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Abstract: When cows on dairy farms are milked with an automatic milking system or in 

high capacity milking parlors, clinical mastitis (CM) cannot be adequately detected without 

sensors. The objective of this paper is to describe the performance demands of sensor 

systems to detect CM and evaluats the current performance of these sensor systems. 

Several detection models based on different sensors were studied in the past. When 

evaluating these models, three factors are important: performance (in terms of sensitivity 

and specificity), the time window and the similarity of the study data with real farm data. A 

CM detection system should offer at least a sensitivity of 80% and a specificity of 99%. 

The time window should not be longer than 48 hours and study circumstances should be as 

similar to practical farm circumstances as possible. The study design should comprise 

more than one farm for data collection. Since 1992, 16 peer-reviewed papers have been 

published with a description and evaluation of CM detection models. There is a large 

variation in the use of sensors and algorithms. All this makes these results not very 

comparable. There is a also large difference in performance between the detection models 

and also a large variation in time windows used and little similarity between study data. 

Therefore, it is difficult to compare the overall performance of the different CM detection 

models. The sensitivity and specificity found in the different studies could, for a large part, 

be explained in differences in the used time window. None of the described studies 

satisfied the demands for CM detection models.  
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1. Introduction 

There are many aspects to milk quality. Mastitis is associated with two of the milk quality aspects 

that are used in most dairy producing countries: somatic cell count (SCC) and, if mastitis is clinical, 

visibly abnormal milk (in the remaining part of this article referred to as abnormal milk). In most dairy 

systems it is assumed that the farmer, informed by the official organizations in his country, has the 

responsibility to deliver milk of sufficient quality. In order to deliver milk with a low SCC, attention 

should be given to an adequate detection and prevention of mastitis. Efficient detection of clinical 

mastitis (CM) is therefore important. A well-established method to detect CM is to strip before milking 

and check the foremilk for abnormalities. Discarding of abnormal milk is part of the EU Milk Hygiene 

Directive (EC/92/46). Milk from diseased cows or milk that is visually abnormal should not be 

delivered. Discarding of abnormal milk is also mandatory in the USA, according to the Grade “A” 

Pasteurized Milk Ordinance. Checking of foremilk is thus important to detect CM and to meet the 

requirements of milk quality legislation.  

After development of individual animal identification [1], applications have been sought for this 

technique. Individual feeding, individual milking and automated detection of events of interest for the 

farmer are all applications following the development of individual animal identification. Because of 

the costs of mastitis [2,3], this disease has been the first focus of sensor developments in the dairy 

sector. From the mid-eighties, work has been carried out in order to automate the detection of mastitis 

by means of sensors. During milking, abnormal milk was detected using visual observations [4,5]. 

When detection of CM is carried out automatically, the task of the milker becomes easier and the 

capacity of milking parlors can be increased. Although sensors for detection of mastitis became 

commercially available in the beginning of the nineties, they never were applied on a large scale. 

Because of the fact that with automatic milking no milker is present at the time of milking, the need for 

sensors to detect CM and abnormal milk was high when automatic milking systems were 

commercially introduced in 1992. In the last years, the number of farmers with an automatic milking 

system has increased considerably. In the Netherlands, currently approximately 10% of the dairy 

farmers are milking their cows with an automatic milking system. Moreover, because of the number of 

milking clusters in an automatic milking system is much lower than in a comparable milking parlor, 

the costs of application of sensors is also lower in an automatic milking system. Therefore, interest in 

the application of sensors to detect mastitis and abnormal milk has been increasing considerably in 

recent years (e.g., [6]).  

The performance of the sensors currently used in practice (mostly based on electrical conductivity 

of milk), should be improved considerably. Especially the large number of false positive alerts is a 

concern for many dairy farmers. There is a strong need for performance improvements. There are two 

major routes through which this can be done: improvement of sensors and improvement of detection 

models that translate the sensor data into information for the herdsman. This paper describes the 

demands for performance of sensor systems to detect CM and evaluates the current performance of 

these systems. Therefore, this paper first starts with a section on performance demands, followed by a 
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section on different types of sensors, different algorithmic approaches and the possibilities of 

combining sensors with other sensors and knowledge from other sources.  

