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Abstract: Characteristics of physical activity are indicative of one’s mobility level, latent 

chronic diseases and aging process. Accelerometers have been widely accepted as useful 

and practical sensors for wearable devices to measure and assess physical activity. This 

paper reviews the development of wearable accelerometry-based motion detectors. The 

principle of accelerometry measurement, sensor properties and sensor placements are first 

introduced. Various research using accelerometry-based wearable motion detectors for 

physical activity monitoring and assessment, including posture and movement 

classification, estimation of energy expenditure, fall detection and balance control 

evaluation, are also reviewed. Finally this paper reviews and compares existing 

commercial products to provide a comprehensive outlook of current development status 

and possible emerging technologies. 

Keywords: accelerometry; accelerometer; physical activity; human motion; energy 

expenditure; gait; fall detection 

 

1. Introduction 

Physical activity (PA) is regarded as any bodily movement produced by skeletal muscles which 

results in an energy expenditure [1]. PA has been studied in epidemiological research for investigating 

human movements and the relationship to health status, especially in the area of cardiovascular 
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diseases, diabetes mellitus and obesity. A declining PA level represents a major factor in multiple 

illnesses and symptoms related to functional impairment [2]. The organization Healthy People 2020 

[http://www.healthypeople.gov/HP2020/] led by the U.S. government has recognized PA as one of the 

leading health indicators (LHI), which are a measurement of health of a nation’s population. 

Various methods of subjective and objective PA assessment tools have been developed. Subjective 

methods, such as diaries, questionnaires and surveys, are inexpensive tools. However, these methods 

often depend on individual observation and subjective interpretation, which make the assessment 

results inconsistent [3]. Some standard tests for PA assessment also require subjective judgments. For 

example, the timed up-and-go test (TUG-T) is a simple test for evaluating one’s ability to perform a 

sequence of basic activities, and the result of the TUG-T can be a predictor for risk of falling [4]. 

Distinguishing postural transitions in the TUG-T, however, depends on subjective judgment that 

counts the time taken for each posture transition. The Berg Balance Scale (BBS), a valid measure to 

evaluate balance control of the elderly individuals, also requires subjective observation and 

determination for scoring some test items [5]. 

On the other hand, objective techniques use wearable, or body-fixed motion sensors, which range 

from switches, pedometers, actometers, goniometers, accelerometers and gyroscopes, for PA 

assessment. Mechanical pedometers, or so-called ―step counters‖, are the simplest wearable sensors to 

measure human motion. The pedometer uses a spring-loaded mass or some other switch mechanism to 

detect the obvious impacts produced by steps during locomotion. The number of steps during motion 

can be registered to estimate the distance walked and the energy expenditure. Though pedometers are 

cheap and simple, the major drawbacks are that pedometers cannot reflect intensity of movement and 

therefore result in inaccurate energy expenditure estimations [6]. PA can also be objectively measured 

by means of magnetic systems, optical systems, or video recording. Magnetic and optical systems for 

PA monitoring are costly and require complex instrumentation and environment setting. Privacy 

concerns are a major drawback in monitoring systems based on video recording. These systems may 

not be practical for monitoring subjects in free-living environments. 

Accelerometers are sensors which measure the accelerations of objects in motion along reference 

axes. Measuring PA using accelerometry is preferred because acceleration is proportional to external 

force and hence can reflect intensity and frequency of human movement. Accelerometry data can be 

used to derive velocity and displacement information by integrating accelerometry data with respect to 

time [7]. Some accelerometers can respond to gravity to provide tilt sensing with respect to reference 

planes when accelerometers rotate with objects. The resulting inclination data can be used to classify 

body postures (orientations). With these characteristics, accelerometry is capable of providing 

sufficient information for measuring PA and a range of human activities. Accelerometers have been 

widely accepted as useful and practical sensors for wearable devices to measure and assess PA in 

either clinical/laboratory settings or free-living environments [8].  

Accelerometers were first investigated in the 1950s to measure gait velocity and acceleration [9]. 

