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Abstract: In this study, a semi-empirical model that was originallweleped for stem
volume estimation is used for aboveground biomass (AGBnesion of a spruce dominated
alpine forest. The reference AGB of the available sampléspko calculated from forest
inventory data by means of biomass expansion factors. €&umibre, the semi-empirical
model is extended by three different canopy transparen@npeters derived from airborne
LiDAR data. These parameters have not been consideredeior wtlume estimation until
now and are introduced in order to investigate the behavithemodel concerning AGB
estimation. The developed additional input parametersbased on the assumption that
transparency of vegetation can be measured by determheneinetration of the laser beams
through the canopy. These parameters are calculated foy swvagle point within the 3D
point cloud in order to consider the varying properties efitagetation in an appropriate way.
Exploratory Data Analysis (EDA) is performed to evaluate thfluence of the additional
LiDAR derived canopy transparency parameters for AGB edion. The study is carried
out in a 560 km alpine area in Austria, where reference forest inventotg dad LiDAR



Sensor2011 11 279

data are available. The investigations show that the iotgtdn of the canopy transparency
parameters does not change the results significantly dogai@lR (R* =0.70to R =0.71)

in comparison to the results derived from, the semi-emalimeodel, which was originally
developed for stem volume estimation.

Keywords: airborne LIDAR; biomass; semi-empirical model; 3D pointoud,;
linear regression

1. Introduction

In times of higher market prices of fossil fuels and due toititeeasing environmental and economic
threats of climate change, there will be a rising demanddoewable energy production, such as solar or
bio energy. The latter is the focus of the presented papaurate estimation of Aboveground Biomass
(AGB), also referred to as dry total tree biomass, in forsteas is essential for developing sustainable
low carbon climate friendly strategies. This includes tbéuction of costs for the provision of energy
resources, the mobilization of wood in local forests anddpimization of timber harvesting chains in
order to minimize the environmental impact. AGB is definedhestotal amount of aboveground oven
dry mass of a tree, which is expressed in tons per unit djedt[can be directly converted to the total
carbon content that is stored in a forest. Having knowledmpeitithe spatial distribution of the carbon
content is important in understanding the carbon cy2je [

In contrast to time consuming and expensive field methodstesensing such as spaceborne optical
remote sensing or synthetic aperture radar (SAR) is cadablmapping area-wide forest inventory
(F1) data in a cost effective, fast and accurate way and has bsed widely to retrieve AGB3{5]. A
review of the latest developments in the different fieldsemhote sensing for forest biomass assessment
is given in Koch B]. Remote sensing based estimates of AGB are mostly basedationships between
reference biomass and various pixel values indicating, eeflectance, greenness of vegetation and/or
brightness temperaturé&][ However, such methods require an extensive set of refer&GB that can
be derived by two major ways: (i) tree specific functionsraating biomass directly from individual
tree measurements such as diameter at breast height (DBEheight (H), crown length (CL) and/or
crown width (CW) B,9] or (ii) tree specific biomass expansion factors transfagrstem volume into
AGB [10,11], whereas stem volume is estimated from DBH and H as destihe.g., Hollaus12].

