
Sensors 2010, 10, 7514-7560; doi:10.3390/s100807514
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Software Architecture for Adaptive Modular Sensing Systems
Andrew C. Lyle and Michael D. Naish ?

Sensing and Mechatronic Systems Laboratory, Department of Mechanical and Materials Engineering,
The University of Western Ontario, London, Ontario, N6A 5B9, Canada;
E-Mail: andrew.lyle@gmail.com

? Author to whom correspondence should be addressed; E-Mail: mnaish@uwo.ca;
Tel.: +1 519 661 2111 ext. 88294; Fax: +1 519 661 3020.

Received: 8 June 2010; in revised form: 14 July 2010 / Accepted: 5 August 2010 /
Published: 10 August 2010

Abstract: By combining a number of simple transducer modules, an arbitrarily complex
sensing system may be produced to accommodate a wide range of applications. This
work outlines a novel software architecture and knowledge representation scheme that
has been developed to support this type of flexible and reconfigurable modular sensing
system. Template algorithms are used to embed intelligence within each module. As
modules are added or removed, the composite sensor is able to automatically determine
its overall geometry and assume an appropriate collective identity. A virtual machine-based
middleware layer runs on top of a real-time operating system with a pre-emptive kernel,
enabling platform-independent template algorithms to be written once and run on any
module, irrespective of its underlying hardware architecture. Applications that may benefit
from easily reconfigurable modular sensing systems include flexible inspection, mobile
robotics, surveillance, and space exploration.

Keywords: adaptive sensing systems; intelligent sensors; modular sensors; sensor
reconfiguration; template algorithms; software architecture; knowledge representation;
active sensors; transducer interface

Sensors 2010, 10 7515

1. Introduction

1.1. Sensors and Actuators in Industry

Sensors and actuators have seen widespread utilization in many of today’s industrial processes. These
devices convert physical phenomena to and from electrical signals for the purpose of measurement,
tracking, and/or control by way of digital devices such as microcontrollers, programmable logic
controllers (PLCs), and mainstream computers. In current practice, fixed combinations of sensors
and actuators are typically employed, with each combination often deployed in a static orientation and
tailored to fulfil a specific application.

In order to enhance accuracy and reliability in such applications, multiple sensors are often combined
into composite entities. For example, unlike a single camera, two or more cameras operating in tandem
could effectively form a sensor capable of depth perception through sensor fusion. Sensors that detect
different, but related, types of physical phenomena may also be combined to produce a new device
that produces measurements that are more accurate than either of its constituent sensors are capable of
providing. For example, a thermocouple could be combined with an infrared camera to increase the
accuracy of sensed temperature.

The sizes of the transistors used in the implementation of microprocessors and other integrated circuits
through very large-scale integration (VLSI) are becoming ever smaller, consistent with Moore’s Law [1],
due to advancements in semiconductor fabrication techniques. The sizes of sensors and actuators are also
being reduced at an equally rapid rate due to advancements in microelectromechanical systems (MEMS)
and nanoelectromechanical systems (NEMS) fabrication techniques. As a result of these technological
advancements, it has become quite practical to combine sensing, actuation, processing logic, as well
as transceivers that provide wired and wireless networking capability into a single monolithic device
termed a smart transducer. With the ability to transmit information and locally execute algorithms
independently, without depending upon a larger, static, and more powerful mainstream computer system,
the potential for smart transducers to collaborate amongst themselves without any external influence in
order to achieve a specific goal becomes worthy of consideration.

1.2. The Need to Combine Sensors and Actuators

Sensing systems designed to be operated in a static orientation and under controlled operating
conditions cannot be cheaply or quickly reconfigured to handle a change in process requirements, such
as in assembly lines where the product being assembled changes completely or is now required to be
processed in previously unconsidered orientations. Instead of merely considering each existing sensor
as a strictly self-contained device that is to be utilized in an exclusive scenario, or in tandem with others
sensors, each sensor may be enhanced through physical combination with one or more actuators in
addition to other sensors, resulting in an active sensing device.

Combining a sensor with an actuator greatly enhances the ability of the sensor, which is now
augmented with mobility and gains the ability to adapt to changing process requirements, such as
monitoring non-stationary objects of interest. For example, a camera could be mounted on a rotational
stage to form a panoramic camera with a field of view of 360 degrees, enabling it to track objects that

Sensors 2010, 10 7516

move anywhere within a particular plane. The relocation of processing logic directly onto the hardware
comprising a smart transducer allows such a composite sensing device to be completely self-contained,
and scalable to even larger combinations of modules.

The ability to combine diverse modular sensor and actuator components to produce flexible modular
sensor systems facilitates rapid reconfiguration to suit any requirement, and is a technique that will prove
useful in many modern applications. Examples of applicable domains include flexible inspection, mobile
robotics, surveillance, and even space exploration.

1.3. Research Objective

The aim of this work is to develop a software architecture and knowledge representation scheme that
facilitates the flexible, scalable, and reliable combination of modular sensing and actuation components
for the purpose of forming composite sensing devices with motion capability. Each modular component
provides a core sensing or actuation functionality (such as temperature or pressure measurement) and
contains embedded knowledge of its capabilities (such as its operating range and response time), which
is communicated to other modules within its environment. The design of the architectural framework
should fulfil the following criteria:

• Heterogeneity—Support the connection of sensor and actuator modules possessing diverse
functionality and capabilities.