Accelerometry measurement of human motion was studied in more detail during the 1970s due to 

technological advances [10]. It was also shown that accelerometers had advantages over other 

techniques in quantitatively measuring human movement. Micro-electromechanical system (MEMS) 

technology has reduced the cost of accelerometers in smaller form factors. In the meantime, sensor 

performance has been enhanced while the power consumption is greatly reduced. The first batch-
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fabricated MEMS accelerometers were reported in 1979 [11]. Since then various research and 

commercial applications have used MEMS accelerometers in wearable systems for PA monitoring. 

This paper provides a comprehensive review on the working principles, capabilities, and various 

applications of accelerometry-based wearable motion detectors for PA monitoring and assessment. The 

authors searched for published literature after year 2000 using a range of related keywords such as 

―accelerometry‖, ―accelerometer‖, ―wearable‖, ―physical activity‖, ―human motion‖, ―human 

movement‖, ―activity classification‖, ―energy expenditure‖, ―fall detection‖, ―balance stability‖ and 

―gait‖. Selected literatures before year 2000 are also included. This paper first discusses the principles 

and fundamentals of accelerometry, along with different sensor placements. Various research using 

accelerometry-based wearable motion detectors for PA monitoring and assessment, including posture 

and movement classification, estimation of energy expenditure, fall detection and balance control 

evaluation, are then reviewed. Finally this paper reviews and compares existing commercial products 

to provide a comprehensive outlook of current development status and possible emerging technologies.  

2. Design Fundamentals for Accelerometry-Based Wearable Motion Detectors 

2.1. Accelerometry: Principles and Sensors 

Inertial sensors are basically force sensors to sense linear acceleration along one or several 

directions, or angular motion about one or several axes. The former is referred to as an accelerometer, 

and the later a gyroscope. The common operation principle of accelerometers is based on a mechanical 

sensing element which consists of a proof mass (or seismic mass) attached to a mechanical suspension 

system with respect to a reference frame. Inertial force due to acceleration or gravity will cause the 

proof mass to deflect according to Newton’s Second Law. The acceleration can be measured 

electrically with the physical changes in displacement of the proof mass with respect to the reference 

frame. Piezoresistive, piezoelectric and differential capacitive accelerometers are the most common 

types [12,13]. 

2.1.1. Piezoresistive accelerometers 

The sensing element consists of a cantilever beam and its proof mass is formed by bulk-

micromachining. The motion of the proof mass due to acceleration can be detected by piezoresistors in 

the cantilever beam and proof mass. The piezoresistors are arranged as a Wheatstone bridge to produce 

a voltage proportional to the applied acceleration. Piezoresistive accelerometers are simple and low-

cost. The piezoresistive accelerometers are DC-responsive that can measure constant acceleration such 

as gravity. The major drawbacks of piezoresistive sensing are the temperature-sensitive drift and the 

lower level of the output signals. 

2.1.2. Piezoelectric accelerometers 

In a piezoelectric accelerometer, the sensing element bends due to applied acceleration which 

causes a displacement of the seismic mass, and results in an output voltage proportional to the applied 

acceleration. Piezoelectric accelerometers do not respond to the constant component of accelerations. 
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2.1.3. Differential capacitive accelerometers 

The displacement of the proof mass can be measured capacitively. In a capacitive sensing 

mechanism, the seismic mass is encapsulated between two electrodes. The differential capacitance is 

proportional to the deflection of the seismic mass between the two electrodes. The advantages of 

differential capacitive accelerometers are low power consumption, large output level, and fast response 

to motions. Better sensitivity is also achieved due to the low noise level of capacitive detection. 

Differential capacitive accelerometers also have DC response. Currently this kind of accelerometer has 

widely been used in most applications, especially in mobile and portable systems and  

consumer electronics. 

2.2. Sensor Placement 

Gemperle et al. [14] proposed the ergonomic guideline of ―wearability‖ to describe the interaction 

between the human body and wearable objects. The ―wearability map‖ was generalized to indicate the 

proper locations of a human body for unobtrusive sensor placement. These locations include the collar 

area, rear of upper arm, forearm, front and rear sides of ribcage, waist, thighs, shin, and top of the foot. 