In recent years Airborne Laser Scanning (ALS), also reteteeas Light Detection and Ranging
(LiDAR), has been established as a standard technologygbidnecision three dimensional topographic
data acquisition. The three dimensional information isot#d by using an ALS system, which consists
of three main components: (i) a Global Positioning Systehiclvis used to record the aircraft position,
(i) an Inertial Measurement Unit (IMU) that measures th@uwar attitude of the aircraft (roll, pitch
and heading), and (iii) a laser scanner unit transmittirgytséind collimated pulses towards the Earth
surface and recording both the travel time of the laser beahthee energy (intensity), which is scattered
by the target surfacelB]. By taking the measurements of the GPS/IMU and the traveé tof the
laser beam into account, the coordinates of the vegetatidiearain scatterers can be determined with
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high accuracy in a suited georeferenced coordinate systdinThe obtained geometrical information
Is stored in a 3D point cloud (x,y,z), whereas each point ggeéa with auxiliary information such
as strength of backscatter and scan angle. In contrast teegtonal sensors (e.g., passive optical),
LiDAR is less sensitive to cloud cover and shadows and is &blgenetrate the vegetation canopy
through gaps between leaves and branches. Thus, LIDAR dptasents the full three dimensional
structure of the forest canopy and has been adopted as anthstcaurate indirect measure for AGB
guantification 15-22]. LiDAR based estimation of AGB can be performed either odivitual tree
level [23] or on regional level 15,24]. Approaches estimating AGB at individual tree level requiigh
point densities ¥5 points/nt) and are mostly based on regression models focusing on tioredhip
between LiDAR derived individual tree parameters (e.gg tneight, crown dimensions) and field based
estimates of AGB. Area-wide AGB estimation on regional lean also be performed with low point
density LIDAR data and is mainly based on the extrapolatibRlaeference data measured at stand
or plot level. Therefore, the vertical distribution of thesér echoes is analyzed at stand or plot level
in order to derive various statistical quantities that aseduas input parameters for empirical models
estimating area-based forest inventory parameters (®egan tree height, basal area, stem volume)
and AGB, respectively. Both approaches are mainly baseti@mgeometrical information of the point
cloud. The usage of the intensity information of the LiDARalas a complimentary data source offers
promising opportunities for, e.g., tree species classiing25-28], which could enhance the AGB
estimations 29]. However, this requires an appropriate calibration of da¢a as described in, e.g.,
Hofle and Pfeifer 13]. Current methods estimating Fl data and AGB, respectivahyregional level
with LIDAR data mainly involve the use of empirical models bging linear or nonlinear regression
analysis. Such models work reliably in areas of flat terraid a tree plantations. In mountainous
regions as well as in mixed and multi-story forested areasdirivation of Fl variables is still a
matter of researchlP,30,31]. Hollauset al. [32] developed a semi-empirical model for stem volume
estimation and applied it to a 128 Kralpine forest. The model was evaluated by comparing it to the
multiplicative empirical model of Naesse®3]. For the investigated alpine area both models showed
promising results and reached high coefficients of deteatiin (R = 0.76 — 0.86). Furthermore,
the model was successfully applied for the entire FederatleStf Vorarlberg, Austria with an area
of 2,601 km B4]. In contrast to empirical models, semi-empirical modedly rpartly on physical
assumptions and empirical measurements. By using such Isnadeinterpretation of the model
parameters might be possible because only input paramatéine same physical units are used and
the logical connection between the target variable and IRRata is respecte@4).

In this paper the semi-empirical model of Hollaetsal. [32] is investigated concerning its reliability
for area-wide AGB estimation of a 560 Kralpine area. Furthermore, the model is extended by differen
canopy transparency parameters (CTPs) derived from LiDAR ¢h order to consider the varying
properties of vegetation within the study area. These patens are based on the assumption that
transparency of vegetation can be measured by determingiggenetration of the laser light through
the canopy. The effect of the integrated CTPs is evaluatatbhyparison with the results of the model
not explicitly considering the transparency of vegetatiohn Exploratory Data Analysis (EDA) is
performed to investigate the behavior of the different eadtgl models for AGB estimation.
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2. Study Area and Data

2.1. Study Area

The investigated alpine spruce dominated forest land a&téatin the southern part of the Federal State
of Vorarlberg (Austria) in the so-callddontafonregion and covers an area of 560%riThe elevations
within the area range from 800 m above sea level in the vatieyds312 m at the Piz Buin Mountain
in the Silvretta Mountain range. The landscape is charnaeidiby coniferous and mixed forests, alpine
meadows, alpine wasteland and agricultural land. The geeinberline is at about 1,950 m whereas
two thirds of the forests are located below 1,000 m. The m@@a species in the area are Norway
spruce Picea abie} with 96% and fir Abies alba with 3% [35]. About the half of the forests within
the study area are managed by the local forest adminisir&tiand Montafon Forstfonds. A detailed
forest inventory is operated by the local forest adminigira which is used as reference data for the
presented study.

