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Abstract: In this study, a semi-empirical model that was originally developed for stem

volume estimation is used for aboveground biomass (AGB) estimation of a spruce dominated

alpine forest. The reference AGB of the available sample plots is calculated from forest

inventory data by means of biomass expansion factors. Furthermore, the semi-empirical

model is extended by three different canopy transparency parameters derived from airborne

LiDAR data. These parameters have not been considered for stem volume estimation until

now and are introduced in order to investigate the behavior of the model concerning AGB

estimation. The developed additional input parameters arebased on the assumption that

transparency of vegetation can be measured by determining the penetration of the laser beams

through the canopy. These parameters are calculated for every single point within the 3D

point cloud in order to consider the varying properties of the vegetation in an appropriate way.

Exploratory Data Analysis (EDA) is performed to evaluate the influence of the additional

LiDAR derived canopy transparency parameters for AGB estimation. The study is carried

out in a 560 km2 alpine area in Austria, where reference forest inventory data and LiDAR
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data are available. The investigations show that the introduction of the canopy transparency

parameters does not change the results significantly according to R2 (R2 = 0.70 to R2 = 0.71)

in comparison to the results derived from, the semi-empirical model, which was originally

developed for stem volume estimation.

Keywords: airborne LiDAR; biomass; semi-empirical model; 3D point cloud;

linear regression

1. Introduction

In times of higher market prices of fossil fuels and due to theincreasing environmental and economic

threats of climate change, there will be a rising demand for renewable energy production, such as solar or

bio energy. The latter is the focus of the presented paper. Accurate estimation of Aboveground Biomass

(AGB), also referred to as dry total tree biomass, in forested areas is essential for developing sustainable

low carbon climate friendly strategies. This includes the reduction of costs for the provision of energy

resources, the mobilization of wood in local forests and theoptimization of timber harvesting chains in

order to minimize the environmental impact. AGB is defined asthe total amount of aboveground oven

dry mass of a tree, which is expressed in tons per unit area [1]. It can be directly converted to the total

carbon content that is stored in a forest. Having knowledge about the spatial distribution of the carbon

content is important in understanding the carbon cycle [2].

In contrast to time consuming and expensive field methods remote sensing such as spaceborne optical

remote sensing or synthetic aperture radar (SAR) is capablefor mapping area-wide forest inventory

(FI) data in a cost effective, fast and accurate way and has been used widely to retrieve AGB [3–5]. A

review of the latest developments in the different fields of remote sensing for forest biomass assessment

is given in Koch [6]. Remote sensing based estimates of AGB are mostly based on relationships between

reference biomass and various pixel values indicating, e.g., reflectance, greenness of vegetation and/or

brightness temperature [7]. However, such methods require an extensive set of reference AGB that can

be derived by two major ways: (i) tree specific functions estimating biomass directly from individual

tree measurements such as diameter at breast height (DBH), tree height (H), crown length (CL) and/or

crown width (CW) [8,9] or (ii) tree specific biomass expansion factors transforming stem volume into

AGB [10,11], whereas stem volume is estimated from DBH and H as described in, e.g., Hollaus [12].

In recent years Airborne Laser Scanning (ALS), also referred to as Light Detection and Ranging

(LiDAR), has been established as a standard technology for high precision three dimensional topographic

data acquisition. The three dimensional information is obtained by using an ALS system, which consists

of three main components: (i) a Global Positioning System, which is used to record the aircraft position,

(ii) an Inertial Measurement Unit (IMU) that measures the angular attitude of the aircraft (roll, pitch

and heading), and (iii) a laser scanner unit transmitting short and collimated pulses towards the Earth

surface and recording both the travel time of the laser beam and the energy (intensity), which is scattered

by the target surface [13]. By taking the measurements of the GPS/IMU and the travel time of the

laser beam into account, the coordinates of the vegetation and terrain scatterers can be determined with
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high accuracy in a suited georeferenced coordinate system [14]. The obtained geometrical information

is stored in a 3D point cloud (x,y,z), whereas each point is tagged with auxiliary information such

as strength of backscatter and scan angle. In contrast to conventional sensors (e.g., passive optical),