• Autonomy—Support the autonomous discovery of the capabilities of networked modules, and the
autonomous configuration of these modules based on their discovered capabilities.

• Pose/Geometry Determination—Support the determination of the absolute or relative pose
(position and orientation) of individual modules, and by extension the overall geometry of a set of
connected modules.

• Assumption of a Collective Identity—Facilitate the assumption of a collective identity by
successfully connected modules, based on their capabilities and relative positions and orientations.

• Process Distribution—Support the splitting and distribution of a complex task among a group of
networked modules.

• Resource Management—Manage the hardware resources on each module in an efficient,
intuitive, and simple manner.

• Scalability—Maintain reliable operation with an increasing number of connected sensor and
actuator modules.

• Robustness—Adapt automatically to the addition, removal, or failure of modules in real-time.

Sensors 2010, 10 7517

2. Survey of Related Work

2.1. Logical Sensor Architectures

Modular sensing systems are often composed of a number of sensors and possibly actuators of
diverse types. Enabling intercommunication among these transducers, especially in a manner facilitating
easy reconfigurability, is often problematic due to the various analog and digital interfaces through
which communication must take place. Therefore, facilitating interoperability between the devices
often requires interface-specific solutions that may become unwieldy when reconfiguration of large
sensor-actuator systems is required.

One approach that aims to simplify the assembly of multi-sensor systems, aspects of which are utilized
in the design of the software architecture described in this paper, is the Logical Sensor Specification
(LSS) [2,3]. The LSS introduces the useful abstraction of a logical sensor, which packages the data
produced by diverse sensor types into a uniform digital representation. Thus, the internal hardware
implementation of a sensor and its interface are completely encapsulated, facilitating easy assembly
of dynamically reconfigurable modular sensing systems. A logical sensor need not necessarily be
associated with a physical entity, and may even simply be software that satisfies the abstraction interface.
Hierarchies of logical sensors may even be assembled to form a composite logical sensor that operates as
a single entity. An example of such a hierarchy is shown in Figure 1, in which a logical three-dimensional
measurement sensor is implemented.

Figure 1. Sample logical sensor hierarchy [3].

Logical

Sensor 1

2D

Camera

Logical

Sensor 4

Logical

Sensor 5

Logical Sensor System 1

Logical

Sensor 2

2D

Camera

Logical Sensor System 2

Logical Sensor System 4

Logical

Sensor 3

Range

Camera

Logical Sensor System 3

Logical Sensor System 5

(x, y)

(x, y)

(x, y, z)

(x, y, z)

(x, y, z)

Sensors 2010, 10 7518

Another existing architecture that provides similar benefits to that of a logical sensor hierarchy is
that of logical neighbourhoods [4,5]. In this architecture, sensor and actuator nodes are abstracted
into uniform virtual nodes that may in turn be further abstracted into a composite collection termed a
logical neighbourhood. Logical neighbourhoods appear as a single virtual node entity that may be further
composed into larger neighbourhoods. Virtual nodes higher in the hierarchy transmit commands and data
to nodes lower in the hierarchy through a wireless interface. Virtual nodes and logical neighbourhoods
are specified through templates written in the SPIDEY declarative language [4,5].

2.2. The IEEE 1451 Standards

The knowledge representation scheme utilized with the software architecture to represent the
functionality and capabilities of modular sensing and actuation components utilizes aspects of the
NIST IEEE 1451 [6,7] family of standards for smart transducers. These standards describe a
set of network-independent communication interfaces that simplify the connection of sensors or
actuators to microprocessors, instrumentation systems, and networks, enabling them to be utilized in
a “plug-and-play” manner. The core feature of these standards is the Transducer Electronic Data
Sheets (TEDS) defined for each transducer type, which is a local or remote region of memory that
stores information about the functionality and capabilities of the transducers in an easily accessible and
network-independent form.

2.3. Existing Modular Sensing Systems

A number of implementations of reconfigurable modular sensing systems exist in which smart sensor
and actuator components may be combined or otherwise collaborate. A popular implementation of
a reconfigurable modular sensing system is the UC Berkeley Mica platform [8]. Each Mica node,
known as a mote, measures 1.25 × 2.25 inches and runs the TinyOS real-time operating system [9].
Although the motes are capable of collaboration through the use of a peer-to-peer multi-hop wireless
networking protocol, no actuation capabilities are supported, and therefore the motes are limited to
operating in non-active sensing applications. A similar project is the Smart-Its [10] project. Smart-Its
are self-contained nodes, as small as 17 × 25 × 15 mm, designed to be stuck onto everyday objects. The
objects are thus enhanced with sensing and computational capabilities. Each Smart-Its node is aware
of its attached sensors and is capable of wirelessly relaying this information as well as sensed data to
other nodes in its environment on demand. The nodes are able to process data locally, as well as relay
information to higher-end computing devices. However, like the Mica motes, the active operation and
automatic reprogramming capability of Smart-Its nodes is limited.

More closely related to the system described in this paper are the eBlocks [11,12] embedded system
building blocks. An eBlock is an electronic module, incorporating a PIC microcontroller, that facilitates
the construction of simple sensor networks even by users who are not technically adept. Unlike general
purpose nodes such as the Mica motes, and like the system described in this paper, each eBlock
performs a specific, well-defined function. These functions include sensing, actuation, boolean logic,
and wireless communication. Although reconfigurable, connected blocks are unable to determine their
overall geometry or automatically assume a collective identity to suit new configuration requirements.