These locations have common characteristics of similar area for men and women, a relatively larger 

continuous surface, and low movement and flexibility. 

The sensor placement of wearable devices refers to the locations where the sensors are placed, and 

how the sensors are attached to those locations. Wearable activity sensors can be placed on different 

parts of a human body whose movements are being studied. In many cases, it is necessary to measure 

the whole-body movement. Therefore, the sensors are commonly placed on the sternum [15], lower 

back [3], and waist [16]. Most studies adopted waist-placement for motion sensors because of the fact 

that the waist is close to the center of mass of a whole human body, and the torso occupies the most 

mass of a human body. This implies that the accelerations measured by a single sensor at this location 

can better represent the major human motion. From an ergonomic point of view, the torso can better 

bear extra weight when carrying wearable devices. Sensors or devices can be easily attached to or 

detached from a belt around waist level. Therefore, waist-placement causes less constraint in body 

movement and discomfort can be minimized as well. A range of basic daily activities, including 

walking, postures and activity transitions can be classified according to the accelerations measured 

from a waist-worn accelerometer [16-18]. An approach using a chest-worn accelerometer was 

presented to detect respiratory and snoring features for apnea diagnosis during sleep [19]. 

Accelerometers can also be attached to wrists, thigh, or ankles. Sleep time duration can be 

determined from a wrist-worn accelerometer [20] and activity levels during sleep can be measured [21]. 

Ankle-attached accelerometers can significantly reflect gait-related features during locomotion or 

walking. Steps, travel distance, velocity, and energy expenditure can be estimated by an ankle-worn 

accelerometer [22,23]. A special placement in which an accelerometer unit integrated into hearing aid 

housing was used for detecting falls [24]. The rationale of this sensor placement was based on the 

author’s hypothesis that the individual intends to protect the head against higher acceleration caused by 

abnormal activities. Accelerometers have also been placed at the top of head for measuring balance 

during walking [25,26]. 
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Another consideration for sensor placement is how to attach sensors to the human body. Wearable 

sensors can be directly attached to the skin [15,24], or with some form of indirect attachment by using 

straps, pant belts and wristbands, or other accessories [20,22,25,26]. Sensors and wearable devices can 

also be integrated into clothing [27]. In principal, the accelerometers or motion sensors should be 

securely fitted and attached to the human body in order to prevent relative motion between the sensors 

and the parts of the human body. Loose attachment or unsecured fit causes vibration and displacement 

of the wearable systems, and this is liable to produce extraneous signal artifacts and to degrade  

sensing accuracy. 

3. Capabilities of Wearable Systems Using Accelerometry Measurement 

Accelerometers can be used in ambulatory monitoring to continuously measure long-term activities 

of subjects in a free-living environment. The recorded longitudinal activity data can be used to identify 

postures and to classify several daily movements which are related to an individual’s functional status. 

Signal analysis and algorithm are used to classify daily human movements that are of interest, and 

adverse activity, such as falls can be detected as well. Important features extracted from posture sway 

and gait pattern have also been studied for the purposes of evaluating risks of falling and mobility. In 

addition, energy expenditure is the typical application featured by most commercially  

available accelerometers.  

3.1. Posture and Movement Classification 

Movement classification using accelerometry-based methodologies has been widely studied. 

Approaches to movement classification can be threshold-based or using statistical classification 

schemes. Threshold-based movement classification takes advantage of known knowledge and 

information about the movements to be classified. It uses a hierarchical algorithm structure (like 

decision tree) to discriminate between activity states. A set of empirically-derived thresholds for each 

classification subclass are required. Kiani et al. [28] presented a systematic approach to movement 

classification based on a hierarchical decision tree that enables automatic movement detection and 

classification. Mathie et al. [29] further presented a generic classification framework consisting of a 

hierarchical binary tree for classifying postural transitions, falling, walking, and other movements 

using signals from a wearable triaxial accelerometer. This modular framework also allows modifying 

individual classification algorithm for particular purposes.  