LiDAR is less sensitive to cloud cover and shadows and is ableto penetrate the vegetation canopy

through gaps between leaves and branches. Thus, LiDAR data represents the full three dimensional

structure of the forest canopy and has been adopted as a fast and accurate indirect measure for AGB

quantification [15–22]. LiDAR based estimation of AGB can be performed either on individual tree

level [23] or on regional level [15,24]. Approaches estimating AGB at individual tree level require high

point densities (>5 points/m2) and are mostly based on regression models focusing on a relationship

between LiDAR derived individual tree parameters (e.g., tree height, crown dimensions) and field based

estimates of AGB. Area-wide AGB estimation on regional level can also be performed with low point

density LiDAR data and is mainly based on the extrapolation of FI reference data measured at stand

or plot level. Therefore, the vertical distribution of the laser echoes is analyzed at stand or plot level

in order to derive various statistical quantities that are used as input parameters for empirical models

estimating area-based forest inventory parameters (e.g.,mean tree height, basal area, stem volume)

and AGB, respectively. Both approaches are mainly based on the geometrical information of the point

cloud. The usage of the intensity information of the LiDAR data as a complimentary data source offers

promising opportunities for, e.g., tree species classification [25–28], which could enhance the AGB

estimations [29]. However, this requires an appropriate calibration of thedata as described in, e.g.,

Höfle and Pfeifer [13]. Current methods estimating FI data and AGB, respectively, on regional level

with LiDAR data mainly involve the use of empirical models byusing linear or nonlinear regression

analysis. Such models work reliably in areas of flat terrain and in tree plantations. In mountainous

regions as well as in mixed and multi-story forested areas the derivation of FI variables is still a

matter of research [12,30,31]. Hollauset al. [32] developed a semi-empirical model for stem volume

estimation and applied it to a 128 km2 alpine forest. The model was evaluated by comparing it to the

multiplicative empirical model of Naesset [33]. For the investigated alpine area both models showed

promising results and reached high coefficients of determination (R2 = 0.76− 0.86). Furthermore,

the model was successfully applied for the entire Federal State of Vorarlberg, Austria with an area

of 2,601 km [34]. In contrast to empirical models, semi-empirical models rely partly on physical

assumptions and empirical measurements. By using such models an interpretation of the model

parameters might be possible because only input parametersof the same physical units are used and

the logical connection between the target variable and LiDAR data is respected [34].

In this paper the semi-empirical model of Hollauset al. [32] is investigated concerning its reliability

for area-wide AGB estimation of a 560 km2 alpine area. Furthermore, the model is extended by different

canopy transparency parameters (CTPs) derived from LiDAR data in order to consider the varying

properties of vegetation within the study area. These parameters are based on the assumption that

transparency of vegetation can be measured by determining their penetration of the laser light through

the canopy. The effect of the integrated CTPs is evaluated bycomparison with the results of the model

not explicitly considering the transparency of vegetation. An Exploratory Data Analysis (EDA) is

performed to investigate the behavior of the different extended models for AGB estimation.
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2. Study Area and Data

2.1. Study Area

The investigated alpine spruce dominated forest land is located in the southern part of the Federal State

of Vorarlberg (Austria) in the so-calledMontafonregion and covers an area of 560 km2. The elevations

within the area range from 800 m above sea level in the valleysto 3,312 m at the Piz Buin Mountain

in the Silvretta Mountain range. The landscape is characterized by coniferous and mixed forests, alpine

meadows, alpine wasteland and agricultural land. The average timberline is at about 1,950 m whereas

two thirds of the forests are located below 1,000 m. The main tree species in the area are Norway

spruce (Picea abies) with 96% and fir (Abies alba) with 3% [35]. About the half of the forests within

the study area are managed by the local forest administration Stand Montafon Forstfonds. A detailed

forest inventory is operated by the local forest administration, which is used as reference data for the

presented study.

Figure 1. The study area is situated in the western part of the AustrianAlps in the Montafon

region. The image on the left shows the dates and the flight paths of the ALS campaigns. The

blue circles on the right image represent the location of theforest inventory plots collected

by the local forest administration Stand Montafon Forstfonds.