Sensors 2010, 10 7519

The possible applications of the system are also limited due to the usage of simple combinational
and sequential logic functions to produce composite readings and actions. Similarly, the I-BLOCKS
project [13], LEGO DUPLO bricks are populated with a PIC16F876 microcontroller as well as select
sensors and actuators. When physically connected, the blocks are able to communicate through a
physical half-duplex connection or wirelessly. The blocks are also capable of some positional awareness
through sensor fusion of the readings produced by multiple infrared sensors. However, like the eBlocks,
connected blocks are unable to determine their overall geometry or automatically assume a collective
identity based on their orientations. The blocks are also not designed to be easily reprogrammed to suit
changing application requirements.

MASS (Modular Architecture for Sensing Systems) [14] is a modular sensing system architecture
optimized for low power consumption and is based on hot-pluggable intelligent nodes. Four types of
MASS modules are available which provide powerful processing capability, sensing capability with
rudimentary local data analysis, wireless inter-node communication, or power. Upon connection,
modules within a particular node detect each other’s resources and the node assumes an appropriate
behaviour profile. Similar to the software architecture described in this paper, the MASS software
architecture is a layered architecture based on the Open Systems Interconnection (OSI) reference
model [15], and contains a message-based API (Application Programming Interface) for inter-node
communication. Exchange of IEEE 1451-compliant datasheets is also supported. However, MASS
provides no capability for active nodes nor the assumption of behaviour profiles based on node positions
and orientations.

BUG [16] is a powerful ARM11-based modular sensing system platform consisting of a collection of
modules that are designed to be snapped together. Among the available modules are LCD, motion
detection, GPS, and camera modules. Although extremely flexible, the BUG platform does not
currently provide functionality to facilitate active sensing. In addition, the orientations in which BUG
modules may be connected are still somewhat limited, and cannot be determined, thus restricting the
ability of a composite BUG system to form a new collective identity based on the orientation of its
constituent components.

Posey [17] is a hub-and-strut construction kit enhanced with computational ability. Within a
Posey assembly, hubs and struts are optocoupled into flexible ball-and-socket joints. An ATmega168
microcontroller in each hub and strut captures data from the optocoupled connections, and uses it to
determine the geometric configuration of the joint. This information is then relayed wirelessly to a
remote personal computer for further processing. Although Posey supports the acquisition of position
and orientation information from the local processing unit located within each ball-and-socket joint, the
units themselves do not locally collaborate to form a composite entity. Rather, the system depends upon
a more powerful mainstream computer system to provide the necessary intelligence to compose the data
provided from the joints.

Sensors 2010, 10 7520

3. Architecture Description

3.1. Module Hardware Overview

The basic module used to construct modular sensing systems is the transducer interface module
(TIM). Each is capable of a single sensing or actuation function, and is uniquely identified by a 64-bit
address. As specified in the IEEE 1451 standard for smart transducers [6], each module possesses one
or more Transducer Electronic Data Sheet (TEDS) specifications in non-volatile memory, from which a
description of the characteristics of its associated sensors or actuators may be obtained.

TIMs are cubical in shape, and thus each possesses six faces to which up to five other modules may
be connected, as shown in Figure 2. One face is reserved for use by the transducer associated with the
module. The hardware which comprises a TIM, shown in Figure 3, includes the associated transducer; a
high-speed NXP Semiconductors LPC2148 ARM-based microcontroller [18]; a Nordic Semiconductor
nRF24L01 [19] wireless transceiver supporting high-speed data transmission, multi-channel operation
and carrier detection; a Secure DigitalTM (SD) flash memory card providing high-capacity, non-volatile
storage for data and algorithms; a power supply capable of providing a voltage of 3.3 volts to 9 volts; and
five module connectors, which are proprietary interfaces used to physically connect additional modules.
The interfaces are designed such that the relative orientation between any two connected modules may
be determined. Further details on the electrical and mechanical design aspects of the TIMs may be found
in [20].

Figure 2. Transducer Interface Modules and interconnects.

Transducer Interface Module

Angular Offset
 Interconnect

Translational
Offset Interconnect

Sensors 2010, 10 7521

Figure 3. Transducer Interface Module block diagram.

Module

Connectors

 Transceiver

Transducer Interface Module

Microcontroller

Analog / SPI / I
2
C / Other

G
P
IO

SPI

IRQ

+3.3V +3.3V

+3.3V +3.3-

9V

Power Supply

Transducer

SD Card

S
P
I

+3.3V

3.2. Other Module Types

A modular sensing system may consist of two other types of modules significant to the software
architecture. These modules perform tasks unrelated to sensing and actuation; instead, they support the
inter-operation of a group of TIMs.

3.2.1. Administration Module

An administration module is used by the system user to detect and manage TIMs within its vicinity. It
possesses only a power supply, a microcontroller, and a transceiver. It may be integrated into a complete
computer system, or be a small, self-contained console with a user interface. Administration modules
may also act as a sink for transducer readings and as a gateway for communication with a larger network,
such as the Internet.

3.2.2. Interconnect Module

Interconnect modules are each built to assume one of a variety of non-standard shapes, and are used
to provide angular and translational offsets between connected TIMs which would otherwise not be
possible due to the cubical shape of the TIMs. An example of an interconnect module which provides
an angular offset is shown in Figure 2. They possess only a microcontroller and module connectors, and
draw power from the TIMs to which they are connected. The nature of the offset provided by a particular
interconnect module is stored in its TEDS, and may be accessed through its module connectors.