2. Demands for Automatic Detection of Clinical Mastitis 

Table 1 summarizes the study characteristics and results from previously conducted studies on CM 

detection models using sensory data. All sensors listed in Table 1, except the SCC sensor [7,8] are  

in-line sensors. The SCC sensor is an on-line sensor, where a small amount of milk is separated from 

the milk tube and led through the sensor. Table 1 only includes results from peer-reviewed studies that 

used sensors for the development of CM detection models. Therefore, some recent studies are not 

included in this table as these studies used cow information [9] or laboratory determined L-lactate 

dehydrogenase (LDH) [10-12], or they were not peer-reviewed [13]. The number of studies included in 

Table 1 makes clear that a lot of research on automated CM detection models has been done. It also 

makes clear that comparing results between the different studies is not valuable, as the characteristics 

between the studies differ too much. In this section, the demands for a detection model for CM will be 

described and discussed in relation with results of published studies.  

2.1. Detection performance 

2.1.1. Measuring performance 

Sensors for detection of mastitis and/or abnormal milk can be seen as diagnostic tests, which can be 

characterized by epidemiological parameters. It is very important that the event of interest is clearly 

defined; especially because the demands for a test might differ for the event of interest. For instance, 

detection of (visual) abnormal milk is done for other purposes than detection of CM. In the following 

sections these events will be described in the light of demand for performance of sensors.  

When evaluating a sensor, this is done in an experiment where the alerts given by the sensor are 

compared with the occurrence of an event in reality (gold standard). The outcomes of such an 

experiment can be classified as follows: 

 Number of observations where the event occurs with an alert (TruePosCount) 

 Number of observations where the event occurs without an alert (FalseNegCount) 

 Number of observations where the event does not occur with an alert (FalsePosCount)  

 Number of observations where the event does not occur without an alert (TrueNegCount) 

Using these basic classifications, the performance of a sensor can be evaluated as follows. The two 

most important parameters are sensitivity and specificity:  

Sensitivity (%) = 100  TruePosCount/(TruePosCount + FalseNegCount) 

Specificity (%) = 100  TrueNegCount/(FalsePosCount + TrueNegCount) 
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Table 1. Study characteristics of peer-reviewed published studies conducted from 1990 onwards that used sensor information (in- and online) 

for the detection of clinical mastitis. Characteristics included are the number of farms, definition of non-cases and cases and the number of 

them included in the study, sensors used, the applied methodology, the time window applied for classification, the sensitivity (SE), and the 

specificity (SP). 

Paper Farms (n) Definition non-cases (n) Definition cases (n) Sensors Algorithm 
Time 
window 

SE 
(%) 

SP 
(%) 

Maatje et al., 
1992 [14] 

1 research 
farm 

Based on bacteriological culturing 
and SCC1 (200) 

Clinical mastitis based on 
bacteriological culturing and 
SCC (25) 

EC2 Moving average 
and threshold 

14d 100 - 

Nielen et al., 
1995 [15]  

1 research 
farm 

Based on bacteriological culturing 
and SCC (25) 

Clinical mastitis based on 
observing abnormal milk (31) 

EC,  
milk yield,  
milk 
temperature 

Artificial 
Neural Network 

0d3 84.0 97.0 

Nielen et al., 
1995 [16] 

1 research 
farm 

Based on bacteriological culturing 
and SCC (17 for training; 13 for 
testing) 

Clinical mastitis based on 
observing abnormal milk or 
signs of inflammation 
(13 for training; 
13 for testing) 

EC, 
milk yield, milk 
temperature 

Artificial 
Neural Network 

1d 77.0 69.0 

De Mol et al., 
1997 [17]  

2 research 
farms 

--  
(6,495 milkings) 

Clinical mastitis based on 
clinical signs (52 cases) 

EC,  
milk yield, milk 
temperature 

Time-series 
with Kalman 
filter 

17d 904 98.25 

De Mol and 
Ouweltjes, 2001 
[18] 6,7 

1 research 
farm 

Based on never having clinical 
mastitis, bacteriological results, 
and SCC (29,033 milkings) 

Clinical mastitis based on 
clinical signs (48 cases) 

EC,  
milk yield, milk 
temperature 

Time-series 
with Kalman 
filter 

7d 1004 95.15 

De Mol and 
Woldt, 2001 [19] 

1 research 
farm 

Based on never having clinical 
mastitis, bacteriological results, 
and SCC (29,033 milkings) 

Clinical mastitis based on 
clinical signs (48 cases) 

EC,  
milk yield, milk 
temperature 

Fuzzy Logic 7d 1008 99.8 
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Table 1. Cont. 

