardware comprises two differential inputs (CH1, CH2), which are 

digitized by the microcontroller's internal ADC (LPC1756, 12-bit resolution, 100–300 Hz sampling 

frequency adjustable in 10-Hz steps) before being transmitted via the ZigBee protocol. 

The system communicates via the ZigBee protocol, acting directly on the link level (802.15.4). Due 

to its low energy consumption and widespread implementation in low-cost commercial systems, this 

protocol is considered the best option. The XBee module is connected to the microcontroller by DOUT 

and DIN lines. The XBee module and the microcontroller communicate via an 115,200 bps serial 

connection and the XBee module is controlled by API frames. The XBee device’s command set allows 
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users to configure the network and serial interface parameters via the microcontroller. Although this 

paper considers ZigBee the best option because of its low energy consumption, the electrical system 

diagram can be easily modified to implement Bluetooth, which is a much more widely used 

communications standard, although it requires considerably more power. 

The device is powered by rechargeable lithium-ion batteries (3.75 V DC/6.8 Ah). Consumption has 

been reduced by using integrated circuits with a shutdown (SD) feature, which means they can be 

deactivated when not needed by the active application. The batteries are recharged from a computer 

USB port using a MAX1555 integrated circuit. 

The integrated circuits have a 3.3-V power supply provided by regulator TPS75733, which draws 

power directly from the battery. The circuit uses a very stable 3.0-V reference voltage (REF5030). A 

digital potentiometer (POT1:MCP4261) is then used to transform this into a variable reference voltage 

(VREF). This potentiometer is adjusted via the microcontroller using the serial peripheral interface (SPI) 

protocol and is used to configure each channel.  

The amplification margin of the signals recorded by the two channels is established independently 

(0–5,000 adjustable gain). The lower cut-off frequency is set at 0.05 Hz and the upper cut-off 

frequency is set at 35 Hz. 

One of the aspects bearing most heavily on final system quality is front-end amplification of the 

bioelectrical signal. In many cases, the bioelectrical signals’ amplitudes are below 50 µV and are 

usually contaminated by various noise sources, such as the network alternate component (50 or 60 Hz 

and its harmonics), electrode contact noise (baseline drift), other physiological patient systems  

(i.e., muscular noise), interference from electronic devices, etc. To minimize these effects, various 

techniques may be used to optimize analogue signal capture. The proposed architecture employs  

two-stage signal amplification. The first stage comprises a differential amplifier (G1 = 20 = R1/RG) 

based on an instrumentation amplifier (INA327) with a shutdown feature (SDi), which enables unused 

channels to be deactivated. This first stage’s general gain expression is shown below: 

2.2.1
2.2.

.
1.1.1

1
)(1 RCs

RCs

CRs
GR

R

sG


     (1) 

This amplifier has a mean frequency gain of R1/RG, a lower cut-off frequency of 0.05 Hz  

(2π R2.C2)
−1 and an upper cut-off frequency of (2π R1.C1)

−1. The upper cut-off frequency of the input 

stage is set by the R1.C1 product. As R1 should be kept constant to avoid modifying the amplifier gain, 

C1 has been modified to produce an upper cut-off frequency of 35 Hz. 

The second amplification stage uses the OPA2334 operational amplifier, which has been chosen for 

its low offset voltage. As it is an adjusted gain inverting amplifier (G2 = −POT2/R3), the gain can be set 

between 0 (POT2 resistance = 0 Ω) and −250 (256 steps), while signal amplification allows total gain 

per channel of 0–5,000.  

The Driven-Right-Leg (DRL) circuit allows common mode signal reduction, applying a circuit 

feedback voltage to the patient [34]. Each channel's common mode signal is captured by a voltage 

follower (OPi-2 = OPA2334) and another similar amplifier adds them together. The feedback circuit 

gain can be adjusted by commands from the host using POT3 (MCP4261) on each acquisition channel. 

This improves signal capture, as the patient’s potential value depends on many factors (electrode 
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location, proximity to the feedback network, stretcher type, etc.). Figure 4 shows the implemented 

AM. 

Figure 4. Image of the AM. 