3.3. Software Architecture Stack

The software architecture described in this paper is a distributed architecture based on the Open
Systems Interconnection (OSI) reference model [15], and consists of six layers (one of which is divided

Sensors 2010, 10 7522

into two sub-layers) as shown in Figure 4. The use of a distributed architecture ensures that no single
point of failure exists within a modular sensing system and also facilitates architecture scalability,
unlike centralized architectures, in which a single point of failure is often introduced that can also limit
scalability in large systems where communication between nodes mostly occurs through this point.

Figure 4. Software architecture stack.

COMPOSITION LAYER

VIRTUAL MACHINE

MIDDLEWARE LAYER

COMMUNICATION LAYER

REAL-TIME OS DEVICE DRIVERS

MODULE HARDWARE

The use of a layered architecture model allows the implementation of any layer to change
independently of the others, since the implementation of each layer is encapsulated from the layer above,
to which it provides service. This information-hiding technique also facilitates a more robust software
architecture, and makes each of the architecture layers easier to implement, modify, and debug. The
function of each layer is defined as follows:

3.3.1. Module Hardware

Contains the physical components of a module needed for execution of the operating system, sensing
and actuation functionality, as well as wired and wireless communication.

3.3.2. Real-Time Operating System/Device Drivers

Provides resource management functionality and an environment for concurrent task execution.

3.3.3. Communication Layer

Provides an interface to the wireless transceiver driver that automatically accounts for transmission
problems such as packet loss and synchronization. This layer also provides an interface through which
modules may communicate using their face connectors.

3.3.4. Middleware Layer

Provides the commands and services through which the member TIMs comprising a logical module
may interact and communicate with each other in order to achieve a specific goal. A logical module is
an abstraction of one or more collaborating TIMs.

Sensors 2010, 10 7523

3.3.5. Virtual Machine

Provides a platform-independent execution environment for the algorithms utilized in the composition
layer. Platform independence is facilitated through the use of a compact implementation of Sun
Microsystems’ Java Virtual Machine [21].

3.3.6. Composition Layer

Encompasses one or more logical module template classes that provide the intelligence necessary for
a group of collaborating TIMs to behave as a logical entity. Each template algorithm is accompanied
by a logical module template TEDS that describes the basic characteristics of a logical module entity
derived from on it.

3.4. Real-Time Operating System

The software architecture utilizes a real-time operating system (RTOS), which enables it to be
implemented in a modular fashion through the concurrent execution of various tasks. As a result, the
management of the hardware resources of a module, as well as the development and debugging of the
software architecture, is vastly simplified. Tasks are implemented as independent functions that appear
to be running simultaneously, but are actually sharing the execution time of the microcontroller through
the use of scheduling mechanisms implemented within the operating system.

In an RTOS, concurrently executing tasks may be scheduled using either a pre-emptive scheduling
policy or a cooperative scheduling policy. In pre-emptive scheduling, CPU time is automatically shared
between tasks based on their assigned priority, while in cooperative scheduling each task maintains
control of the CPU until it explicitly yields control. Pre-emptive scheduling is advantageous since it
prevents long-running, low-priority background tasks from blocking shorter, higher-priority foreground
tasks from executing, thus improving system response speed to external events. In the popular
TinyOS [9] RTOS, which utilizes a cooperative scheduler, all tasks must run to completion. Long-running
background tasks are therefore prohibited, and care must be taken to ensure that each task completes in
a reasonable amount of time.

Standard background tasks executed upon startup and initialization of a TIM are the network
communication task, which performs various duties related to communication on the various wireless
data channels; the face communication task, which manages the communication of the TIM with
others physically connected to its faces and calculates their relative pose (position and orientation);
the administrative interface task, which allows the system user to monitor and administrate any physical
module, or logical group of modules, within the modular sensing system; and at least one message
handler task, which process messages received by a TIM related to its local hardware or a logical module
of which it is a member.

The real-time operating system chosen for use in the software architecture presented herein is
TNKernel [22]. This RTOS was chosen because it is free, open source, compact, well documented,
and contains a priority-based pre-emptive task scheduler. TNKernel also makes provisions for message
passing and synchronization between concurrently executing tasks.

Sensors 2010, 10 7524

3.5. File System

A file system is a set of data structures that facilitates the storage, organization, and retrieval of files
from a data storage device. A file system is employed within the software architecture to provide an
efficient, high-level interface to information and algorithms stored on SD flash cards that determine the
identity and behaviour of a particular module in a network. These SD flash cards are formatted with the
FAT32 (32-bit File Allocation Table) [23] file system and initialized with a standard file structure. The
FAT32 file system was chosen since it is widely supported, stable, and lightweight.

A standard file structure is utilized to ensure that the software architecture is consistently able to locate
and access the files necessary for its operation from predictable locations irrespective of the underlying
hardware on which it executes or the storage medium on which these files are located. Access to these
files by the users of the system is also made more convenient. The file structure designed for the purposes
of the software architecture consists of four directories as well as up to four different types of files. These
directories and files are described below.

• Template Class Directory—The template class directory amss/algo is the directory in which
the Java classes, termed the logical module template classes, are placed. These classes provide the
platform-independent intelligence that enables connected TIMs to collaborate with each other and
operate as a logical entity.