De Mol et al., 
2001 [20] 7 

4 semi-
research 
farms 

Based on not having CM in the 
collection period, SCC and times 
milked (299,842 milkings) 

Clinical mastitis based 
on visual observation 
(95 cases) 

EC,  
milk yield, 
milk 
temperature 

Time-series 
with Kalman 
filter 

4d 674 97.95 

Norberg et al., 
2004 [21]  

1 research 
farm 

Based on bacteriological culturing 
and having no treatment for clinical 
mastitis by veterinarian (1,353) 

Clinical mastitis based 
on treatment by 
veterinarian after 
observing clinical signs 
by staff members (275) 

EC Discriminant 
function 
analysis  

0d3 47.9 91.9 

Cavero et al., 
2006 [22]  

1 research 
farm 

Based on not being treated for 
clinical mastitis (109,690 healthy 
days for training; 51,588 healthy 
days for testing) 

Clinical mastitis based 
on treatment  
(651 days of mastitis for 
training; 348 days of 
mastitis for testing) 

EC,  
milk yield, 
milk flow 

Fuzzy logic 5d 
Day of treatment, 
plus 2d prior and 
2d after 
treatment 

92.9 93.9 

Kamphuis et al., 
2008 [23] 

1 research 
farm 

Based on milkings without 
treatment records (27,699 cow 
milkings) 

Treated cases of clinical 
mastitis (18 cow 
milkings) 

EC, SCC Fuzzy Logic 2d for alert by 
model, 1d for 
observation 

80 99.210 

Claycomb et al., 
2009 [24] 

1 for 
training 
1 for 
testing 

-- Clinical mastitis as clots 
on filter (23 in test set)  

EC Threshold 4d/2d 83 99.8 

Mollenhorst et 
al., 2010 [8] 

3 
commercial 
farms 

Based on visual normal milk  
(3,172 quarter milkings) 

Clinical mastitis based 
on visual observation of 
abnormal milk (19 
quarter milkings) 

EC, SCC Threshold 0d3 47.4 99.0 

Kamphuis et al., 
2010 [25] 

6 
commercial 
farms 

Based on visual checks of farmers 
or on random selection (3,000 
quarter milkings) 

Based on visual 
observation by farmers 
(97 quarter milkings) 

EC, color,  
milk yield 

Decision-tree 
induction 

<1d 32.0 98.7 
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Table 1. Cont. 

Kamphuis et al., 
2010 [7] 

9 commercial 
farms 

Training: cases checked for clinical 
mastitis and SCC (24,960 quarter 
milkings). Testing: no observation 
of CM and without a 2-week range 
of a CM case (50,000 quarter 
milkings) 

Based on visual observation by farmers 
(243 for training; 105 for testing) 

EC,  
color,  
milk 
yield 

Decision-tree 
induction 

<1d 40.0 99.0 

Sun et al., 2010 
[26] 

1 research 
farm 

Based on SCC and not being treated 
for clinical mastitis (3,235 quarter 
milkings) 

Clinical mastitis based on visual 
observation by farm staff or SCC  
(895 quarter milkings) 

EC,  
milk 
yield 

Artifical Neural 
Network 

0d3 86.9 91.4 

1  Somatic Cell Count. 
2  Electrical conductivity. 
3  Considers one milking. 
4 Calculated for a mastitis case (cow level). 
5  Calculated for a mastitis-free milking using only cows that never had mastitis. 
6  Based on a model developed for conventional milking and adapted for an automatic milking system. 
7  Records with indeterminable (e.g., due to missing values) were excluded. 
8  A fuzzy logic was used to classify alerts generated by an earlier developed model [18] in order to decrease the number of false positive 

alerts, not to increase the sensitivity of the detection model. 
9  L-Lactate dehydrogenase. 
10 Approximately, using formula: false alert rate ≈ 10  (100 – specificity) [27]. 
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The sensitivity refers to the probability that the event of interest (e.g., a milking with CM) will be 

classified as such (positive test result; alert). The specificity refers to the probability that when the 

event of interest does not occur (e.g., a milking without CM) will be classified as normal (negative test 

result; no alert). Sensitivity and specificity are interdependent. If the threshold of a test is increased, 

the number of positive outcomes and thus the sensitivity will decrease. On the other hand, the 

specificity will increase. Therefore, thresholds have to be set in such a way that the performance of a 

sensor in terms of sensitivity and specificity is optimized.  

The sensitivity and specificity of a test are independent of the occurrence of the events (prevalence). 