Tilt sensing is a basic function provided by accelerometers which respond to gravity or constant 

acceleration. Therefore, human postures, such as upright and lying, can be distinguished according to 

the magnitude of acceleration signals along sensitive axes from only one accelerometer worn at the 

waist and torso [16,17]. However, the single-accelerometer approach has difficulty in distinguishing 

between standing and sitting as both are upright postures, although a simplified scheme with tilt 

threshold to distinguish standing and sitting has been proposed [16]. Standing and sitting postures can 

be distinguished by observing different orientations of body segments where multiple accelerometers 

are attached. For example, two accelerometers can be attached to the torso and thigh to distinguish 

standing and sitting postures from static activities [30-32]. Trunk tilt variation due to sit-stand postural 

transitions can be measured by integrating the signal from a gyroscope attached to the chest of the 
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subject [33]. Sit-stand postural transitions can be identified according to the patterns of vertical 

acceleration from an accelerometer worn at the waist [17]. 

Acceleration signals can be used to determine walking in ambulatory movement. Walking can be 

identified by frequency-domain analysis [16,34]. It is characterized by a variance of over 0.02 g in 

vertical acceleration and frequency peak within 1–3 Hz in the signal spectrum [34]. Discrete wavelet 

transform is used to distinguish walking on a level ground and walking on a stairway [18].  

Movement classification using statistical schemes utilize a supervised machine learning procedure, 

which associates an observation (or features) of movement to possible movement states in terms of the 

probability of the observation. Those schemes include, for example, k-nearest neighbor (kNN) 

classification [31,35], support vector machines (SVM) [36,37], Naive Bayes classifier [38,39], 

Gaussian mixture model (GMM) [40] and hidden Markov model (HMM) [41,42]. Naive Bayes 

classifier determines activities according to the probabilities of the signal pattern of the activities. In 

GMM approach, the likelihood function is not a typical Gaussian distribution. The weights and 

parameters describing probability of activities are obtained by the expectation-maximization algorithm. 

Transitions between activities can be described as a Markov chain that represents the likelihood 

(probability) of transitions between possible activities (states). The HMM is applied to determine 

unknown states at any time according to observable activity features (extracted from accelerometry 

data) corresponding to the states. After the HMM is trained by example data, it can be used to 

determine possible activity state transitions. 

3.2. Estimation of Energy Expenditure 

Energy expenditure (EE) can be estimated by measuring physical activities. The doubly labeled 

water method (DLW) and indirect calorimetry that measures oxygen uptake, carbon dioxide 

production and cardiopulmonary parameters are regarded as the gold-standard references of EE. 

Though accurate, gas analyzers for indirect calorimetry are expensive and they require specialized 

skills to operate. The isotopes analysis and production for DLW method are costly and are not suitable 

for large-scale studies [43]. Accelerometers provide an alternative method of estimating energy 

expenditure in a free-living environment. EE due to physical activity can be better predicted from the 

acceleration integral in anterior-posterior direction of an accelerometer [44], though vertical 

acceleration is most sensitive to major activities like walking or running. The signal integral of triaxial 

acceleration outputs has been found to have linear relationship with the metabolic energy expenditure 

due to several daily activities [45]. 

Commercial accelerometers usually convert the magnitude of accelerations to provide ―activity 

counts‖ per defined period of time (epoch). The activity counts represent the estimated intensity of 

measured activities during each time period. Therefore, the recorded activity counts can be compared 

with questionnaires, or more accurately, the DLW method [46] or indirect calorimetry to estimate the 

energy expenditure due to activities [47]. Several regression equations can be derived or validated for 

different accelerometers to better match exact EE of physical activities among subjects.  