• Module TEDS Directory—The module TEDS (Transducer Electronic Data Sheet) directory
teds consists of one or more text files termed module TEDS, each possessing the extension .mod.
These files identify and describe the characteristics and digital data format of the transducers
associated with a particular physical TIM in the form of a list of property-value pairs. The
usage of a text format instead of a binary format enables the TEDS to be specified in a easily
human-understandable and easily modified form.

• Template TEDS Directory—The template TEDS directory tmpl consists of zero or more text
files termed template TEDS, each associated with one template class, that identify and describe
the characteristics of a combination of collaborating TIMs known as a logical module. Template
TEDS also specify the various roles that may be fulfilled by a particular class of TIMs within the
logical entity. Template TEDS are specified using the same format as module TEDS and possess
the same .mod extension.

• ARC4 Key File—The ARC4 key file key.rc4 stores the variable-length key required by the
Alleged Rivest Cipher 4 (ARC4) cryptographic stream cipher [24] utilized by the software
architecture for the secure transmission of packets. Modules are only able to communicate with
others that are utilizing the same key.

• Network Identifier File—The network identifier file net.id stores the 5-byte network identifier
used to indicate that a particular TIM is a member of a network of TIMs possessing the same
network identifier. Packet transmissions from modules with different network identifiers are
completely ignored, thus reducing packet processing overhead.

Sensors 2010, 10 7525

4. Communication Layer

The purpose of the communication layer is to provide logical link control in the form of a secure,
reliable, connection-oriented service; medium access control to prevent channel access conflicts; a
mechanism for time synchronization between modules; and wireless security through the encryption
of transmitted data, facilitated by a cryptographic stream cipher. The communication layer accepts
messages from the middleware layer and splits them into discrete packets, which are then encrypted and
transmitted through the wireless transceiver driver. Conversely, the communication layer also accepts
and decrypts incoming packets from the wireless transceiver driver, merges them into messages if
necessary, and passes them to the middleware layer. The communication layer also implements a wired
protocol that facilitates the direct transmission of data through the faces of physically connected TIMs.

4.1. Logical Link Control

Wireless communication tends to be very unreliable in the absence of an error correction mechanism,
mainly due to the regular interference encountered by radio waves during their propagation. Therefore,
a reliable, connection-oriented service must be provided within the communication layer to ensure that
transmitted packets arrive error-free and in the correct order. This service is facilitated in the form of a
Positive Acknowledgement with Retransmission (PAR) data link protocol, which is partially implemented
within the nRF24L01 transceiver hardware under the Enhanced ShockBurstTM feature set [19].

In this protocol, each packet that requires guaranteed transmission is automatically acknowledged by
the receiving module through the use of an Enhanced ShockBurstTM acknowledgement packet (ACK).
Packets for which an acknowledgement is not received are automatically retransmitted. A message
which is larger than the 96-bit maximum transmission unit (MTU) defined by the communication layer
(see Section 4.5) is fragmented into multiple packets before transmission.

4.2. Medium Access Control

Since a modular sensing system will normally be comprised of a number of collaborating modules,
a Medium Access Control (MAC) protocol needs to be provided within the communication layer to
share the single multi-access broadcast channel among the many contenders competing for control of
the medium. A MAC protocol may generally be described as being either a static allocation protocol or
a dynamic allocation protocol. In static allocation protocols, channel bandwidth is divided into equally
sized portions, with each portion allocated to one transmitting device. In dynamic allocation protocols,
channel bandwidth is allocated to each transmitting device on an as-needed basis. The following MAC
protocols were considered for use in the software architecture:

The MAC protocol utilized in the modular sensing system software architecture is a dynamic
allocation protocol based on MACAW. The MAC protocol was derived from MACAW because
its acknowledgement and carrier sensing features are already implemented in hardware within the
nRF24L01 transceiver, facilitating improved performance. In addition, MACAW does not depend on
global time synchronization between contenders for the medium in order to operate reliably, which
is a weakness of the static allocation protocol TDMA (Time Division Multiple Access) [15] and the
dynamic allocation protocol ALOHA [15]. This is important because much of the communication layer

Sensors 2010, 10 7526

is implemented in a concurrently executing task running on a pre-emptive real-time operating system
(see Section 3.4). As a result, the task executes at unpredictable intervals, making reliable global
synchronization very difficult to achieve.

4.3. Time Synchronization

The timers used within each module to generate and compare timestamps need to be regularly
synchronized during operation. Regular synchronization is necessary since the resonant frequency of
the crystal oscillator that controls the local time of each module may be slightly different from its rated
value, or may shift slightly over time. These variations in resonant frequency result in varying degrees of
clock drift between module clocks, and in turn cause a loss of synchronization between the local times of
each module. System reliability is therefore reduced, since the reported time of occurrence of an event
by a particular module may not necessarily be accurate with respect to the local time of another module.

The protocol used for time synchronization is a distributed protocol based on the Simple Network
Time Protocol (SNTP) developed by Mills [25], which is a subset of the Network Time Protocol (NTP)
also developed by Mills [26]. Both SNTP and NTP are standard, well-known protocols widely used to
synchronize computer clocks over the Internet. As described in [25], and shown in Figure 5, four 64-bit
timestamps are generated in the synchronization procedure, each relative to the clock of the module on
which it was taken. The roundtrip delay δ of exchanged packets, and the signed clock offset θ which is
added to the local clock of the synchronizing module, are then accurately calculated by the synchronizing
module using Equations 1 and 2, derived by Mills [26].

δ = (Ti −Ti−3)− (Ti−1 −Ti−2) (1)

θ =
(Ti−2 −Ti−3)+(Ti−1 −Ti)

2
(2)

Figure 5. Time synchronization packet exchange.