For a practical evaluation of sensors, the prevalence of the event of interest is important. The 

prevalence of CM is very low. Prevalence of CM is approximately 0.04%, equivalent to four cases  

per 10,000 milkings [28]. The prevalence of subclinical mastitis is, depending on the definition of 

subclinical mastitis, approximately 100–5,000 cases per 10,000 milkings. This low prevalence, 

especially for CM, will have effects on the interpretation of sensor data. The farmer does not see the 

gold standard, but sees alerts. To evaluate sensors to detect mastitis or abnormal milk from a farmer’s 

point of view, the following two definitions are proposed [27]: 

Success Rate = TruePosCount/(TruePosCount + FalsePosCount) 

False Alert Rate = 1,000  FalsePosCount/TotalCowMilkings 

Note that we have deliberately avoided the commonly employed terms true positive, false positive, 

true negative and false negative because of inconsistency in their usage. For instance, consider the 

following three definitions of a true positive as: 'a case of mastitis where one or more alerts are  

given' [17]; 'an alert during a mastitis period' [19]; and ‘an alert on the day of observation' [22]. Each is 

capable of generating a different true positive list from the same basic data. Success rate could be a 

more useful statistic, giving a more direct measure of the proportion of alerts that are likely to be 

correct. Success rate is a synonym for the positive predictive value. A downside of success rate is that 

it is not an 'absolute' statistic. Thus, the success rate will vary with the prevalence of the condition 

being monitored. This downside can be avoided by calculating the total number of false alerts over a 

given number of cow-milkings, e.g., the total number of false alerts per 1,000 cow-milkings. This 

expression of the ‘false alert rate’ would be a simple, practical and comprehensible measure to which 

farmers will readily relate. The false alert rate is essentially 10  (100% − specificity) per 1,000  

cow-milkings. This approximation should always be close enough for practical purposes since in 

normal situations, the prevalence of mastitis or abnormal milk is very low relative to the total number 

of cow milkings.  

2.1.2. Demand for performance to detect clinical mastitis 

The primary goal for on-line detection of CM is to be able to cure the diseased cow. After an alert 

signal, the herdsman will check the cow first to confirm the mastitis before deciding on treatment. The 

advantage of using a sensor system to detect CM is the management by exception principle. Only 

those cows requiring attention will get it. Because a mastitis case will be confirmed first, a slightly 

higher false alert rate will not be a problem. The only costs incurred arise from the check made by the 

herdsman. Alerts can be given directly in the milking parlor, decreasing the time that is needed to milk 

one cow. Currently, sensors to detect CM are mostly applied in automatic milking systems. In these 
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systems, alerts are placed on a list. The herdsman checks this list regularly and has to checks the cows 

on it. Costs involved with checking are higher, because it requires more (annoying) labor to find the 

cow, fetch her and check her somewhere in the barn. For use with an automatic milking system, 

therefore, the false alert rate should be lower. It is important that as many cows with CM as possible 

(preferably all) will be identified, requiring a high sensitivity. From a welfare point of view, at least 

cows with severe CM (grave systemic and local symptoms) must be detected. Time windows for CM 

should be short. A cow with CM should be treated soon after the onset of clinical signs. When a cow 

receives an alert when there are no clinical signs yet, the farmer will check the cow and determine that 

it was a false alert and do nothing, while in fact the cow would become clinical soon. In the next 

section, this will be discussed further. 

The International Standard ISO/FDIS 20966 (Automatic milking installations—requirements and 

testing) of the International Standard Organization includes an Annex, attempting to deal with methods 

of detecting abnormal milk and interpretation of test results. This annex describes a minimum 

sensitivity of 80%, combined with a specificity better than 99% (~false alert rate smaller than 10 per 

1,000 milkings). These recommendations are, however, still under discussion [29]. Looking at Table 1, 

shows a very large variation in results. Sensitivities range from 47% [8] to 100% [18,19] and 

specificities range from 69% [16] to 99.8% [19]. 

2.2. Time window of detection 

A basic evaluation method is to compare alerts with events at the same moment. For instance,  

for 1,000 milkings visual evaluation of normality of milk is carried out. These data are used as the gold 

standard. An event is defined as the occurrence of abnormal milk. When, during the same milking the 

sensor is used and alerts are generated, the counts of events in relation to alerts can be evaluated as 

above [8,15]. However, when the timing of observations of events and alerts does not occur at the 

same moment, time windows have to be used to combine those observations (e.g., [25]). Especially 

when the time between observations is variable, the use of a time window becomes more  

complex [27]. Observations of CM as well as alerts for CM by a detection model are points in time. To 

both events time windows can be applied, although in most conducted studies time windows are only 

applied to an alert for CM by a detection model. The time window is then used to formulate a time 

episode in which an alert by the CM detection model is a valid one. Figure 1 explains the application 

of time windows to CM alerts by a detection model graphically, and its effect on the false positive, 

false negative, true positive, and true negative alerts in a setting with an automatic milking system. 