 

3. Processing Module 

The PM's function is to receive the EOG signals via the ZigBee protocol, apply the appropriate 

algorithms to detect the user’s eye movements, display the user interface on the eyewear, decodify the 

user's message, and send the appropriate command via WiFi to the home automation system that will 

execute the user’s instructions (switch on TV, etc.). In addition, during the training and calibration 

phases, the PM captures the user’s eye movements and with them trains a radial-basis-function (RBF) 

neural network using the Extreme Learning Machine (ELM) algorithm. It then sends the commands to 

the AM to adjust the system’s operating parameters (amplifier gain, offset, etc.). 

The PM is based on a high-performance SoC (System on Chip), the OMAP3530, which includes a 

Cortex-A8 core as well as a C64x + DSP running at 720 MHz. It has 512 MB of RAM and 512 MB of 

flash memory. It provides a direct composite video output (compatible with the PAL and NTSC 

formats) connected to the Vuzix Wrap 230 eyewear. 

The operating system used by the processing card is an OpenEmbedded-based Linux distribution 

optimized for the ARMv7 architecture with the ARM/Linux kernel (version 2.6.32) and the U-Boot 

1.3.4 bootloader. The OpenEmbedded-based file system includes the XFCE-lite graphic environment. 

Using a Linux environment provides access to a multitude of graphic and console applications and 

utilities. The system has the capacity to compile its own programs as it includes the GCC compiler and 

auxiliary native tools (Binutils). 

The PM communicates with the AM via a ZigBee link. To achieve this, two commercial ZigBee 

modules (XBee) are connected to the respective UARTs on the processing (OMAP3530) and 

acquisition (LPC1756) cards' microcontrollers. Communications via the ZigBee protocol are 

performed with a power level of 0 dBm. 

Data acquisition via the ZigBee protocol is performed constantly and in real time. To achieve this, a 

high-priority process scans the buffer of the UART connected to the ZigBee module and sends these 

data to the two processes responsible for executing the signal-processing algorithms (wavelet 

transform and neural network). 

Once the user’s eye movements in relation to the user interface projected onto the eyewear have 

been decodified and interpreted, the orders are sent via WiFi (because of its universality) to a home 



Sensors 2011, 11              

 

 

316

automation system or similar application. The WiFi interface is implemented using a Marvell 

88W8686 (IEEE 802.11 b/g) chipset connected to the OMAP3530. The WiFi stack is part of the 

ARM/Linux 2.6 kernel (Linux wireless subsystem, IEEE-802.11) and includes the necessary wireless 

tools (iwconfig, iwlist, etc). 

4. Signal Processing 

Figure 5 shows the processing performed on the digitized EOG signal. Processing is structured into 

two phases. The first phase is optional and consists of adjusting the signal-capture system, applying the 

linear saccadic eye model and training the neural network according to the user’s signals. This option 

can be activated when a new user utilizes the system or when the user’s responses change due to 

tiredness or loss of concentration. Parameter adjustment should be performed by someone other than 

the user. The acquisition module allows for adjustment of channel gain, DRL gain and the VREF 

parameter. The ocular model calculates the relationship between EOG variation and the eye movement 

performed, as well as calculating the minimum detection threshold.  

Figure 5. Saccadic eye-movement detection process. 

 
 

Once appropriate signal-capture conditions are established, the system instructs the user to look at a 

series of pre-determined positions on the user interface. The EOG signal is filtered by the wavelet 

transform and a linear saccadic model is used to detect and quantify saccadic movements. These 

signals are then used as samples to train the neural network. The neural network’s purpose is to 

enhance detection of saccadic movements by using pattern recognition techniques to differentiate 

between variations in the EOG attributable to saccadic movements and those attributable to fixation 

problems or other artefacts. As users become tired and their concentration deteriorates (particularly 

after long periods of operation), these artefacts in the EOG signal become increasingly pronounced. 

The continuous wavelet transform (CWT) is useful for detecting, characterizing and classifying 

signals with singular spectral characteristics, transitory content and other properties related to a lack of 

stationarity [35]. In the case addressed here, the best results were obtained by using the db1 mother 

wavelet from the Daubechies family due to its strong correlation with the changes the system aims to 

detect in the original EOG signal. The CWT makes use of modulated windows of variable size 

adjusted to the oscillation frequency (i.e., the window's domain contains the same number of 
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oscillations). For this reason, the method employs a single modulated window, from which the wavelet 

family is obtained by dilation or compression:  
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where 0a  and b are the scale and latency parameters, respectively. The energy of the functions is 

preserved by a normalized factor a1 .  