2.2. Local Forest Inventory Data

The forest administration Stand Montafon Forstfonds manages about 65 km2 of forests in the

Montafonregion. For this study forest inventory (FI) data from 500 sample plots, which are regularly

distributed in a 350 m grid are available (Figure 1). They were collected in the year 2002. For each

sample plot both the tree specific parameters, such as tree height, tree species and DBH were measured

using the angle count sampling method [36]. This measurement approach results in plot areas and

number of sampled trees that strongly vary from sample plot to sample plot. For the selection of the

trees, a relascope with a relascopic factor of four was used.Further details on measuring and estimating
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forest inventory parameters (e.g., tree heights, tree coordinates, center coordinates of the sample plots,

stem volume) can be found in Hollauset al. [37]. A co-registration of the forest inventory data to

the LiDAR data as described in Dorigoet al. [38] is required to correct the possible inaccuracies

in the spatial positions between the LiDAR and the forest inventory data. For this study 488 of

the 500 available sample plots are successfully co-registered to the LiDAR data using the method of

Dorigo et al. [38].

2.3. Determination of Reference AGB

In this study AGB per unit area is used as ground reference quantity. It is estimated from stem

volume by means of tree specific expansion factors as described in Weisset al. [10]. Stem volume is

assessed as described in Hollauset al. [37] for every single tree that was selected according to the angle

count method. The used equations are based on a so called form-height concept meaning that stem

volume is estimated by transforming the conical shape of a stem to a cylinder, whereas the diameter

of the cylinder corresponds to the DBH [37]. The assessed stem volume of each tree is transformed

into dry stem biomass by using tree specific average raw density factors [10]. The next step contains

the transformation of the dry stem biomass to dry total tree biomass by means of factors described in

Körner et al. [39], whereas different tree species and age classes lead to different factors as given in

Weisset al. [10]. After AGB assessment of single trees, AGB per unit area is calculated for each sample

plot with the following formula:

AGB =
n

∑

i=1

k

(DBH
2

)2 ∗ π
∗ AGB i (1)

where AGB is the aboveground biomass per unit area in tons perhectare [t ha−1], k is the relascopic

factor (set to 4), AGBi is the aboveground biomass of a single tree in kilograms and nis the number of

measured trees per sample plot unit.

2.4. Airborne Laser Scanning Data

The LiDAR data were acquired during several flight campaignsin the framework of a commercial

Vorarlberg-wide terrain mapping project using Optech Airborne Laser Terrain Mapper systems

(ALTM 1225, ALTM 2050) and a Leica ALS-50 scanner. All campaigns recorded first and last echoes

and took place under snow-free conditions in the years 2002 to 2004. The LiDAR data were acquired at

an average flying height of 1,100 m above ground (Figure 1). The Optech sensors have a beam divergence

of 0.3 mrad and the ALS-50 scanner a beam divergence of 0.33 mrad. The beam divergence resulted in

a mean footprint diameter of 0.33 m and 0.36 m, respectively for the average flying height. The mean

point densities within the study area vary between 0.9 points/m2 and 2.7 points/m2. Further information

about the used LiDAR sensors are listed in Table1.

The georeferenced 3D point clouds as well as the Digital Terrain Model (DTM) and the Digital

Surface Model (DSM) were provided by the Land Survey Administration Feldkirch, Austria. The DTM,

which has a spatial resolution of 1 m was generated by using last echoes and applying the hierarchic

robust filter technique as described e.g., in Kraus and Pfeifer [40]. A Canopy Height Model (CHM) that
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is produced by subtracting the DTM from the DSM is used to improve the co-registration of the forest

inventory data to the LiDAR data as described in Dorigoet al. [38].

Table 1. Summary of characteristics of applied LiDAR sensors.

Sensors

Sensor characteristics Optech ALTM 1225 Optech ALTM 2050 Leica ALS-50

Beam Divergence [mrad] 0.3 0.3 0.33

Fields of View [◦] 0−40 0−40 up to 75

Wavelength [nm] 1,064 1,067 1,064

Pulse Repetition[kHz] <25 <50 <83

Multiple Targets up to 2 up to 2 up to 4

3. Methodology

3.1. Semi-Empirical Model

The semi-empirical model is based on the assumption that AGB, given in tons per hectare (t ha−1)

can be expressed as a linear function of the canopy volumes (Vcan(m3 ha−1)). The canopy volume is

defined as the entire volume between the terrain surface and the topmost tree surface. The calculation

of Vcan is based on the heights (i.e., the relative heights to the ground) of the LiDAR first echoesand is

performed for different canopy height intervals to consider the variability of the vertical and horizontal

structure of the canopy.Vcan is determined by using a fixed circular reference area (A(m2)) around the

center of the forest inventory sample plots. The height above terrain surface of each first echo point is

used to classify the points intomdifferent height classes, whereas all points having a height value of less

than 2.0 m are classified as points reflected from the terrain,bushes, stonesetc.[33] and are not included

into the canopy volume calculation.A is split into several sub-areasAi (i=1,2...,m), whereas the size of