Factors affecting the accuracy of EE estimation using accelerometry are the location and attachment 

of accelerometers, external vibration, gravitational artifact, and the types of activity performed in a 

free-living environment. Sensor attachment to trunk, lower back or second lumbar vertebra is preferred 

because the trunk represents the major part of body mass and moves with most activities. Gravitational 
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effect is also relatively small on this body segment [45]. On the other hand, waist-mounted 

accelerometers are unable to measure upper limb movement and have inaccurate EE estimation when 

the subjects carry different loads of weight during activity [29]. Moreover, EE during walking may be 

inaccurately estimated when the locomotion is not horizontal, e.g., slope climbing and walking up and 

downstairs. A barometer that measures the atmosphere pressure was integrated with a triaxial 

accelerometer [34]. This approach can use the added information of altitude changes to determine 

movement with vertical displacement, such as taking elevator, walking upstairs and downstairs.  

3.3. Fall Detection and Balance Control Evaluation 

Fall-related injuries cause fracture and trauma which remarkably deteriorate the health and 

functional status of elderly people, leading to living dependence and higher risk of morbidity and 

mortality. Falls can be conceptually deemed as a rapid postural change from upright to reclining 

position to ground, or some lower level not as a consequence of sustaining a violent blow, loss of 

consciousness, sudden onset of paralysis as in stroke or an epileptic seizure [48]. 

The first approach to fall detection using accelerometry is published by Williams et al. [49], and a 

fall detector was presented after a number of pilot studies [50]. In its design implementation, the fall 

detector consisted of two piezoelectric shock sensors to detect the impact and a mercury tilt switch to 

identify the orientation. A two-stage detection process which detects both impact (acceleration) and 

orientation was used to better eliminate false alarms. The two-stage detection process firstly screens if 

any impact greater than a certain threshold exists (the first stage). A fall emergency is registered after 

the first stage if the reclining posture remains unchanged (the wearer does not get up) for a specific 

period of time. This design implementation led to the product commercialization of the fall detector by 

Tunstall Group [http://www.tunstall.co.uk/]. Similar approaches have been incorporated into fall 

detection algorithms using a waist-mounted accelerometer [16,17]. 

Lindemann et al. [24] evaluated a fall detector that was fixed behind the ear. Two high-g (50 g) 

accelerometers were orthogonally placed in the detector such that accelerations along all the sensitive 

axes could be measured. The fall detection algorithm used three trigger thresholds of sum-vector of 

acceleration in a plane (>2 g), the velocity before the initial impact (>0.7 m/s), and the sum-vector of 

acceleration in all spatial axes (>6 g) to recognize a fall. Though high sensitivity and specificity of the 

algorithm has been reported, such sensor placement would become an issue when ergonomics and 

integrated design of wearable system are considered. 

Balance control or postural stability of the body while standing still or walking has been regarded as 

an important predictor of risk of falling of the elderly [51]. The physiological profile assessment (PPA) 

proposed by Lord et al. [52] also adopts postural sway as one of the six tests for screening risk of 

falling. In the balance test of PPA, postural sway can be measured using a sway meter that records 

body displacement at waist level. Force plate or pressure mat can be used to record the trajectory of 

center of pressure (COP) of body which also represents postural sway [53]. The postural sway 

measured from the sway meter and force plate shows strong correlation, and can provide similar 

information about balance sway. 

Postural sway can also be measured by using accelerometers placed at the back of a subject [54-56]. 

Triaxial accelerometers have been used to obtain the postural sway projected on a level ground [57]. 
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With the known height from the sensor to the ground, and the sensor output showing the tilt angle, 

trigonometric calculation can be applied to obtain the trajectory in anterior-posterior and medio-lateral 

directions projected on a level plane during a standing posture. The advantage of this technique is that 

the accelerometer is more sensitive to the difference of test conditions and is fully portable without the 

use of a force plate. Studies also showed a moderate correlation between trunk acceleration and COP 

pattern [58]. 

Significant gait parameters have been presented to assess balance control, functional ability, and 

risk of falling. Gait parameters during free walking can be measured by using accelerometers. 