Figure 1. The study area is situated in the western part of the Ausfiips in the Montafon
region. The image on the left shows the dates and the flighsdthe ALS campaigns. The
blue circles on the right image represent the location offtihest inventory plots collected
by the local forest administration Stand Montafon Forstfan

@ sample plots

[l forested area
Dates of ALS campaigns {3
2002 - December =g
——2003 - July
—— 2004 - May
—— 2004 - August
—— 2004 - September
—— 2004 - October 012 4
2004 - November Kilometers

2.2. Local Forest Inventory Data

The forest administration Stand Montafon Forstfonds masagbout 65 ki of forests in the
Montafonregion. For this study forest inventory (FI) data from 50@hgée plots, which are regularly
distributed in a 350 m grid are available (Figure 1). Theyeveollected in the year 2002. For each
sample plot both the tree specific parameters, such as tigiat hteee species and DBH were measured
using the angle count sampling meth@&6][ This measurement approach results in plot areas and
number of sampled trees that strongly vary from sample plaaimple plot. For the selection of the
trees, a relascope with a relascopic factor of four was usedher details on measuring and estimating
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forest inventory parameters (e.g., tree heights, treedioates, center coordinates of the sample plots,
stem volume) can be found in Hollaes$ al. [37]. A co-registration of the forest inventory data to
the LIDAR data as described in Doriget al. [38] is required to correct the possible inaccuracies
in the spatial positions between the LIDAR and the foreseimory data. For this study 488 of
the 500 available sample plots are successfully co-regidte® the LIDAR data using the method of
Dorigoet al.[38].

2.3. Determination of Reference AGB

In this study AGB per unit area is used as ground referencatiua It is estimated from stem
volume by means of tree specific expansion factors as deschbWeisset al. [10]. Stem volume is
assessed as described in Hollatial. [37] for every single tree that was selected according to théeang
count method. The used equations are based on a so calleeh&gimt concept meaning that stem
volume is estimated by transforming the conical shape oemgb a cylinder, whereas the diameter
of the cylinder corresponds to the DBRB7. The assessed stem volume of each tree is transformed
into dry stem biomass by using tree specific average raw tyefasitors [L0]. The next step contains
the transformation of the dry stem biomass to dry total tieenass by means of factors described in
Korner et al. [39], whereas different tree species and age classes leadféoedif factors as given in
Weisset al.[10]. After AGB assessment of single trees, AGB per unit arealisutated for each sample
plot with the following formula:

- k
AGB = ——— x AGB; 1
izl (DEH)Q * T | ( )
where AGB is the aboveground biomass per unit area in tonfi@etare [t ha'], k is the relascopic
factor (set to 4), AGBis the aboveground biomass of a single tree in kilograms asdhe number of
measured trees per sample plot unit.

2.4. Airborne Laser Scanning Data

The LIiDAR data were acquired during several flight campaignihe framework of a commercial
Vorarlberg-wide terrain mapping project using Optech Amre Laser Terrain Mapper systems
(ALTM 1225, ALTM 2050) and a Leica ALS-50 scanner. All camgas recorded first and last echoes
and took place under snow-free conditions in the years 20@R04. The LiDAR data were acquired at
an average flying height of 1,200 m above ground (Figure 1¢.Ojptech sensors have a beam divergence
of 0.3 mrad and the ALS-50 scanner a beam divergence of 0.88.rihe beam divergence resulted in
a mean footprint diameter of 0.33 m and 0.36 m, respectiwlyife average flying height. The mean
point densities within the study area vary between 0.9 pfimitand 2.7 points/rh Further information
about the used LiDAR sensors are listed in Table

The georeferenced 3D point clouds as well as the DigitalalerModel (DTM) and the Digital
Surface Model (DSM) were provided by the Land Survey Adntraison Feldkirch, Austria. The DTM,
which has a spatial resolution of 1 m was generated by usstgelzhoes and applying the hierarchic
robust filter technique as described e.g., in Kraus anddé?fgif]. A Canopy Height Model (CHM) that
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is produced by subtracting the DTM from the DSM is used to wrprthe co-registration of the forest
inventory data to the LiDAR data as described in Dorgal.[38].

Table 1. Summary of characteristics of applied LIiDAR sensors.