When milking with an automatic milking system, dairy producers can detect CM visually at any time 

of the day, and mostly these times do not coincide with a milking (this in contrast to farmers that milk 

conventionally in a milking parlor). The CM detection model however, alerts at the time a cow is 

being milked by the automatic milking system. Figure 1 depicts three situations; the first uses a short 

time window in which an alert by the detection model is valid (24 h; situation A), the second uses a 

wider time window of 48h (Situation B), and the latter uses a total time window of 48 h but split  

into 24 h before and after an alert for CM (Situation C). These time windows are example time 

windows for the detection of CM, but they show clearly the effect of using different lengths of time 

windows, as well as the effect of applying time windows only after an alert or both before and after 

and alert. In situation A, the detection model has three false positive alerts, there is just one false 
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positive alert in situation B, and two in situation C. Figure 1 explains visually that when time windows 

become too small, too many true CM cases will be missed (situation A has one true positive alert, 

situation B has two true positive alerts). When it is too wide, more CM cases will be accounted for as 

true positive alerts, but the model will lose its practical ability as dairy producers will perceive these 

alerts as false positive (as no signs of mastitis are visible yet). Also, when time windows are applied 

before and after a CM alert (situation C), it is possible that an alert given 24 h after a CM observation 

may be perceived as too late by dairy producers.  

Figure 1. Applying different time windows (24 h, situation A; 48 h situation B; 24 h 

before and after an alert, situation C) to alerts (black arrows pointing up) for clinical 

mastitis (CM; black arrows pointing down) and its effect on the false positive (FP), false 

negative (FN), true positive (TP), and true negative (TN) alerts (white arrows pointing up). 

An FP alert occurs when an alert for CM (Ta) extended with a time window (Wa) has no 

observation of CM (Tcm) falling into that time window. An FN alert occurs when there is a 

Tcm without any overlapping Wa. A TP alert occurs when there is a Ta with an extended 

time window Wa, in which a Tcm falls. When two Wa overlap each other (see situation B 

and C) these alerts are labeled as one TP (in both situations B and C), FP, or FN. 
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If it is no problem when an alert is given up to fourteen days after the onset of an event, an alert will 

regarded as true positive, when it is given within fourteen days of the onset of the event. This 

knowledge can be used calculating the TruePosCount and TrueNegCount. In general, performance of 

sensors will improve when larger time windows are used. When the used time window during 

evaluation does not match practice, the actual use of sensors might lead to disappointment of the 

farmer. Therefore, time windows should be considered carefully.  

In past research on automated CM detection models, time windows have been widely varied;  

from 0 days to 17 days (Table 1). With very wide time windows, e.g., a time window of 17 days used 

by De Mol et al. [17], usefulness of the detection model will be low. What the right time windows 

would be for a farm with an automatic milking system is arbitrary. However, for the detection of CM, 

it should not be too wide as it is of great importance that CM be detected shortly after clinical signs 

appear in order to eliminate the disease and to prevent recurrence [30]. An alert that is given before 

clinical signs can have advantages, because it can be seen as an early detection and treatment will have 

a higher efficiency [31]. However, the specificity of such an alert must be very high to prevent the 

unnecessary use of antibiotics [32] Also when a model is used to divert abnormal milk automatically, 

the applied time window should be extremely narrow, as it applies to the specific milking that shows 

abnormalities. Diversion of abnormal milk should be preferable at the first milking, but depending on 

severity could be at a following milking. Another interesting observation is the relation between used 

time window of evaluation and performance of the system. With a longer time window, the 

performance increases (Figure 2).  

Figure 2. Sensitivities and specificities (y-axis) of various studies, plotted against the used 

time windows (x-axis). Given are the observations and a logarithmic trendline. 
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2.3. Similarity of study population with the real application 

A CM detection model should be evaluated on a population with a large similarity with the situation 

of the actual application of the system. This may seem logical at first, but most studies reporting on 

CM detection models lack this essential requirement and their application with field data might be 
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disappointing. Reasons for not fulfilling this requirement are: (1) the use of a small array of data,  

(2) definition of CM and non-CM milkings and (3) performance with missing data. In the next 

paragraphs these reasons will be worked out further.  