Accelerometry data can be used to identify heel strike [59], gait cycle frequency, stride symmetry and 

regularity [60]. Measurement of temporal parameters of gait during long periods of walking using 

accelerometers was presented [61], and the spatial-temporal parameters were also measured using a 

miniature gyroscope [62]. Moe-Nilssen et al. [63,64] estimated the gait cycle characteristics of the 

subjects during timed walking. A triaxial accelerometer was attached to the lower trunk (the L3 region 

of the spine), and the signals were analyzed by an autocorrelation procedure to obtain cadence, step 

length, and gait regularity and symmetry. 

Gait features between young and elder subjects have been compared by investigating accelerometry 

data. Vector magnitude (root mean square) values of accelerations obtained from the pelvis and head 

(vertical component) of elder subjects are smaller comparing with those obtained from young  

subjects [25,26]. Elder subjects showed slower velocity, shorter step length, and larger step timing 

variability during both walking on level and irregular surfaces from the temporal-spatial gait 

parameters between young and elder subjects. The harmonic ratio has been proposed as a measure of 

smoothness of walking, and is defined as the ratio of the summed amplitudes of the even-numbered 

harmonics to the summed amplitudes of odd-numbered harmonics both obtained from finite Fourier 

transform [65]. Older people with elevated risk of falling exhibited lower harmonic ratio [26]. 

4. Review of Current Products 

There are many step counters available at very low prices that provide basic step counting and EE 

calculations. On the other hand, only a few commercial activity monitors use accelerometers. This 

section reviews several commercially available activity monitors using accelerometers, which are 

commonly used, compared and validated in research literatures, to provide a comprehensive outlook of 

current development status and how the activity monitors perform in various applications. Primary 

specification of the surveyed products are summarized and compared in Table 1. 

(1) SenseWear (BodyMedia Inc.) 

The SenseWear Armband (BodyMedia Inc.,) is an activity monitor worn on the upper limbs to 

measure physical activities. The SenseWear Armband combines a dual-axial accelerometer to measure 

motion and multiple sensors to measure skin temperature, heat flux and galvanic skin response. This 

system can report the total EE, metabolic equivalent of tasks (METs), total number of steps, and sleep 

duration. The SenseWear armband was used in a weight intervention program [66]. Compared with 

other products and indirect calorimetry, the SenseWear armband accurately assessed EE across slow to 

normal walking, but showed underestimation of EE during increased walking speeds [67]. The 
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SenseWear armband in connection with a fuzzy inference system was also used to distinguish motion 

states and emergency situations [68]. 

Table 1. Product specification comparison. 

 SenseWear CT1/RT3 AMP331 GT3X/GT1M StepWatch activPAL IDEEA 

Size (mm) 88.4 × 56.4 × 24.1 71 × 56 × 28 71.3 × 24 × 37.5 38 × 37 × 18 75 × 50 × 20 53 × 35 × 7 70 × 54 × 17 

Weight (g) 82.2 71.5 50 27 38 20 59 

Accelerometer type na Piezoelectric na na na piezoresistive piezoelectric 

Number of  

accelerometer 
1 1 2 1 1 1 5 

Number of  

accelerometer axis 
2 1/3 

1 uni-axis and  

1 dual-axis 
3/1 2 1 2 

Sensor placement Upper arm Waist Ankle Waist or wrist Ankle Thigh Chest, thigh, feet 

Sampling rate 32 Hz 0.017–1 Hz na 30 Hz (12 bit) 128 Hz 10 Hz (8 bit) 32 Hz 

Sensitivity range 2 g na na 0.05–2.5 g na 2 g 5 g 

Battery type 1.5 V AAA × 1 1.5V AAA × 1 na 

3.7 V Lithium  

ion/Lithium  

Polymer 

750 mAh  

Lithium 

3 V li-polymer  

rechargeable 
1 1.5 V AA 

Battery life 3 days (continuous) 30 days na 20 days na 7–10 days 60 hrs 

Data transmission RF/USB 
USB  

(docking tation) 

916 MHz RF (USB 

wireless adapter) 
USB 

USB 

 (docking station) 