The optimal scale that produced greatest correlation in the studies carried out was a = 60. The effect 

of this wavelet is similar to that of deriving the signal (high-pass filtering), although the results are 

magnified and it is easier to identify saccadic eye movements as the threshold is not as critical. 

The linear saccadic model considers that the behaviour of the EOG is linear. This is equivalent  

to stating that the eye movement is a constant of the variation of the EOG  

(eye movement = k*EOG_variation) [8]. A saccadic movement is considered to occur when the EOG 

derivative exceeds the minimum threshold. The direction and size of a saccade is given by its sign and 

amplitude. The neural network implemented is a radial-basis-function (RBF) network trained using the 

ELM algorithm [36], which is characterized by its short computational time. The network’s input data 

comprise the contents of a 50-sample time window (25 preceding samples and 25 subsequent samples) 

from the EOG signal corresponding to a detected eye movement and are processed using the wavelet 

transform. The internal structure has 20 neurons in the hidden layer. The network’s output determines 

whether a valid saccadic movement has occurred. Network training is performed on a set of 50-sample 

segments taken from the EOG at different instants. These correspond to resting (gaze directed at the 

centre), saccadic eye movements, and fixation periods. Output is “1” when a saccadic movement exists 

and “0” in all other cases. The output of the neural network is a linear combination of the basis 

functions:  

 
(3)

where βi denotes the output weight matrix, wi are the input weights and σi is the width of the basis 

function.  

The ELM algorithm is a learning algorithm for single hidden-layer feed-forward networks. The 

input weights (wi), centres (μi) and width of the basis function are randomly chosen and output weights 

(βi) are analytically determined based on the Moore–Penrose generalized inverse of the hidden-layer 

output matrix. The algorithm is implemented easily and tends to produce a small training error. It also 

produces the smallest weights norm, performs well and is extremely fast [37].  

A block has also been designed to work in a similar way to a mouse click to enable users to validate 

the desired commands. This block detects two or three consecutive blinks within a time interval 

configured according to the user’s capabilities. Blink detection is based on pattern recognition 

techniques (a blink template is created from user blink segments). Blinks are detected by comparing 

the template against the EOG’s vertical component. A blink is considered to exist when there is a high 

level of similarity (above a pre-determined threshold) between the template and the EOG’s vertical 

component. Figure 6 shows an example of the difference on the vertical EOG between blinking and an 
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upward saccadic movement. As may be seen in the EOG recorded in each case, the duration of the 

blink is shorter than that of the saccadic movement. 

Figure 6. Effect of blinking on the vertical EOG. 

 
 

Finally, based on the neural network, linear saccadic model and blink detector outputs, the  

eye-movement detector block determines the validity of the saccadic movement detected. When the 

linear saccadic model detects a saccadic movement, a 50-sample window from the EOG signal 

(centred on the instant the saccadic movement is detected) is input into the neural network. The 

network output determines the movement’s validity. Meanwhile, to eliminate the blink effect on the 

EOG signal, when a blink is detected, the saccadic movement detected at the same instant is discarded. 

Furthermore, as the neural network’s training segment is longer than a blink segment, the effect can be 

filtered immediately by the neural network to remove false saccadic movements.  

As regards the system's computational time, a 260.49 ms delay exists between performance of a 

saccadic movement and its validation. This delay may be considered appropriate for typical graphical 

interface control applications. Figure 7 shows a timeline displaying the various processing stage times. 

The EOG signals are sampled 100 times per second. 1.68 ms are needed to process the CWT, while the 

linear saccadic model takes 0.012 ms to detect the movement and quantify it. Blink detection takes 

0.26 ms. A 250 ms delay is needed after a saccadic movement is detected (corresponding to  

25 subsequent samples from the EOG signal) before the signal can be propagated over the neural 

network (50 samples). Signal propagation over the RBF takes 8.52 ms. Finally, the eye-movement 

detector block requires 0.035 ms to validate the movement performed.  

Figure 7. Timeline. 
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Although this may appear to be a long delay, it only occurs when a saccadic movement is detected. 