Herds differ from each other with respect to the CM situation. That means that if a detection model 

is based on one herd, the performance of this model in other herds might be disappointing. Moreover, 

if the herd used to collect data to build a model is a research herd, the data might be better than in 

practice and consequently, the model might perform less in the field than in the research. Also the use 

of a herd with a high prevalence of CM for data collection may be representative for a specific range 

of herds in practice (those where there are problems with detecting CM or with diversion of abnormal 

milk, but data from such a high prevalence herd is not representative for the whole population of dairy 

farmers. Most published studies were conducted with data from one (research) herd, and included a 

small number of CM cases (Table 1). A lot of studies did develop and validate a model using different 

data sets, but data for both sets still came from the same herd (e.g., [26]). These approaches of using 

one herd for training and testing may result in a model that detects CM at high levels of sensitivity and 

specificity, but this does not predict the performance on data of a new farm. The risk of including a 

small number of CM cases (e.g., 13 CM cases were used by Nielen et al. [16]) is that these cases may 

not represent all variation in CM characteristics (in terms of clinical signs and in sensor measurement 

patterns), causing a decrease in performance when the model is applied on other herds.  

It is not always easy to distinguish CM milkings from non-CM milkings. For example, cows may 

be challenged by pathogens invading the udder, but this infection may have not reached a clinical level 

(yet). These pathogens cause changes in milk composition that may be detected by sensors, but not yet 

by the human eye. It is therefore, sometimes difficult to distinguish milkings with CM from milkings 

without CM. To generate contrast, detection models can be build using clear CM milkings and clear 

non-CM milkings by adding strict inclusion criteria. However, in practice, these not very clear  

non-CM milkings are part of the milkings that have to be evaluated. When a CM detection model 

alerts for milkings that do not have CM, dairy producers will perceive these alerts as false positive 

ones and they will judge the CM detection model as being inaccurate. Some studies did use strict 

definitions for healthy cows or quarters and those that suffered from CM, where SCC, bacteriological 

culturing, and visual observations are used to define ‘healthy’ and ‘diseased’. This strict definition has 

been used for cases and non-cases in datasets used for training and for datasets used for validation 

(e.g., [15,21]). For example, Friggens et al. [11] introduced an interesting new approach of presenting 

a mastitis risk, rather than presenting a binary classification. The model showed high levels of 

sensitivity and specificity, but performance was based on a validation set that included only highly 

selected cases and non-cases for CM. However, as a consequence of their strict selection criteria, cows 

and quarters with a less clear health status were excluded. This does not coincide with daily practice on 

a dairy farm.  

In practice, it often occurs that data are missing. It is therefore better that detection models are 

capable of detecting CM in a situation with missing data. When during model building missing data 

are left out, the performance of the final detection model might look better than in reality. Some of the 

published studies excluded complete records with sensor measurement errors or missing data  

(e.g., [20]) because the used methodology to develop a CM model was not able to deal with such data. 

However, real farm sensor data are noisy, due to missing values and the need for calibrations of 
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sensors to guarantee a proper functioning and monitoring. Therefore, a CM detection model should be 

able to deal with these noisy data as well. 

3. Sensors to Detect Clinical Mastitis 

Because of the physiological changes in the udder, intramammary infections lead to major 

alterations in the composition of milk [33]. Many sensors have been proposed that measure one or 

more of the inflammation parameters. Recently, two reviews have been published on sensors and 

udder health [6,34]. In this section a summary of the most important sensors where CM detection 

models have been built with will be given.  

3.1. Electrical conductivity 

Electrical conductivity (EC) is a measure of the resistance of a particular material to an electric 

current. In milk, ions present are the main component conducting electricity. Active and passive 

transport systems in the secretory cells of the mammary gland keep the sodium-potassium ratio in the 

milk approximately 1:3, whereas it is 30:1 in extracellular fluid or blood. The chloride concentration in 

milk is much lower than in blood. The mammary ducts are impermeable to ions. Mastitis leads to a 

change in blood capillary permeability, destruction of tight junctions and the destruction of the active 

ion-pumping systems. As a result the ion concentrations in milk change. Since milk is iso-osmotic with 

blood, the secretory cells of the mammary gland will stabilize the osmotic pressure leading to a change 

in EC [35]. This change in EC can be used as indicator for CM. However, the EC is also affected by 

other reasons than mastitis [36] such as temperature, the fat content of milk and milk fraction.  