Sensors
Sensor characteristics Optech ALTM 1225  Optech ALTM 2050 L&ca ALS-50
Beam Divergence [mrad] 0.3 0.3 0.33
Fields of View [] 0—-40 0-40 up to 75
Wavelength [nm] 1,064 1,067 1,064
Pulse Repetition[kHz] <25 <50 <83
Multiple Targets upto 2 upto 2 up to 4

3. Methodology

3.1. Semi-Empirical Model

The semi-empirical model is based on the assumption that,AB#8n in tons per hectare (t h§
can be expressed as a linear function of the canopy volumggrg® ha!)). The canopy volume is
defined as the entire volume between the terrain surfacehentbpmost tree surface. The calculation
of V¢anis based on the heightsd., the relative heights to the ground) of the LIiDAR first echaed is
performed for different canopy height intervals to consitthe variability of the vertical and horizontal
structure of the canopyan is determined by using a fixed circular reference afdant)) around the
center of the forest inventory sample plots. The height eliewain surface of each first echo point is
used to classify the points inta different height classes, whereas all points having a heghe of less
than 2.0 m are classified as points reflected from the tefashes, stone=tc.[33] and are not included
into the canopy volume calculatiod is split into several sub-areds (i=1,2...,m), whereas the size of
A is determined by the relative proportipr; (between 0 and 1, whereas the sunpgf is 1) of first
echo points, whose heights fall within the canopy heighgsilaV,y; is calculated as:

A % Prei * Chmeani
Vcanj = e,|A meen — Dte,i * Chmeani (2)

wherechnean IS the mean canopy height of all first echoes within the cpwading canopy height class.
To guarantee that both, the reference AGB (t'and the estimated AGB are given per unit aMay;
has to be divided byA. The semi-empirical model estimating AGB from LIDAR dataswarmulated as

i=1
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wherem is the number of canopy height classgsare the unknown model coefficients estimated
with a least squares approach and can be interpreted asttierfrof the corresponding canopy volume
to the reference AGB. The factor 1@as added to take the different area units of AGB (tH@andV can,
(m*m~2) into account.

According to former studies3p,34] four canopy height classes having a canopy height interval
of 10 m are used for the calculation of the canopy voluvgg ; ranges between 2 m and 12 Wy, 2
ranges between 12 m and 22 Yh, sranges between 22 m and 32 m ang, scontains all first echoes
having a height greater than 32 m.

3.2. Canopy Transparency Parameters

In this study three different CTPs are defined and investjatith respect to their influence on AGB
estimation of the semi-empirical model. They describe thegparency of the canopy surface towards
the first laser echoes and are introduced in order to destré&arying properties of the vegetation
within the study area in more detail. The CTPs underlie tlsimption that all laser pulses enter the
canopy parallel to the stems of the trees. Due to lack of LiDddRa representing identical canopy
structures scanned with various scan angles, the influehflgimg altitude and scan angle on the
penetration of the laser pulses into the canopy and theiaatnpn the resulting 3D point cloud have
not been assessed in this study as performed in e.g., Mol [41] and Naesse#]?).

The CTPs are integrated in the semi-empirical model of Hisl&t al. [32] to reduceV,y in areas
that are transparent towards the laser beam because itusm@dshat such areas contribute less to
AGB than areas that are not penetrated by the laser shots.tdDmeerlapping flight strips, changing
airplane attitude and topographic conditions, the distdmetween points as well as the point density
vary between the sample plots. These circumstances arglecetsin each of the following parameters.
Hence, the developed CTPs should guarantee that the estirA@B of identical sample plots having
different point densities is comparable to each other.

Canopy Transparency Based on a Static Search Radius

As illustrated in Figure2(a), the transparency of the canopy towards the laser echbdise
current location is computed by searching all first echo {sofm,g) within a static search radiusgy
(e.g., 1.0 m, measured in 2D) that were reflected from bel@cthrrent search point. The term static
search radius means that the same search distance is appks@ry single point of each sample plot.
The detected points must have a minimum vertical distance.gf, 0.3 m to guarantee that points
that were reflected from the canopy surface, but differ diygim elevation due to the sloped canopy
surface, are not selected as points that penetrated th@yanoace. However, the varying average
first echo point densitieDPs) between the different circular sample plots are not careid yet and
a normalization ofn,q with the DPg of the corresponding circular sample plot is requirddPy is
determined by dividing the number of first echoes within tbeesponding sample plat{) by its area
(A). The following equation is used to compute the CTP basedstate search radiu€{l Pstatic)-

1 1
(n2a/) ~ (nae/DPre) (4)

CTP static —
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wherenyq is the number of points (including the search point) found search distance ofy , whereas
the height of the vertical search cylinder is equal to thehieof the search point minus the defined
minimum vertical distance.