In all other cases, the signal is not propagated over the RBF and the system's computational time 

stands at 1.975 ms. Given that the system acquires a sample every 10 ms, to all practical intents and 

purposes it processes the EOG signal in real time. The second phase comprises a cyclical process in 

which the EOG is captured and the signals are processed to determine which command the user wishes 

to activate. Figure 8 shows an example of processing of a typical horizontal-channel signal—the user’s 

gaze progressively shifts 10, 20, 30 and 40 degrees horizontally [Figure 8(a)]. First, the EOG signal is 

filtered using a CWT [Figure 8(b)], then the linear saccadic model detects saccades and determines 

their angle [Figure 8(c)]. When a movement is detected, the EOG signal is input into the neural 

network, which determines if it is an eye movement [Figure 8(d)]. Finally, based on the neural network 

and blink detector outputs, the eye-movement detector determines the validity of the saccadic 

movement. It then quantifies the movement according to the value obtained in the linear saccadic 

model [Figure 8(e)]. 

Figure 8. Eye-movement detection process sequence. 

 
 

The system developed is able to detect eye movements to within an error of 2 degrees, making it 

possible to select or codify a large number of commands within a particular graphical interface. 

Time (s)10

0 5 10 Time (s)

-0.2

0

0.2

Eog (Volts)

0 5 10 Time (s)
-1

0

1

0 5 10 Time (s)
-50 

0

50
Saccadic Eye Model Output

0 5 10 Time (s)
-1

0

1

2
RBF output

0 5
-50 

0

50
Movement Detector (º)

10º

-10º 

20º

-20º

30º

-30º

40º

-40º 

10º 20º 30º 40º

Wavelet Output

(b) 

(d)

(c) 

(e)

(a) 



Sensors 2011, 11              

 

 

320

Furthermore, the validation block makes it possible to validate the command selected or eye movement 

performed. 

5. Results 

This paper implements a prototype wearable HCI system based on electrooculography. The eyewear 

is used to position the electrodes and display the user interface, thereby facilitating system usability. 

Signal capture is performed by a low-power-consumption electronic circuit. The prototype's intelligent 

core is based on a high-performance microcontroller that analyses the signals and transmits the user's 

commands to a home automation system via a WiFi connection. 

Eye movement-based techniques employed to control HCIs include Direct Access, Scanning and 

Eye Commands (gestures). Direct Access is the most widely used form (in which the user, when 

shown a graphical interface, selects the desired command by positioning a cursor over it and then 

carrying out a given validation action, usually a mouse click). If the graphical interface is  

vision-controlled, the cursor is directed by eye movements and validation is performed either on a time 

basis or by an ocular action such as blinking. The drawback of this interface is the ‘Midas Touch’ 

problem, as the human eye is always active. Therefore, it is necessary to ensure that validation cannot 

be performed involuntarily. To avoid this problem, eye-movement codification is generally used. The 

aim of this technique is to develop control strategies based on certain eye movements (ocular actions 

or gestures) and their interpretation as commands. Usually, eye-movement recognition is based on 

detecting consecutive saccades, which are then mapped to eye movements in basic directions—left, 

right, up and down [18,19,29,38]. 

As quality in graphical interface control is partly measured in terms of ease-of-use and system 

simplicity, the Direct Access technique was selected as it is the most natural and fastest and, therefore, 

the most comfortable to use. Furthermore, it also allows the system to include a large number of 

commands without the need for users to memorize complex ocular actions. 

To operate the system, the user looks at the centre of the screen and then looks at the desired 

command (saccadic movement). This selects the command, which is then validated by two consecutive 

blinks within a pre-determined time limit, which starts when the eye movement commences and is 

configured according to the user’s capabilities. 

As the system detects the eye-movement angle to within an accuracy of 2 degrees, it is technically 

possible to design an interface containing a large number of commands. However, experience shows 

that a simpler interface with 4–8 commands is preferable, as the capabilities of users likely to operate 

these interfaces need to be taken into account. This means detecting simple up, down, left and right 

movements and their corresponding diagonals. Figure 9 shows one of the interfaces implemented.  