Because the principle of measuring EC is relatively simple, sensors for measuring EC are 

commercially available for a number of years. Basically there are two types of systems available:  

(1) systems that measure the conductivity of the whole milk, located for instance in the electronic milk 

meter and (2) systems measuring the conductivity per udder quarter, located in the claw of the milking 

cluster (traditional milking systems) or in the long milk tube (automatic milking systems). Since 

mastitis is an event which occurs on udder quarter, EC measurements on quarter level give the 

possibility to compare udder quarters, thus increasing the test characteristics [8]. Most of the published 

studies do use EC as sensor (Table 1), with a large variation of performance results.  

3.2. L-Lactate dehydrogenase  

LDH is the result of one of the enzymatic reactions following mastitis. It is part of the glycolytic 

pathway, found in the cytoplasm of all cells and tissues in the body. LDH is a responsive indicator of 

mastitis as a result of the animal’s immune response against infection and changes in cellular 

membrane chemistry. LDH has a large potential for detection of CM [11]. A bio-sensor, using  

dry-stick technology has been evaluated [10] using simulated data and data from one research farm 

where milk samples were analyzed in a laboratory with good performance results. This sensor is 

commercially available [37], but performance of this system has not been systematically evaluated.  
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3.3. Color  

A direct measure of the physical characteristics of abnormal milk (mostly due to CM) will most 

likely offer better detection results than a measurement of an indirect indicator of mastitis or abnormal 

milk. One of the visible aspects of milk is its color. A sensor for on-line color measurement is on the 

market. The principle of the sensor is based on the reflection of light generated by a LED. The whiter 

the milk, the more light is reflected. Three different wavelengths of light are measured by the sensor: 

red, green and blue. Recently a new version of a color sensor became available, which is based on light 

transmission and not on light reflection. The results of this sensor seem to be better than of the older 

version [13].  

In a first study under laboratory circumstances, using homogenised quarter milk samples from eight 

cows with CM the potential to detect mastitis from color measurements was estimated. The milk 

samples of the suspected quarters of all eight cows with CM showed lower color values than 

homogenized milk [38]. In a detailed study on the predictive potential of EC and color measurements, 

it became clear that most information to distinguish udder quarters with abnormal milk and CM from 

other udder quarters could be found in EC measurements [7]. The potential of color measurements did 

add but not very much. This means that color sensors should always be used in combination with  

other sensors.  

3.4. Somatic cell count  

When the mammary gland becomes infected, a rapid influx of polymorphonuclear leukocytes leads 

to an increase of the SCC [39]. Rapid reliable measurement of SCC is carried out routinely in 

laboratories, and can be used to monitor udder health. Therefore, SCC is used as an important tool for 

the control of mastitis. Near infrared (NIR) has shown to be able to measure, amongst others, SCC in 

raw milk (e.g., [40]). A commercial available NIR analyzer has been described [41] but is not available 

on-line. Sensors that measure SCC on-line, based on the principles of the Californian mastitis test [42] 

or on staining a milk sample and count the actual number of cells optically [43] are commercially 

available on automatic milking systems today. The sensor based on Californian mastitis test principles 

utilizes the gel-formation process of this Californian mastitis test. The potential value of this sensor has 

been studied at the cow level in combination with EC. With thresholds set in such a way that the 

sensitivity of the detection model was 80%, on-line SCC measurement gave similar results as EC. 

When combining EC and SCC measurements, the performance of the detection model improved [23]. 

Recent data show that measuring SCC on quarter level gives better detection performance than 

measuring SCC on cow level [8]. The optical cell counter is based on a system that makes a picture of 

a milk sample that is mixed with a staining solution, and that counts the number of stained cells. The 

sensor has been tested recently, with a positive trend to identify cows with somatic cell counts  

of 200,000 cells/mL or more [43]. 

3.5. Homogeneity 

CM is defined as a situation where a cow’s udder is infected leading to visual changes in the milk, 

the cow or both. Visual detection of CM by the farmer occurs through checking of the first few squirts 
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of milk, before milking. When the milk is not white or homogeneous, the cow is suggested to have 

clinical mastitis. Homogeneity of milk can therefore be an interesting parameter for mastitis detection, 

for instance by image processing or diffusing wave spectroscopy [44,45]. A sensor to measure 

homogeneity of milk has been suggested [46], but no information is available on further developments 

on this specific type of sensor. 