Synchronizing Module Timeline

Remote Module Timeline

Originate

Timestamp Ti-3

Destination

Timestamp Ti

Receive

Timestamp Ti-2

Transmit

Timestamp Ti-1

4.4. Wireless Security

Unlike wired transmission mediums such as twisted-pair Ethernet cables, wireless transmission is
inherently insecure since the modulated radio signals used for data transmission are easily intercepted
by any individual possessing a tuner of the appropriate frequency. Wireless security is provided within

Sensors 2010, 10 7527

the communication layer in the form of encryption in order to provide confidentiality when privacy
of information pertaining to the identification of TIMs and their collected data (which is frequently
transmitted wirelessly between modules) is required.

Two common cryptographic algorithms that facilitate information security are stream ciphers and
block ciphers. In a stream cipher, the bits comprising information to be transmitted are combined with
a pseudorandom keystream of cipher bits through the use of the exclusive-or (XOR) logical operation.
The cipher bit stream varies with a key used to initialize the algorithm. In a block cipher, information is
processed in fixed-length groups of bits known as blocks, which are typically much larger than one byte,
thus requiring the length of the information provided for encrypting to be a multiple of the block size. An
pair of complementary transformation functions are used for encryption and decryption, the behaviour
of which is unique to a supplied key, and are applied to information blocks to produce encrypted blocks,
and to encrypted blocks to produce information blocks, respectively. Block ciphers are typically slower
than stream ciphers and often require the usage of more memory during their operation; however, block
ciphers often facilitate the creation of encryption algorithms that provide a greater degree of security
compared to stream ciphers.

All packets generated for transmission by the software architecture are encrypted using the Alleged
Rivest Cipher 4 (ARC4) [24] encryption algorithm due to its straightforward implementation, excellent
speed, minimal memory usage, and relatively strong security. These criteria are important due to the
resource-constrained hardware present in the TIMs.

4.5. Packet Format

Data is transferred to and from the transceiver driver in 329-bit packets. The packet format, shown
in Figure 6, is designed to be compatible with that of the nRF24L01 transceiver, which manages
the preamble, network identifier, packet control field, and CRC checksum fields within its firmware.
The 32-byte payload field defined within the nRF24L01 packet format is sub-divided into smaller fields
for the purposes of the software architecture.

Figure 6. Communication layer packet format (field sizes in bits).

Pre (8) Network ID (40) Ctrl (9)
Source Address (64)

Destination Address (64)

Data Field (96)

Type (8) Ch (8) Enc Sum (16) CRC (16)

The preamble is an alternating binary pattern facilitating low-level synchronization between
transmitters. The network identifier identifies the overall network of modules from which incoming
packets are accepted. The packet control field facilitates detection of packet retransmissions and also
indicates if the packet requires acknowledgement. The source address and destination address identifies

Sensors 2010, 10 7528

the physical or logical module that transmitted or should receive the packet respectively. The data field
contains the data transmitted within the packet, and may be further sub-divided into parameter fields.
The packet type dictates how the data field should be interpreted. The packet channel indicates the
channel used for transmission. The encryption checksum is a simple checksum used to verify decrypted
packets. The Cyclic Redundancy Check checksum is used to detect transmission errors.

4.6. Channels and Packet Types

The nRF24L01 transceiver is able to transmit and receive packets on any one of up to 125 distinct
radio frequency channels at a time, one of which is reserved by the software architecture for use as a
control channel. All modules listen to the control channel by default when not transmitting data, and each
module can detect the presence of others in its vicinity by listening for packet transmission activity on the
channel. At regular intervals, each module broadcasts PRE (presence) packets indicating their continued
presence in the sensing system, and MEM (member) packets indicating their continued presence in any
logical modules of which it is a member. Time synchronization is also carried out on the control channel
at regular intervals through the use of SYQ (synchronization query) and SYR (synchronization response)
packets. Due to the relatively long intervals between packet transmissions on the control channel (see
Section 4.7) in comparison to the time required to transmit individual packets, the communication
overhead incurred by the various protocols that utilize the control channel is negligible.

The other 124 channels are utilized as data channels. Upon successful reservation of a data channel
through the use of the RTS (Request To Send) and CTS (Clear To Send) medium allocation packets,
the transmitting and receiving modules switch to the agreed channel and carry out the transmission of
DAT (data) packets comprising messages. Lengthy transmissions may occur simultaneously on different
channels without interference.

4.7. Network Communication Task

The network communication task is started upon initialization of the software architecture and runs
continuously and concurrently with all other tasks in the system. The general operation of the network
communication task is depicted in Figure 7. The network communication task is required to carry out a
number of functions, each of which is performed by a specific handler. These handlers are described as
follows:

4.7.1. Presence Handler

Transmits presence packets every two to five seconds for all the physical modules represented on a
TIM, as well as for the logical modules for which the TIM is the primary module. The primary module
possesses the lowest address among the members of the logical entity and is responsible for transmitting
and processing its messages.

Sensors 2010, 10 7529

Figure 7. Network communication task operation.

START

Presence

Handler Interval

Elapsed?

Execute Presence

Handler
Yes

No

Member

Handler Interval

Elapsed?

Execute Member

Handler
Yes

No

Timeout

Handler Interval

Elapsed?

Execute Timeout

Handler
Yes

No

Sync

Handler Interval

Elapsed?