The system was tested by five volunteers (three men and two women) aged between 22 and 40 

using an 8-command user interface. Thirteen 5-minute tests were performed per volunteer (1 hour in 

total). The tests required volunteers to select each of the interface’s commands cyclically  

(13 × 5 × 8 = 520 selections in total, 104 per volunteer). Once a saccadic movement was detected, the 

user had 2 seconds to perform validation (double blink). 
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Figure 9. Eight-command interface. 
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Training for volunteers to familiarize themselves with the system took approximately 5 minutes and 

during this time a member of the research group calibrated the system (gain, offset, etc.) for each 

volunteer. The system then trained the neural network using the real data captured from each 

volunteer. 

Table 1. Experiment results. 

 Successes Failures 
User 1–man 89 15 
User 2–woman 98 6 
User 3–man 94 10 
User 4–woman 100 4 
User 5–man 97 7 

 

As table 1 shows, the volunteers achieved an overall success rate of 92%. The errors produced were 

due to problems in either saccadic movement detection (66% of errors) or command validation (34% 

of errors). Figure 10 shows the distribution of these failures by test. 

The following may be concluded from the results obtained: 

 The number of failures is low initially because user concentration is high. Providing prior 

training improved these results, as the user was already accustomed to operating the HCI and, 

furthermore, the neural network was trained on each user's own signals. 
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 The number of failures increases with time, a trend principally attributable to falling user 

concentration and increasing tiredness. However, the number of failures is much lower than 

when using other electrooculographic models [8]. 

Figure 10. HCI errors in relation to time. 

 
 

These results, which naturally may vary according to users’ physical and mental capabilities, 

preliminarily demonstrate that the system implemented operates as intended. 

6. Discussion  

Much of recent research into EOG-based HCI systems focuses on (a) developing wearable systems, 

and (b) enhancing system reliability by implementing new processing algorithms. This paper presents 

advances in both regards. On the one hand, it implements a modular hardware system featuring 

wearable goggles and a processing unit based on a high-performance microcontroller and, on the other, 

the EOG signal-processing technique employed provides satisfactory HCI control. 

This paper uses a continuous wavelet transform to filter the EOG signal and employs a neural 

network to provide robust saccadic-movement detection and validation. The system has been validated 

by 5 healthy users operating a Direct Access eight-command HCI. 

Initial EOG signal processing using the continuous wavelet transform enhances the non-stationary 

and time-varying EOG signal [39] and therefore, in our case, makes identification of smaller saccadic 

movements possible. This is vitally important when working with Direct Access interfaces that require 

highly accurate eye-movement detection. In this paper, the best results were obtained using the db1 

mother wavelet from the Daubechies family at scale 60. Other papers have employed the continuous  

1-D wavelet coefficients from the signal at scale 20 using the Haar wavelet [30]. This paper’s authors 

obtained better results with the Daubechies mother wavelet than with the Haar mother wavelet or with 

conventional or adaptive filtering techniques (Wiener filter, etc.) [8].  

Neural networks have long been used successfully to process EOG signals [22,23]. Various training 

algorithms and architectures have been researched and have produced generally satisfactory  
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results [24,40,41]. Both the neural network architecture used in this case (RBF), and its training 

algorithm (ELM), were optimized for real-time use on a microcontroller-based system. 

As commented in the Results section, eye movement-based techniques employed to control HCIs 

include Direct Access, Scanning and Eye Commands (gestures). Direct Access is the most widely 

implemented technique because it is the most natural and the fastest and, therefore, the most 

comfortable to use. Furthermore, it also allows the system to include a large number of commands 

without the need for users to memorize complex ocular actions. Drawbacks associated with this 

interface include the ‘Midas Touch’, eye jitter, multiple fixations on a single object, etc. To avoid these 

problems, one widely used option is to develop applications based on eye-movement codification or 

gestures [16,42]. The system presented in this paper accurately detects all eye movements, which 

means that the resulting gesture-based HCI (using codified up, down, right and left eye movements) is 

extremely robust.  