Figure 2. lllustration of the canopy transparency parameters (CTWBjch are applied
to every first echo laser point. I(a) a static search radius, i(b) a dynamic search
radius depending on the sample plot first echo point dersitxgéd to calculate the canopy
transparency towards the laser echoes. The canopy tramgggrarameter i(c) is based on
the Echo Ratio (ER).

€€'0=d1D

(a) static radius based canopy (b) dynamic radius based (c) Echo Ratio based canopy
transparency canopy transparency transparency
@ LiDAR first echoes r2q¢ = 2D search radius

@ first echo searchpoint s34 = 3D search radius

Canopy Transparency Based on a Dynamic Search Radius

This CTP is based on a dynamic 2D search radiBRyynami) in order to find all first echoes that
were reflected from below the current search point. The sElegoints must also have a minimum
vertical distance of e.g., 0.3 m from the current searchtgoiavercome the problems mentioned above.
Dynamic search radius means thatis adjusted to th®P;, of the corresponding sample plot. Hence,
it varies between the sample plots but takes the varipiRg between the sample plots into account.

is defined as:
A

nfe*ﬂ-

(®)

T2d =
CTPyynamicis calculated using the following equation:

1
CcTP dynamic — — (6)
Nad
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Canopy Transparency Based on the Echo Ratio

The Echo Ratio (ER), which is a measure for local transpgremzl canopy surface roughness
has been used in various studies to separate solid objemtactérized by planarity such as building
roofs from non-planar objects like vegetatiat8]. In this study the ER value is used as a measure of
transparency of vegetatio@.TPzr is derived for each first echo and is defined as:

ER = CTPgr = (7)

Nad

As illustrated in Figure(c), naq is defined as the number of first echoes (including the seairtt)p
found in a dynamic search distance measured inr8Ris the number of first echo points found in
the same distance measured in 2D, whereas the vertical @gpaof the search cylinder is infinite.
The dynamic search distance is calculated according tottequataking the varying point densities of
the sample plots into account. ER decreases from denseti@asparent) to less dense (transparent)
vegetated areas.

3.3. Integration of Canopy Transparency Parameters

Each of the LIDAR based CTPs (Secti®?) is integrated in the semi-empirical AGB model
(Section3.1). This leads to four different semi-empirical models (idihg the model without a CTP),
which are analyzed according to their predictive accurddye canopy transparency is calculated for
every single first echo point. The integration@fPis performed by altering Equatidhas:

Nfe,i Mg, Nfe,i
> ey Chiex x CT Py _ Tei Y ey Chiex x CT Py _ Y ey Chiex x CT Py
Nfe i Nfe Nfe i Nfe

(8)

Vcanj = Dre,i *

whereng; is the number of all first echoes awtk « is the height of each first echo point within the
corresponding height class ng is the total number of all first echoes withia CTR, is the canopy
transparency parameter of the corresponding first echa poith is set to one iV, is calculated
without any CTP and hence equal to the model as described lgudet al.[32)].

3.4. Calibration and Validation of the Semi-Empirical Mdde

The estimation of the optimal sample plot area is perfornsediescribed in former studie$2,32,34]

and is based on the unaltered semi-empirical model usingmopy height classes with a canopy height
interval of 10.0 m (SectioB.1). A leave one out cross validation procedure is performeakgess the
predictive accuracy of the calibrated model. The LIiDAR daése acquired partly under leaf-on as well
as under leaf-off conditions (Secti@¥). This could result in different canopy volumes for decidsio
trees even if they have similar stem volumes. To avoid dfferflight dates having an effect on the
calibration of the semi-empirical model, coniferous saergibts are separated from deciduous ones by
applying a 90% coniferous trees threshold. The selecteghleaphots are used for the determination
of the optimal circular sample plot area. Those referencepsa plots, where the sampled trees are
outside the estimated sample plot size are excluded fouttiesr calculations. All sample plots fulfilling



Sensor2011 11 287

these conditions are used for estimating and calibratiag ttoefficients of the semi-empirical models.
A comparison with the original model is performed by bothith@redictive accuracies and by a set
of EDA.