Execute Sync

Handler
Yes

No

Garbage

Handler Interval

Elapsed?

Execute Garbage

Handler
Yes

No

Pending

Outgoing

Message?

Execute Outgoing

Message Handler
Yes

No

Pending

Control

Packets?

Execute Appropriate

Control Packet Handler
Yes

No

Unlock Transceiver

Lock Transceiver

Sensors 2010, 10 7530

4.7.2. Member Handler

Transmits member packets every two to five seconds indicating which the logical module entities the
physical and logical modules represented on a TIM are a member of. The roles in the logical entities
fulfilled by each module is indicated within these packets.

4.7.3. Timeout Handler

Used to detect modules that have left the environment. Presence and member packets received by a
TIM from another module within the environment are assigned a local counter on the TIM. This counter
is decremented every second by the timeout handler and reset when another presence or member packet
is received from the remote module. If the counter expires, the remote module is deemed to have left the
environment, or the associated logical module, respectively.

4.7.4. Synchronization Handler

Synchronizes the local clock with those of nearby modules every one to two minutes. Synchronization
is only performed if a module with a lower synchronization level (indicated within the transmitted
presence packets) is found in the environment, or a module with an equivalent synchronization level,
but a lower address, is found. Upon synchronization, the synchronization level of the synchronized
module is subsequently updated to be one more than that of the module to which it was synchronized,
up to a maximum of 255. Interconnect, standard, and administration modules are initialized with
synchronization levels of 255, 254, and 1 respectively, where lower synchronization levels correspond to
more accurate clock references.

4.7.5. Garbage Handler

Reclaims memory allocated by completed tasks every two seconds. This is necessary since tasks
cannot deallocate their stack and heap space on their own upon completing their execution.

4.7.6. Outgoing Message Handler

Transmit a single outgoing message, if any is pending, on each loop iteration.

4.7.7. Control Packet Handler

Handle up to five pending control packets, if any were received, on each loop iteration. If an RTS
packet is pending, handshaking is carried out and the message reception mechanism is invoked.

5. Face Connectivity

Provided within the communication layer is a wired protocol that facilitates the direct transmission
of identification data through the faces of physically connected TIMs, as well as the determination of
the relative angular offset between the connected TIMs. The operation of this protocol depends on the
electrical contacts present on the four clips located on five of the six faces of a TIM. In order to facilitate

Sensors 2010, 10 7531

the detection of the relative angular offset between two connected TIMs, the TIM faces as well as the
electrical contacts located on them are each assigned an identifier. Each TIM face is assigned an identifier
from 1 to 6, while each face contact is assigned an identifier from 1 to 4, as depicted in Figure 8.

Figure 8. Two-dimensional face and contact identifier layout view.

Face 1

Face 5

1

2

3

4 Face 2

1

2

3

4 Face 3

1

2

3

4Face 4

1

2

3

4

Face 6

3

2

1

4

5.1. Face Identification Packet Format

Face identification information is transferred between faces in the form of 20-byte face identification
packets, the format of which is depicted in Figure 9. The information transferred within these packets
reveals of the address of the physically connected remote module as well as the identifier of the connected
face through which the packet was received. Examination of the local contact through which the packet
is received also enables the relative angular offset between the connected TIMs to be determined.

Figure 9. Face identification packet format (field sizes in bytes).

Header (4)

Remote Address (8)

Remote Face Identifier (4) Checksum (4)

Sensors 2010, 10 7532

Face identification packets are transmitted on each face every five to ten seconds, indicating the
continued presence of a physical connection on the respective face to another module. Data signals
are transmitted in a format similar to that of RS-232 [27], in that transmissions are composed of a start
symbol followed by an asynchronously timed series of bits, as depicted in Figure 10. An incoming packet
is indicated by high logic levels being detected on all of the contacts on the face. The contact on which
data will be transmitted is detected through examination of the start symbol.

Figure 10. Face contact transmission signals.

Contact 1 Packet Data

Contacts 2 - 4

Start Symbol

5.2. Face Communication Task

Like the network communication task, the face communication task is started upon initialization of
the software architecture and runs continuously and concurrently with all other tasks in the system. The
general operation of the face communication task is depicted in Figure 11. The face communication task
is required to perform the following operations:

• Decrement the five face identification packet timeout counters, which are stored in the five data
structures representing the state of each connectable face, every second. If a connected module is
discovered to be disconnected or unresponsive due to the expiry of one of the counters, update the
local pose (represented by a 4 × 4 matrix of floating point values) if necessary.

• Transmit face identification packets on each face indicating the address of the module and the
respective face identifier every five to ten seconds.

• Receive pending face identification packets, if any, from any remote modules connected to each
face. If a newly connected module is discovered, update of the local pose if necessary.

Sensors 2010, 10 7533

Figure 11. Face communication task operation.

START

Timeout

Decrement Interval

Elapsed?

Decrement Face

Structure Timeouts
Yes

No

Transmit Face

Identification Packets
Yes

No

Receive Pending Face

Identification Packets

Local

Pose Update

Required?

Trigger Local

Pose Update

Yes

No

Face

Identification

Transmit Interval

Elapsed?

Local

Pose Update

Required?