Ai is determined by the relative proportionpfe,i (between 0 and 1, whereas the sum ofpfe,i is 1) of first

echo points, whose heights fall within the canopy height classi. Vcan,i is calculated as:

V can,i =
A ∗ pfe,i ∗ chmean,i

A
= pfe,i ∗ chmean,i (2)

wherechmean,i is the mean canopy height of all first echoes within the corresponding canopy height class.

To guarantee that both, the reference AGB (t ha−1) and the estimated AGB are given per unit area,Vcan,i

has to be divided byA. The semi-empirical model estimating AGB from LiDAR data was formulated as

AGB = 104

m
∑

i=1

β i ∗ V can,i (3)



Sensors2011, 11 284

wherem is the number of canopy height classes,β i are the unknown model coefficients estimated

with a least squares approach and can be interpreted as the fraction of the corresponding canopy volume

to the reference AGB. The factor 104 was added to take the different area units of AGB (t ha−1) andVcan,i

(m3m−2) into account.

According to former studies [32,34] four canopy height classes having a canopy height interval

of 10 m are used for the calculation of the canopy volume.Vcan,1 ranges between 2 m and 12 m,Vcan,2

ranges between 12 m and 22 m,Vcan,3ranges between 22 m and 32 m andVcan,4contains all first echoes

having a height greater than 32 m.

3.2. Canopy Transparency Parameters

In this study three different CTPs are defined and investigated with respect to their influence on AGB

estimation of the semi-empirical model. They describe the transparency of the canopy surface towards

the first laser echoes and are introduced in order to describethe varying properties of the vegetation

within the study area in more detail. The CTPs underlie the assumption that all laser pulses enter the

canopy parallel to the stems of the trees. Due to lack of LiDARdata representing identical canopy

structures scanned with various scan angles, the influence of flying altitude and scan angle on the

penetration of the laser pulses into the canopy and their impact on the resulting 3D point cloud have

not been assessed in this study as performed in e.g., Morsdorf et al. [41] and Naesset [42].

The CTPs are integrated in the semi-empirical model of Hollauset al. [32] to reduceVcan,i in areas

that are transparent towards the laser beam because it is assumed that such areas contribute less to

AGB than areas that are not penetrated by the laser shots. Dueto overlapping flight strips, changing

airplane attitude and topographic conditions, the distance between points as well as the point density

vary between the sample plots. These circumstances are considered in each of the following parameters.

Hence, the developed CTPs should guarantee that the estimated AGB of identical sample plots having

different point densities is comparable to each other.

Canopy Transparency Based on a Static Search Radius

As illustrated in Figure2(a), the transparency of the canopy towards the laser echoesof the

current location is computed by searching all first echo points (n2d) within a static search radiusr2d

(e.g., 1.0 m, measured in 2D) that were reflected from below the current search point. The term static

search radius means that the same search distance is appliedon every single point of each sample plot.

The detected points must have a minimum vertical distance of, e.g., 0.3 m to guarantee that points

that were reflected from the canopy surface, but differ slightly in elevation due to the sloped canopy

surface, are not selected as points that penetrated the canopy surface. However, the varying average

first echo point densities (DPfe) between the different circular sample plots are not considered yet and

a normalization ofn2d with the DPfe of the corresponding circular sample plot is required.DPfe is

determined by dividing the number of first echoes within the corresponding sample plot (nfe) by its area

(A). The following equation is used to compute the CTP based on astatic search radius (CTPstatic).

CTP static =
1

(n2d/
nfe
A

)
=

1

(n2d/DP fe)
(4)
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wheren2d is the number of points (including the search point) found ina search distance ofr2d , whereas

the height of the vertical search cylinder is equal to the height of the search point minus the defined

minimum vertical distance.