As yet, a testbed widely accepted by researchers to measure and compare the results of EOG-based 

HCI systems does not exist. User numbers and characteristics, user interfaces and experiment length, 

among other aspects, all vary from paper to paper. In this paper, the tests designed to generate 

messages valid for a home-automation system performed by five healthy volunteers produced an 

overall 92% success rate. The authors consider this sufficient to ensure satisfactory user 

communication. These results are similar to those achieved in other recent papers describing 

development of applications based on eye-movement codification. Nevertheless, most of these papers 

show the results obtained when detecting up, down, left and right eye movements, which are 

significantly easier to detect than other types of eye movement. For example, in a work by Deng et al., 

90% detection accuracy is obtained for these movements and the system is used to control various 

applications/games [38]. In Gandhi et al. [19], detection and device-control accuracy is 95.33%. The 

nearest neighbourhood algorithm is used by Usakli et al. to classify the signals, and classification 

accuracy stands at 95% [28]. In a work by Bulling et al., eye movements are studied to detect gestures 

used to control a graphical interface. Accuracy (around 90%) is calculated as the ratio of eye 

movements resulting in a correct gesture to the total number of eye movements performed [43].  

However, few papers on EOG quantify movement detection accuracy and those that do quantify it 

do not employ the same parameters, thereby preventing exhaustive comparison between them. In this 

paper, the combination of the wavelet transform, the ocular model and the neural network produce a 

measurement error of less than 2 degrees. This error is in the same order of magnitude as that of other 

EOG-based HCI systems [44,45]. Other authors, such as Manabe et al., report that the average 

estimation error is 4.4 degrees on the horizontal plane and 8.3 degrees on the vertical plane [21].  

One of the contributions made by this paper is that the neural network eliminates or minimizes the 

fixation problems that appear when the user becomes tired and that become increasingly significant 

when the HCI is used for long periods. Comparison between the number of false saccadic movements 

detected in 60-minute EOG recordings by the linear saccadic model based on derivatives implemented 

in Barea et al. [16] and the architecture proposed in this paper demonstrates that saccadic-movement 

detection errors due to fixation problems and artefacts derived from blinking have been practically 

eliminated. It is also noteworthy that although the error obtained in 20, 30 and 40-degree movements is 

in the order of 2 degrees (similar to that obtained in Barea [8]), a substantial improvement has been 

produced in detection of small saccadic movements (the error produced in detection of 10-degree 
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saccadic movements has been reduced by 50%). This is principally due to improvement of the S/N 

ratio by the wavelet in comparison with conventional filtering techniques. 

As regards the system’s computational time, this stands at 260.49 ms when a saccadic movement is 

detected. Command validation time should also be added to this delay. In the system implemented in 

this paper, the principal bottleneck lies in the neural network, which requires a 500-ms EOG signal 

window. However, the improvement in result quality and reliability justifies neural network use. 

Furthermore, in most graphical interface control applications, this delay is not critical and does not 

affect usage of the system proposed. It should also be underlined that computational time when a 

saccadic movement is not detected stands at 1.975 ms, which means that to all practical intents and 

purposes the system works in real time. 

The authors propose the following areas for future research: 

 System validation by a greater number of users (principally disabled users).  

 Study of system performance in mobile settings. Although the results presented in this paper were 

obtained under static conditions, previous papers have examined conditions in which users were 

mobile [14]. This paper has developed algorithms to eliminate artefacts generated principally by 

errors deriving from electrode contact with the user's skin (skin–electrode interface) and facial 

movements or gestures. However, use of a different electrode type (dry electrodes) and a new 

method of attaching the electrodes to the user’s face, as well as use of these systems in mobile 

settings, require in-depth study of the new problems/artefacts that may arise. 

 Improvements to system features. On-line self-calibration of the ocular model parameters every 

time a new saccadic movement is detected. This would enable users to work with the model for 

long periods without the need for third-party intervention to calibrate the system if adjustment 

errors were detected. 

 On-line neural network training. One of the advantages of using the ELM algorithm is its speed. 

In the tests performed in this paper, 14.5 ms were needed to train one hundred 50-sample EOG 

segments. The short training time required makes it possible to perform on-line training every 

time a new saccadic movement is detected. 

7. Conclusions 

This paper presents a system to capture and analyse EOG signals in order to implement an HCI 

interface. Specific hardware has been developed to capture users’ biopotentials and a Linux platform 

has been used to implement the algorithms and graphical user interface. The eyewear employed 

performs the dual function of capturing the EOG signal comfortably and implementing the user 

interface. 

The results (92% reliability) demonstrate that the system proposed works well and produces an 

error rate that permits its use as part of an HCI. As the system is portable, it may be easily 

implemented in home automation, robotic systems or other similar applications. Furthermore, the 

hardware platform’s processing power provides scope to implement more complex signal-analysis 

algorithms. 
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