4. Results and Discussion

4.1. Selection of Reference Sample Plots

The 90% coniferous trees threshold resulted in a selecfidb®out of 488 successfully co-registered
sample plots. These sample plots are taken as input for teendi@ation of the optimum circular sample
plot size. As shown in Tabl2 a sample plot radius of 12.0 m results in the highesaid the lowest SD
of the prediction errors and thus in the highest accurach@talibrated model.

Table 2. Determination of the optimum circular sample plot size bglgrning various radii
according to their Rand standard deviation of the residuals.

Sample plot radius [m] 8.0 10.0 12.0 14.0 16.0
R? 0.60 0.64 0.66 0.64 0.61
SD[t? ha!] 120.2 111.4 109.0 111.2 115.7

In a next step, those sample plots, which contain only tiessatre located within a sample plot radius
of 12.0 m are selected. 196 out of 450 coniferous sample fulbfis this condition and are taken for the
calibration of the semi-empirical models.

4.2. Calibration of the Semi-Empirical Model

The models are calibrated using the 196 selected sampke (Settion 4.1). The first echo point
cloud serves as input for calculating the canopy volumes.

Calibrating the model without using a CTP results in%adR0.70 and a SD of the prediction errors
of 87.6 t ha'! (35.8%). Extending the model by the CTP based on a statiasaufi1.0 m degrades the
R? to 0.64, while the SD of the prediction errors increases th.90 ha' (41.7%). Normalizing the
number of points found below the current canopy point by #rae plot point densitip P is required
(Equation(4)). If DPs is not considered, Rdecreases to 0.55, while the SD of the prediction errors
increases to 113.7 t h&(46.5%). Introducing the CTP based on the ER as a measurafmparency
of vegetation towards the laser beams results i?afR0.70 and in a SD of the prediction errors
of 88.8 t ha' (36.3%). Extending the model by the CTP based on a dynamiclseadius a R
of 0.71 and a SD of the prediction errors of 87.4 t h&35.8%) is achieved. The accuracy statistics,
the 3 coefficients of the calibrated models and the p-values ottreesponding input parameters are
shown in Table3. Figure3 shows the scatter plots of the reference AGB versus the AGBia=d from
LiDAR data.
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Table 3. Accuracy statistics of the fitted AGB models?,RSD of the prediction errors and
the estimated coefficients with their corresponding p-values (from tXese shown.

Parameters  without CTP static CTP EchoRatio CTP dynamic CTP

R? 0.70 0.64 0.70 0.71

SD[tha1] 87.6(35.8%) 101.9 (41.7%) 88.8 (36.3%) 87.4 (35.8%)

Bl/p 7.71x 10-4/0.15 12.50x 10-4/0.21 9.14x 10~4/0.365 16.21x 10~*/0.05

B21p 19.91x 1074/1.41x 10712 37.74x 1074/7.27x 10~11  46.16x 10~%/3.34x 10~ 15 39.02x 104/ <2 x 1016
B3/p 29.75x 1074/ <2 x 10716 5460x 1074/ <2x 1016  5950x 10~4/<2x 10716  50.72x 104/ <2 x 1016
B4lp 15.87x 1074/2.15x 1075 20.23x 10~4/0.026 38.12¢ 1074/1.27x 1076  24.78x 1074 /2.74x 10~

Figure 3. Scatter plots showing the aboveground biomass derived fr@rocal forest
inventory versus the aboveground biomass estimated fromiBBR first echo point cloud
data. Different canopy transparency parametersdjbare introduced and investigated
concerning AGB estimation.
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According to R CTP gynamic results in a minor improvement compared to the model notguaity
canopy transparency factor. The CTP based on a dynamichseatitis leads to a slight increase of
R? to 0.71. The accuracy of the model using the CTP based on thés BRnilar to the accuracy
of the model not using any CTP. The’ Ralues in the presented approach differ from the study of
Hollauset al.[32]. They achieved Rvalues up to 0.86 for stem volume estimation. These deviatio
can be explained by the different target variables of theet®o(AGB versus stem volume estimation)
and the transformation of stem volume to AGB, which is accanigd with uncertainties (Sectiéh?2),
respectively. Thes coefficients represent the fraction of the AGB occupied leydbrresponding canopy
height class (SectioB.1). Analyzing these coefficients confirmed the findings of Hodlet al. [32],
who stated that canopy heights between 22 m and 32 m are theshigontributors to growing stock.
In this study these canopy heights are identified as the bigimatributors for AGB estimation. For all
semi-empirical modelg; has the highest fraction for calculating AGB and varies leem29.75< 10~*
and 59.50x 104 (Table3).