Figure 2. Illustration of the canopy transparency parameters (CTPs), which are applied

to every first echo laser point. In(a) a static search radius, in(b) a dynamic search

radius depending on the sample plot first echo point density is used to calculate the canopy

transparency towards the laser echoes. The canopy transparency parameter in(c) is based on

the Echo Ratio (ER).

(a) static radius based canopy

transparency

(b) dynamic radius based

canopy transparency

(c) Echo Ratio based canopy

transparency

Canopy Transparency Based on a Dynamic Search Radius

This CTP is based on a dynamic 2D search radius (CTPdynamic) in order to find all first echoes that

were reflected from below the current search point. The selected points must also have a minimum

vertical distance of e.g., 0.3 m from the current search point to overcome the problems mentioned above.

Dynamic search radius means thatr2d is adjusted to theDPfe of the corresponding sample plot. Hence,

it varies between the sample plots but takes the varyingDPfe between the sample plots into account.r2d

is defined as:

r2d =

√

A

nfe ∗ π
(5)

CTPdynamic is calculated using the following equation:

CTP dynamic =
1

n2d
(6)
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Canopy Transparency Based on the Echo Ratio

The Echo Ratio (ER), which is a measure for local transparency and canopy surface roughness

has been used in various studies to separate solid objects characterized by planarity such as building

roofs from non-planar objects like vegetation [43]. In this study the ER value is used as a measure of

transparency of vegetation.CTPER is derived for each first echo and is defined as:

ER = CTP ER =
n3d

n2d
(7)

As illustrated in Figure2(c), n3d is defined as the number of first echoes (including the search point)

found in a dynamic search distance measured in 3D.n2d is the number of first echo points found in

the same distance measured in 2D, whereas the vertical expansion of the search cylinder is infinite.

The dynamic search distance is calculated according to Equation 5 taking the varying point densities of

the sample plots into account. ER decreases from dense (non-transparent) to less dense (transparent)

vegetated areas.

3.3. Integration of Canopy Transparency Parameters

Each of the LiDAR based CTPs (Section3.2) is integrated in the semi-empirical AGB model

(Section3.1). This leads to four different semi-empirical models (including the model without a CTP),

which are analyzed according to their predictive accuracy.The canopy transparency is calculated for

every single first echo point. The integration ofCTP is performed by altering Equation2 as:

V can,i = pfe,i ∗

∑nfe,i
k=1

chfe,k ∗ CTP k

nfe,i
=

nfe,i

nfe
∗

∑nfe,i
k=1

chfe,k ∗ CTP k

nfe,i
=

∑nfe,i
k=1

chfe,k ∗ CTP k

nfe
(8)

wherenfe,i is the number of all first echoes andchfe,k is the height of each first echo point within the

corresponding height classi. nfe is the total number of all first echoes withinA. CTPk is the canopy

transparency parameter of the corresponding first echo point and is set to one ifVcan,i is calculated

without any CTP and hence equal to the model as described by Hollauset al. [32].

3.4. Calibration and Validation of the Semi-Empirical Model

The estimation of the optimal sample plot area is performed as described in former studies [12,32,34]

and is based on the unaltered semi-empirical model using four canopy height classes with a canopy height

interval of 10.0 m (Section3.1). A leave one out cross validation procedure is performed toassess the

predictive accuracy of the calibrated model. The LiDAR datawere acquired partly under leaf-on as well

as under leaf-off conditions (Section2.4). This could result in different canopy volumes for deciduous

trees even if they have similar stem volumes. To avoid different flight dates having an effect on the

calibration of the semi-empirical model, coniferous sample plots are separated from deciduous ones by

applying a 90% coniferous trees threshold. The selected sample plots are used for the determination

of the optimal circular sample plot area. Those reference sample plots, where the sampled trees are

outside the estimated sample plot size are excluded for the further calculations. All sample plots fulfilling
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these conditions are used for estimating and calibrating theβ coefficients of the semi-empirical models.

A comparison with the original model is performed by both their predictive accuracies and by a set

of EDA.

4. Results and Discussion

4.1. Selection of Reference Sample Plots

The 90% coniferous trees threshold resulted in a selection of 450 out of 488 successfully co-registered

sample plots. These sample plots are taken as input for the determination of the optimum circular sample

plot size. As shown in Table2 a sample plot radius of 12.0 m results in the highest R2 and the lowest SD

of the prediction errors and thus in the highest accuracy of the calibrated model.