USB  

(ducking station) 
USB 

Data storage  

capacity 
na 

3 hours to 21 days  

(dependant on data 

 resolution and collection) 

na 
16 MB  

(or 40 days) 
2 months na 7 days 

Reported  

parameters 

EE estimation,  

activity duration,  

sleep duration 

Activity intensity,  

EE, MET 

Steps, cadence,  

walking speed,  

stride length,  

distance, EE 

Activity counts, 

steps, MET,  

activity  

intensity level 

Steps gait  

characteristics 

Sedentary and  

upright time, steps,  

stepping time,  

cadence,  

sit-to-stand activities, 

 MET, PAL, kCal 

Activity types,  

gait types, EE 

(2) CT1 and RT3 (StayHealthy Inc.) 

StayHealthy Inc. has two motion monitor products, the CT1 Calorie Tracker and the RT3. Both 

products can be worn with a clip at the waist. CT1 is a FDA cleared Class II medical device for 

accurate EE estimation. RT3 is an activity monitor that uses a piezoelectric triaxial accelerometer to 

provide METs for clinical and research applications. RT3 also replaces the previous version Tritrac-

R3D, which has been widely used in a number of studies and research applications. 

A validation of RT3 for the assessment of PA reported that RT3 was a good measure of PA for boys 

and men [69]. RT3 has been used in recording temporal patterns of activity in chronic obstructive 

pulmonary disease (COPD) patients [70]. A study on the effect of a telehealth intervention for patients 

after coronary artery bypass surgery (CABS) used RT3 to measure PA and EE of the patients [71]. 
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(3) AMP 331 (Dynastream Innovations Inc.) 

The AMP 331 is an activity monitor positioned on the back of the ankle. With the proprietary 

―SpeedMax‖ technology, AMP 331 uses accelerometers to measure the forward and vertical 

accelerations to determine the position of the foot in space. Major gait parameters, such as stride length, 

speed and travelled distance during walking or running can be calculated. The recorded data in  

AMP 331 can be downloaded to PCs via a 916 MHz wireless radio receiver.  

The company showed that the accuracy in distance computation is about 97% and even 99% after 

proper calibration. A study was conducted to validate the AMP 331 in assessing EE. This study 

recruited 41 subjects whose 12-hour daily activities in a field environment were recorded. The EE 

estimate from the AMP 331 and diary record were compared and the Pearson correlation coefficient  

is 0.651 [22]. The AMP 331 was reported to better estimate EE than other wearable sensors 

(comparing with the reference EE from indirect calorimetry) during walking with the manufacturer’s 

estimation equation [47]. The accuracy of the AMP 331 to detect atypical gait was also studied. The 

AMP 331 performed better than other sensors (comparing with data obtained from video recording) in 

detecting structured walking and stair ascent/descent [23]. 

(4) GT3X, GT1M (ActiGraph LLC) 

The GT1M uses a uniaxial accelerometer and measures acceleration at 30 Hz sampling rate  

and 12-bit resolution in response to 0.05 to 2.5 g. The sampled signals are then bandpass-filtered 

between 0.25 to 2.5 Hz. The GT1M can be worn at the waist to measure activity counts, step counts, 

activity levels and EE. It can also be worn on the wrist for sleep monitoring. The data can be 

downloaded to the PC software ―ActiLife‖ via USB connection.  

GT1M has been used in evaluating PA levels in children and adolescents [72]. This device can 

accurately measure step counts and EE level between subjects in various ages [73]. de Vries [74] 

reported that the ActiGraph series was the most studied activity monitor, and many studies have 

validated its reliability and performance. The latest model GT3X uses a triaxial accelerometer for more 

accurate PA monitoring. GT3X is new and has been used in a study of physical activity in association 

with vascular function [75]. In addition, the company also releases ActiTrainer that uses the same 

triaxial accelerometer as that is used in GT3X, and a heart rate monitoring is integrated. 

(5) StepWatch (Orthocare Innovations) 

The StepWatch (also known as Step Activity Monitor, SAM) is an ankle-worn, microprocessor-

controlled activity monitor for gait measurement. It records steps in a variety of gait styles and cadence. 