The CTPs are introduced in order to redig, in areas that are transparent towards the laser beam.
It is assumed that such areas contribute less to AGB thars déinea are not penetrated by the laser
shots. As shown above, the integration of the CTPs has nob lagignificant improvement concerning
R2. This can be explained by the usage of first echoes for thelladilen of V4. First echoes being
reflected from below the canopy surface are characterizelbwgr heights than laser points being
reflected from, e.g., the tree crowns and hence, contrileste to the calculation o0f .. Therefore,
the integration of CTPs that are also based on first echo ptonds may not change the behavior
of the semi-empirical model concerning Bignificantly. However, the reflection of first echoes from
below the canopy surface is also dependent on the settinthge dfiDAR sensors acquiring the three
dimensional point cloud of the area of investigation sucheem divergence and range between sensor
and objectice., nominal footprint size). The characteristics of the diéf@ LIDAR sensors used during
the ALS mapping campaigns (Secti@), the impact of the LIDAR scanning angle and the flying
altitude on the resulting 3D point cloud as well as their iaflae on the semi-empirical model have not
been investigated in this study but will be in the focus otifetresearch. It is expected that the number
of first return points that are reflected from close to the tofine canopy increases with increasing scan
angle due to the increased path length through the canopynidy affect the semi-empirical model and
the derivation of the canopy transparency parameterssiigaions on this topic require a very detailed
data basis in order to gain reliable knowledge about theenfte of the viewing geometry.€., flying
altitude and scanning angle) on the penetration of each pagse into the canopy. This means that at
least a subset of the sample plots within the study area haes ssanned with various scan angles and
flying altitudes using different LIDAR sensoréd]. Morsdorfet al.[41] assessed the influence of flying
altitude and scanning angle on the derivation of forestnapaters such as leaf area index, fractional
cover and tree height. Their test site was sampled with twoinal flying altitudes, 500 m and 900 m
above ground, whereas the overlap of each flight strip wastdfi%o with each neighboring strip. This
allows the investigation of differences of ALS based est@savith respect to varying flying altitude
and scanning angle. They found that the derivation of bisfay vegetation properties is much more
affected by flying altitude than by scanning angle. This daiso be due to the small scan angle of the
laser scanning system:-{.15). The results of Disnest al.[44] show that the impact of scanning angle
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towards LIiDAR derived canopy height is greater for conifeart for broadleaf forests. This has been
investigated by using detailed 3D models in order to sineutla¢ LIDAR response of young conifer and
broadleaf forests. This simulation allowed to test the grilce of different LIDAR parameters under a
range of set-ups usually not possible in practice.

4.3. Exploratory Data Analysis

Figure 4. The box-whisker plots show the under- and overestimatiothef different
semi-empirical models. The reference AGB is subtractethftbe AGB estimated from
LiDAR data. The impact of LIDAR derived canopy transparerginvestigated on sample
plots that are highly under- and overestimated by the aaigmodel.
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Within the EDA all 196 selected sample plots are analyzedoraicg to their under- and
overestimation of AGB by the different models. Additiolyathe 10 sample plots leading to the highest
under- and overestimation, respectively, by the originatlet are selected for further analysis. This
procedure is based on the assumption that the original neaml#s to outliers concerning AGB estimation
due to the heterogeneity of the properties of the vegetatitinn the study area. Analyzing these sample
plots separately offers the possibility to check if the gnegion of CTPs is useful to consider the varying
properties of the vegetation of the outlying sample plots iproper way. The box-whisker plots in
Figure4 (a—c) indicate the distribution of residuals of the differembaels. The distribution of all 196
sample plots is shown in Figudga). The introduction of the CTP based on the dynamic seadius
leads to a box-whisker plot whose minimum-maximum rangeighy smaller than the range of the
box-whisker plot resulting from the model not using a CTRy(ife4(a)). The model without any CTP
leads to values concerning under- and overestimationmgrfgpm —305.91 t ha' to 242.50t ha'. The
model based on a dynamic search radius results in valuesmgaingm —281.50 t ha' to 202.00 t ha!.
The median value changes from2.78 t ha! to —7.30 t ha'! meaning that a higher amount of
sample plots is underestimated by using the model based pnaaric search radius (103 sample plots
versusl08 sample plots). The CTP based on a static search radigsydoéead to any improvement at
all. It degrades the results, which can also be concluded fre R value in Sectio.2. In Figure4(b,c)
the distribution of residuals of sample plots that are gflpminder- and overestimated by the original
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model are analyzed. Underestimation can be compensategl either the CTP based on the ER or on
a dynamic search radius, whereas the density parametat baske ER has the most significant effect.
Compared to the original model both density parametersttead increase of the minimum, maximum,
median and the values of the interquartile. The CTP basedsiati& search radius does not lead to
any improvement of sample plots being strongly undereséchly the original model and leads to a
decrease of these values. In Figd(e) strongly overestimated sample plots are compared to @her.