Table 2. Determination of the optimum circular sample plot size by analyzing various radii

according to their R2 and standard deviation of the residuals.

Sample plot radius [m] 8.0 10.0 12.0 14.0 16.0

R2 0.60 0.64 0.66 0.64 0.61

SD[t3 ha−1] 120.2 111.4 109.0 111.2 115.7

In a next step, those sample plots, which contain only trees that are located within a sample plot radius

of 12.0 m are selected. 196 out of 450 coniferous sample plotsfulfill this condition and are taken for the

calibration of the semi-empirical models.

4.2. Calibration of the Semi-Empirical Model

The models are calibrated using the 196 selected sample plots (Section 4.1). The first echo point

cloud serves as input for calculating the canopy volumes.

Calibrating the model without using a CTP results in a R2 of 0.70 and a SD of the prediction errors

of 87.6 t ha−1 (35.8%). Extending the model by the CTP based on a static radius of 1.0 m degrades the

R2 to 0.64, while the SD of the prediction errors increases to 101.9 t ha−1 (41.7%). Normalizing the

number of points found below the current canopy point by the sample plot point densityDPfe is required

(Equation(4)). If DPfe is not considered, R2 decreases to 0.55, while the SD of the prediction errors

increases to 113.7 t ha−1 (46.5%). Introducing the CTP based on the ER as a measure for transparency

of vegetation towards the laser beams results in a R2 of 0.70 and in a SD of the prediction errors

of 88.8 t ha−1 (36.3%). Extending the model by the CTP based on a dynamic search radius a R2

of 0.71 and a SD of the prediction errors of 87.4 t ha−1 (35.8%) is achieved. The accuracy statistics,

theβ coefficients of the calibrated models and the p-values of thecorresponding input parameters are

shown in Table3. Figure3 shows the scatter plots of the reference AGB versus the AGB estimated from

LiDAR data.
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Table 3. Accuracy statistics of the fitted AGB models. R2, SD of the prediction errors and

the estimatedβ coefficients with their corresponding p-values (from t-test) are shown.

Parameters without CTP static CTP EchoRatio CTP dynamic CTP

R2 0.70 0.64 0.70 0.71

SD[t ha−1] 87.6 (35.8%) 101.9 (41.7%) 88.8 (36.3%) 87.4 (35.8%)

β1 / p 7.71× 10−4 / 0.15 12.50× 10−4 / 0.21 9.14× 10−4 / 0.365 16.21× 10−4 / 0.05

β2 / p 19.91× 10−4 / 1.41× 10−12 37.74× 10−4 / 7.27× 10−11 46.16× 10−4 / 3.34× 10−15 39.02× 10−4 / <2 × 10−16

β3 / p 29.75× 10−4 / <2 × 10−16 54.60× 10−4 / <2 × 10−16 59.50× 10−4 / <2 × 10−16 50.72× 10−4 / <2 × 10−16

β4 / p 15.87× 10−4 / 2.15× 10−5 20.23× 10−4 / 0.026 38.12× 10−4 / 1.27× 10−6 24.78× 10−4 / 2.74× 10−4

Figure 3. Scatter plots showing the aboveground biomass derived fromthe local forest

inventory versus the aboveground biomass estimated from 3DLiDAR first echo point cloud

data. Different canopy transparency parameters (b−d) are introduced and investigated

concerning AGB estimation.

(a) (b)

(c) (d)
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According to R2 CTP dynamic results in a minor improvement compared to the model not using any

canopy transparency factor. The CTP based on a dynamic search radius leads to a slight increase of

R2 to 0.71. The accuracy of the model using the CTP based on the ERis similar to the accuracy

of the model not using any CTP. The R2 values in the presented approach differ from the study of

Hollauset al. [32]. They achieved R2 values up to 0.86 for stem volume estimation. These deviations

can be explained by the different target variables of the models (AGB versus stem volume estimation)

and the transformation of stem volume to AGB, which is accompanied with uncertainties (Section2.2),

respectively. Theβ coefficients represent the fraction of the AGB occupied by the corresponding canopy

height class (Section3.1). Analyzing these coefficients confirmed the findings of Hollauset al. [32],

who stated that canopy heights between 22 m and 32 m are the highest contributors to growing stock.