4. Algorithms 

Sensors, however advanced they might be, deliver data. Many on-line sensors deliver a large 

amount of data. There are many measurements per milking, sometimes per udder quarter and during 

many milkings. These data by themself are not informative, and should be processed to generate 

information. A good algorithm is essential to optimize and convert the on-line sensor data into an 

interpretable value. Algorithms can make a huge difference in the performance of a sensor system. The 

simplest form of processing is to take the output value of a sensor and compare this output value with a 

threshold. However, most on-line sensors measure continuously and data have to be pre-processed to 

generate an end value that can be compared with the threshold. Moreover, for many sensors it is not 

the absolute level, but the relative level (relative to previous milkings or relative to other udder 

quarters) that is more related to CM. Moreover, data from different sensors can be used in combination 

in a CM detection model. Much work on algorithms to improve CM detection models is focused on 

data pre-processing. Before starting model building it is important to know the characteristics of 

algorithms and choose a suitable algorithm for the particular modelling purpose [47] 

Described algorithms include the use of thresholds (e.g., [8]), moving averages (e.g., [14]), neural 

networks (e.g., [16]), multivariate regression models (e.g., [15,48]), fuzzy logic (e.g. [19,22,23]) and 

datamining (e.g., [7,25]). The principle of moving averages has been extended considerably by fitting 

time series models such as Kalman filters (e.g., [11,48]) or locally weighted polynomial  

regression (e.g., [49]). 

In a series of studies, Cavero et al. [22,49,50] applied three different algorithms to data from the 

same research dairy farm, using equal definitions (a case was based on a combination of SCC and 

treatment for CM). The found sensitivities of these studies were 83, 88 and 79% respectively for fuzzy 

logic, locally weighted polynomial regression and neural networks with, respectively a specificity  

of 76, 67 and 61%. Although the performance of these methods do differ, these differences are not 

very large. Unfortunately, these three studies were carried out on datasets with different sizes, so a 

good comparison between the methodologies could not be made.  

5. Combining Sensors and Other Information 

Because mastitis is associated with many changes in the cow and milk, a combination of more than 

one sensor has been proven to be useful. The most used sensor, the one for EC, is often combined with 

measures of milk yield and milk temperature (Table 1). In general, the studies that use a combination 

of sensors have a better performance than studies that look at a single sensor. Some studies clearly 

proved that a combination of data from different sensors improves the detection performance  

(e.g., [8,23]). Moreover, data measured by a sensor can be summarized in a number of detection 

parameters [51]. 
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A final method that is proposed to improve the detection performance of sensors, is the combination 

of sensor output with other, non-sensor information of the cows, such as lactation stage and mastitis 

history [10,52,53]. It is applied in one described system [10], but from that publication it was not clear 

what the addition of the non-sensor information added to the detection performance. Very recent data 

showed that, although cow information does predict the risk of CM and thus the prior probability of 

CM, these additional data did not add much to the detection performance of sensor systems [54]. 

Therefore, not too much must be expected from this combination of sensor data and other  

cow information. 

6. Concluding Remarks  

The use of sensors to improve milk quality has gained much attention lately. This is largely because 

of the demand of good performing sensors to be used in automatic milking systems. The most studied 

and applied sensor measures EC. Besides the development of automatic milking systems, there are 

new sensor developments, for instance the use of NIR, and measurement of SCC and LDH, that make 

interesting future improvements possible. Many ideas for bio-sensors to detect CM have been  

described [34], but are not available in practice (yet).  

When evaluating a detection model based on a specific sensor or combination of sensors, it is very 

important to define the event that needs to be detected [32]. Moreover it is important to consider an 

appropriate time window and the final application of the detection model. For detection of CM a 

relatively short time interval (24–48 hours) should be used.  

Performance of CM detection system should offer at least a sensitivity of 80% and a specificity  

of 99%. The time window should not be longer than 48 hours and study circumstances should be as 

similar to practical farm circumstances as possible. The study design should comprise more than one 

farm for data collection. 

For future applications, the definition of mastitis might be reconsidered. Currently there is still a 

distinction between clinical and subclinical mastitis. With renewed interest and found efficiency of 

treating subclinical mastitis cases, it might be interesting to get away from a binary mastitis variable 

and to go to a continuous mastitis variable. A first step towards such a system of thinking has recently 

been made with the introduction of “Degree of infection” [55]. Currently we are at the beginning of a 

series of new developments in this area. The quest for a perfect detection of CM is only beginning.  
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