In this case the CTP based on a static search radius showssheebults and is able to minimize the
overestimations. The values of the interquartile as wethasminimum and maximum values decrease.
A decrease of the median, minimum and maximum values catbalebserved for the distribution based
on the model using a dynamic search radius, whereas theofloe third quartile increases. The model
using the CTP based on the ER degrades the results conc&@Bgstimation of the 10 sample plots
selected for investigation in Figudgc).

Figure 5. The histograms show the frequency distribution of resislif@astimated minus
reference AGB) of all 196 sample plots for all investigateadels.
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Single outliers of each model can be detected by analyzefrdguency distribution of the residuals
in Figure5. Besides the frequency distribution based on the modelgusistatic search radius the
histograms in Figur® look very similar. This confirms the robustness of the ordjimodel against
different canopy surface transparencies. Significant@dsucan not be observed, neither by an increase
of R? nor by a different frequency distribution of the residuals.

5. Summary and Conclusions

In this study LIDAR data is used for area-wide AGB estimatida spruce dominated alpine forest.
In the presented approach a semi-empirical model, whichosigeally developed for stem volume
estimation is used and investigated concerning its raiiglhor AGB estimation. Local forest inventory
data are used for the calculation of reference AGB per sapiptdy means biomass expansion factors.
Furthermore, the semi-empirical model is extended by @iffeCTPs derived from airborne LIDAR data
that have not been considered yet and are introduced in trd@restigate the behavior of the different
models concerning AGB estimation. The introduction of thparameters is based on the assumption
that the varying properties of vegetation within the studgyaacan be described in a better way and
consequently leads to better result concerniAg Fhe determination of the optimum sample plot size
is performed as described in Hollauk?] and results in a fixed sample plot radius of 12 m. A 90%
coniferous trees threshold is applied on each sample plavéad deciduous trees having an effect
on the calibrated model when LIiDAR data are acquired und&rda and under leaf-off conditions,
respectively. Furthermore, those sample plots that do ootamn all sampled trees within the radius
of 12.0 m are excluded and are not taken for the calibratiotheflinear regression models. The
determination of the optimal sample plot size as well as % Zoniferous trees threshold is only
applied on sample plots, whose positional accuracies coeldnproved successfully by applying a
co-registration approact8f. 196 out of 500 sample plots fulfill the aforementioned dtinds and
serve as reference data.

The results of the presented approach show that the semirieahgtem volume model can also be
used for AGB estimation of a spruce dominated alpine forése extension of the model by different
CTPs does not change’ Rignificantly. The varying point densities of the sampletglavhich are
a consequence of overlapping flight strips and the topoggagnditions in the Montafon region are
considered in each of the presented CTPs, either by adjugtensearch radius or by normalizing the
number of selected points by the local point density. Inrfeigtudies the different models will be applied
on areas, which are characterized by both a wider range@§frecies and a higher point density than it
was the case in the presented study. Furthermore, thosethegare strongly over- and underestimated
by the original model will be investigated according to theegetation characteristics in order to use
models based on a CTP in such areas. Additionally, the implatiie different LIDAR parameters
discussed in SectioA.2 on the resulting 3D point cloud and the semi-empirical mpdetpectively,
have not been considered in this study but will be in the fafdature research.
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