In this study these canopy heights are identified as the highest contributors for AGB estimation. For all

semi-empirical modelsβ3 has the highest fraction for calculating AGB and varies between 29.75× 10−4

and 59.50× 10−4 (Table3).

The CTPs are introduced in order to reduceVcan,i in areas that are transparent towards the laser beam.

It is assumed that such areas contribute less to AGB than areas that are not penetrated by the laser

shots. As shown above, the integration of the CTPs has not ledto a significant improvement concerning

R2. This can be explained by the usage of first echoes for the calculation of Vcan,i. First echoes being

reflected from below the canopy surface are characterized bylower heights than laser points being

reflected from, e.g., the tree crowns and hence, contribute less to the calculation ofVcan,i. Therefore,

the integration of CTPs that are also based on first echo pointclouds may not change the behavior

of the semi-empirical model concerning R2 significantly. However, the reflection of first echoes from

below the canopy surface is also dependent on the settings ofthe LiDAR sensors acquiring the three

dimensional point cloud of the area of investigation such asbeam divergence and range between sensor

and object (i.e., nominal footprint size). The characteristics of the different LiDAR sensors used during

the ALS mapping campaigns (Section2.4), the impact of the LiDAR scanning angle and the flying

altitude on the resulting 3D point cloud as well as their influence on the semi-empirical model have not

been investigated in this study but will be in the focus of future research. It is expected that the number

of first return points that are reflected from close to the top of the canopy increases with increasing scan

angle due to the increased path length through the canopy. This may affect the semi-empirical model and

the derivation of the canopy transparency parameters. Investigations on this topic require a very detailed

data basis in order to gain reliable knowledge about the influence of the viewing geometry (i.e., flying

altitude and scanning angle) on the penetration of each laser pulse into the canopy. This means that at

least a subset of the sample plots within the study area has tobe scanned with various scan angles and

flying altitudes using different LiDAR sensors [42]. Morsdorfet al. [41] assessed the influence of flying

altitude and scanning angle on the derivation of forestry parameters such as leaf area index, fractional

cover and tree height. Their test site was sampled with two nominal flying altitudes, 500 m and 900 m

above ground, whereas the overlap of each flight strip was about 50% with each neighboring strip. This

allows the investigation of differences of ALS based estimates with respect to varying flying altitude

and scanning angle. They found that the derivation of biophysical vegetation properties is much more

affected by flying altitude than by scanning angle. This could also be due to the small scan angle of the

laser scanning system (±7.15). The results of Disneyet al. [44] show that the impact of scanning angle



Sensors2011, 11 290

towards LiDAR derived canopy height is greater for conifer than for broadleaf forests. This has been

investigated by using detailed 3D models in order to simulate the LiDAR response of young conifer and

broadleaf forests. This simulation allowed to test the influence of different LiDAR parameters under a

range of set-ups usually not possible in practice.

4.3. Exploratory Data Analysis

Figure 4. The box-whisker plots show the under- and overestimation ofthe different

semi-empirical models. The reference AGB is subtracted from the AGB estimated from

LiDAR data. The impact of LiDAR derived canopy transparencyis investigated on sample

plots that are highly under- and overestimated by the original model.

(a) Distribution of residuals of all

196 sample plots

(b) Distribution of residuals of the 10

most underestimated sample plots

(c) Distribution of residuals of the 10

most overestimated sample plots

Within the EDA all 196 selected sample plots are analyzed according to their under- and

overestimation of AGB by the different models. Additionally, the 10 sample plots leading to the highest

under- and overestimation, respectively, by the original model are selected for further analysis. This

procedure is based on the assumption that the original modelleads to outliers concerning AGB estimation

due to the heterogeneity of the properties of the vegetationwithin the study area. Analyzing these sample

plots separately offers the possibility to check if the integration of CTPs is useful to consider the varying

properties of the vegetation of the outlying sample plots ina proper way. The box-whisker plots in

Figure4 (a−c) indicate the distribution of residuals of the different models. The distribution of all 196

sample plots is shown in Figure4(a). The introduction of the CTP based on the dynamic search radius

leads to a box-whisker plot whose minimum-maximum range is slightly smaller than the range of the

box-whisker plot resulting from the model not using a CTP (Figure4(a)). The model without any CTP

leads to values concerning under- and overestimation ranging from−305.91 t ha−1 to 242.50 t ha−1. The

model based on a dynamic search radius results in values ranging from−281.50 t ha−1 to 202.00 t ha−1.