The StepWatch has also received FDA marketing clearance as a Class II device. 

Foster et al. [76] investigated the accuracy in step counting of the StepWatch and found the negligible 

variance over all walking speed. It was reported to have minimum difference of step counts compared 

with the actual step counts during treadmill walking. The StepWatch showed better step counting at slow 

treadmill walking speed [77], but overestimated the steps during a 24 hour monitoring [78]. 
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(6) activPAL (PAL Technologies Ltd.) 

The activPAL is a motion sensor based on a uniaxial piezoresistive accelerometer. Worn and 

positioned on the thigh by direct adhesion to the skin, the activPAL classifies sitting, standing and 

walking among free-living activities. Recorded data is transferred to a PC via USB port.  

Ryan et al. [79] investigated the validity and reliability of the activPAL, showing that it was a valid 

and reliable tool in measuring step and cadence of the healthy subjects during walking. The activPAL 

was also compared with a discrete accelerometer device on the same healthy adults. The study 

indicated that the activPAL achieved a close match to the proven accelerometric data [80]. For older 

adults, the activPAL also exhibited accurate step counting and cadence compared with two other 

pedometers (New-Lifestyles Digi-Walker SW-200 and NL2000) [81]. 

(7) IDEEA (MiniSun) 

The Intelligent Device for Energy Expenditure and Activity (IDEEA) is a device designed for PA and 

behavior monitoring, gait analysis, EE estimation and posture detection. An external set consisting of 5 

biaxial accelerometers are attached to lower limbs and are wire-connected to a portable recorder worn at 

waist. It uses a 32-bit microprocessor that enables real-time data acquisition and processing. The IDEEA 

has been used in monitoring PA of obese people in real life environment [82], and has been validated in 

the study of ambulatory measurement for gait analysis [83], and EE estimation of PA [84]. 

5. Conclusions 

Sensor-based measurement of human activities can provide quantitative assessment of physical 

activity. PA monitoring using accelerometry techniques enables automatic, continuous and long-term 

activity measurement of subjects in a free-living environment. All accelerometers provide basic step 

counting and activity counts (intensity) that can be used to estimate the energy expenditure due to PA. 

This has been widely adopted as an assistive method in the application of weight and dietary 

management. Postural sway can be measured by accelerometry that offer moderate correlation with 

reference to a force plate. Important gait parameters, such as the cadence, stride length, stride 

regularity, walking speed, can be measured using accelerometry to evaluate one’s risk of falling and 

mobility level. Detecting unusual movement, such as falling, is applicable to telecare or a personal 

emergency response system (PERS) for the elderly. In addition, accelerometry can assist traditional 

assessment tools for quantitative evaluation. For example, the TUG-T timing can be identified 

automatically according to the accelerometer outputs obtained from the test subjects. The time taken to 

perform each activity state can be objectively identified and the movement characteristics can be 

analyzed as well [85]. 

Approaches that utilize diverse sensors in a single accelerometer provide more activity information 

and may be expected to improve the accuracy in PA monitoring. Altimeters (pressure sensors) have 

been used along with an accelerometer to identify movements with altitude changes, such as walking 

up/downstairs. The ability to classify inclined walking may enhance the accuracy in EE estimation 

during PA. The measurements of human heat dissipation, skin temperature and conductivity have also 

been used in a commercial accelerometer-based activity monitor for accurate EE and metabolism rate 
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assessments. In addition, accelerometers can be integrated into clothing from the ergonomics’ point  

of view.  

In the future, the application of wearable accelerometry-based activity monitors should be provided 

with the integration to so-called ―health smart home‖ monitoring systems [86]. Accelerometry data 

obtained from wearable accelerometers can be synchronized with the activity of daily living (ADL) 

data recorded by such monitoring systems to better describe the information of human mobility, 

physical activity, behavioral pattern, and functional ability that encompass the important parameters 

regarding the overall health status of an individual.  
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