The median value changes from−2.78 t ha−1 to −7.30 t ha−1 meaning that a higher amount of

sample plots is underestimated by using the model based on a dynamic search radius (103 sample plots

versus108 sample plots). The CTP based on a static search radius does not lead to any improvement at

all. It degrades the results, which can also be concluded from the R2 value in Section4.2. In Figure4(b,c)

the distribution of residuals of sample plots that are strongly under- and overestimated by the original
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model are analyzed. Underestimation can be compensated using either the CTP based on the ER or on

a dynamic search radius, whereas the density parameter based on the ER has the most significant effect.

Compared to the original model both density parameters leadto an increase of the minimum, maximum,

median and the values of the interquartile. The CTP based on astatic search radius does not lead to

any improvement of sample plots being strongly underestimated by the original model and leads to a

decrease of these values. In Figure4(c) strongly overestimated sample plots are compared to each other.

In this case the CTP based on a static search radius shows the best results and is able to minimize the

overestimations. The values of the interquartile as well asthe minimum and maximum values decrease.

A decrease of the median, minimum and maximum values can alsobe observed for the distribution based

on the model using a dynamic search radius, whereas the valueof the third quartile increases. The model

using the CTP based on the ER degrades the results concerningAGB estimation of the 10 sample plots

selected for investigation in Figure4(c).

Figure 5. The histograms show the frequency distribution of residuals (estimated minus

reference AGB) of all 196 sample plots for all investigated models.

(a) Histogram without any density parameter (b) Histogram with static density parameter

(c) Histogram with ER density parameter (d) Histogram with dynamic density parameter
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Single outliers of each model can be detected by analyzing the frequency distribution of the residuals

in Figure 5. Besides the frequency distribution based on the model using a static search radius the

histograms in Figure5 look very similar. This confirms the robustness of the original model against

different canopy surface transparencies. Significant changes can not be observed, neither by an increase

of R2 nor by a different frequency distribution of the residuals.

5. Summary and Conclusions

In this study LiDAR data is used for area-wide AGB estimationof a spruce dominated alpine forest.

In the presented approach a semi-empirical model, which wasoriginally developed for stem volume

estimation is used and investigated concerning its reliability for AGB estimation. Local forest inventory

data are used for the calculation of reference AGB per sampleplot by means biomass expansion factors.

Furthermore, the semi-empirical model is extended by different CTPs derived from airborne LiDAR data

that have not been considered yet and are introduced in orderto investigate the behavior of the different

models concerning AGB estimation. The introduction of these parameters is based on the assumption

that the varying properties of vegetation within the study area can be described in a better way and

consequently leads to better result concerning R2. The determination of the optimum sample plot size

is performed as described in Hollaus [12] and results in a fixed sample plot radius of 12 m. A 90%

coniferous trees threshold is applied on each sample plot toavoid deciduous trees having an effect

on the calibrated model when LiDAR data are acquired under leaf-on and under leaf-off conditions,

respectively. Furthermore, those sample plots that do not contain all sampled trees within the radius

of 12.0 m are excluded and are not taken for the calibration ofthe linear regression models. The

determination of the optimal sample plot size as well as the 90% coniferous trees threshold is only

applied on sample plots, whose positional accuracies couldbe improved successfully by applying a

co-registration approach [38]. 196 out of 500 sample plots fulfill the aforementioned conditions and

serve as reference data.

The results of the presented approach show that the semi-empirical stem volume model can also be

used for AGB estimation of a spruce dominated alpine forest.The extension of the model by different

CTPs does not change R2 significantly. The varying point densities of the sample plots, which are

a consequence of overlapping flight strips and the topographic conditions in the Montafon region are

considered in each of the presented CTPs, either by adjusting the search radius or by normalizing the

number of selected points by the local point density. In future studies the different models will be applied

on areas, which are characterized by both a wider range of tree species and a higher point density than it

was the case in the presented study. Furthermore, those areas that are strongly over- and underestimated

by the original model will be investigated according to their vegetation characteristics in order to use

models based on a CTP in such areas. Additionally, the impactof the different LiDAR parameters

discussed in Section4.2 on the resulting 3D point cloud and the semi-empirical model, respectively,

have not been considered in this study but will be in the focusof future research.
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