Trigger Local

Pose Update

Yes

No

6. Middleware Layer

The purpose of the middleware layer is to facilitate interoperability between the various TIMs
in a modular sensing system. The term middleware refers to software and services that simplify
connectivity between software components running on distinct and possibly heterogeneous devices, in
turn simplifying the deployment of distributed applications. At the middleware layer in this software
architecture, the application programming interface (API) for physical and logical modules is defined,
which is comprised of a variety of service functions. Service functions are the interface through which
TIMs, whether homogenous or heterogeneous, request services from, and information about, each other.
Data is transferred between TIMs in the form of variable-length messages.

Sensors 2010, 10 7534

6.1. Middleware Classifications

Middleware implementations lie between the operating system and the distributed application as
shown in Figure 12, and are classified as being either synchronous or asynchronous. Synchronous
systems require that each middleware request be carried out to completion before any further requests are
processed. As a result, multiple threads of execution are necessary for parallelism to occur. Conversely,
asynchronous systems allow multiple requests to be issued without requiring the prior completion of any
single request. However, responses are not guaranteed to be processed in order within any single thread
of execution.

Figure 12. Middleware operation block diagram.

Distributed Application

Middleware API/Services

NetworkClient OS/Hardware Client OS/Hardware

Distributed Application

The middleware layer of the modular sensing system software architecture is based on the
asynchronous Message-Oriented Middleware (MOM) [28] implementation. In MOM implementations,
messages are passed between devices on a network. Messages received by a client are stored in a
message queue until they are able to be processed. The client may continue processing other data while
incoming messages are enqueued. For the purposes of the software architecture, a synchronous message
transmission mechanism was also implemented.

6.2. Message Format

A middleware layer message consists of a 44-byte header, followed by a single variable-length block
containing the data to be transferred in the message, as shown in Figure 13. Modules request data and
services from other modules by issuing service call messages. The requested data or the results of the
service call are transmitted back to the caller in the form of return messages, either synchronously or
asynchronously as demanded by the template class running on the caller.

Sensors 2010, 10 7535

Figure 13. Middleware layer message format (field sizes in bytes).

Source Address (8)
Destination Address (8)

Deadline (8)
Timestamp (8)

Message Type (1) Service Func. (1) Service ID (4)
Par. Type (2) Par. Arr. W. (2) Par. Arr. H. (2)

Data Field (variable-width)

The source address and destination address identifies the physical or logical module that transmitted
or should receive the message respectively. If the message is call to a service function, the deadline
indicates the time at or before which the call should be completed. The timestamp indicates the time
at which a particular message was enqueued for transmission, or the time at which a particular event
occurred. The message type indicates how the message should be processed. The service function
indicates what service function should be or was invoked. The service identifier uniquely identifies a
service call message and its associated return message. The parameter type indicates the type of data
supplied as parameters within the data field. These parameters are organized into a two-dimensional
array of fixed-sized elements, the dimensions of which is indicated by the parameter array width and
parameter array height. These elements may be numerical values, strings, or raw binary data.

6.3. Service Functions and Service Calls

Service functions enable modules to provide services to and exchange information with each other.
These functions may be invoked automatically by other modules within the network, or manually through
an administration module. The call/reply mechanism used during the invocation and processing of
service functions, known as a service call, is based on the standard, widely used Remote Procedure
Call (RPC) protocol [29]. As seen in Figure 14, a service call is invoked by a module through the
placement of a Call By or Call At message in the single outgoing message queue present on a TIM. This
message specifies the service function type and contains the relevant parameters to the function.

Once the transmitted message is received by the destination module, it is placed in the appropriate
Call By or Call At incoming message queue. The message is processed by or at the specified deadline
respectively, and a Return message containing the results of the service call is placed in the outgoing
message queue for transmission to the invoking module. This return message possesses the same service
identifier as the call message, enabling it to be identified by the calling module as the results of the service
call even if unrelated return messages are received from other modules before the call is completed. The
return message may also contain a status constant instead of data, indicating the success or failure of the
service call.

Sensors 2010, 10 7536

Figure 14. Service call operation.

Module

Module Agent

Module Agent

Module

Return Message Outgoing Message Queue

Service Call MessageOutgoing Message Queue Call At/By Message Queues

Return Message Queue

Service calls are issued either synchronously or asynchronously to a remote module. A synchronous
service call causes the real-time operating system to suspend the calling task until the corresponding
return message is received from the remote module or the service call times out, while during an
asynchronous service call the task is allowed to concurrently continue execution while the call is being
processed. The various service functions defined by the software architecture that enable the state and
properties of a module to be obtained or modified are as follows:

• Get—Obtains the value or state of the transducer associated with the target TIM.

• Set—Modifies the state of the transducer associated with the target TIM.

• Append—Adds to the state of the transducer associated with the target TIM instead of changing
it directly.

• Reset—Resets the state of the transducer associated with the target TIM to its default value.

• Get TEDS—Retrieves from the TEDS property list of the target module the value associated with
a provided property name.

• Get Pose—Obtains a copy of the pose matrix (see Section 8.3) representing the pose (position and
orientation) of a TIM.

• Update Pose—Upon connection to a tree of physically connected TIMs, transforms the coordinate
space of the pose matrix of the target TIM into that of the pose base (see Section 8.3) of the tree.

• Lock—Locks a TIM, enabling a sequence of modification operations (Set, Append, and Reset)
issued by another module to be performed atomically.

• Unlock—Unlocks a previously locked module.

• Join—Incorporates a TIM into a new or existing logical entity.

Sensors 2010, 10 7537

6.4. Module Message Handler Task

Each combination of the state of a module and an associated module message handler task is termed
a module agent. The module message handler task continuously examines and updates the queues and
status of its associated module agent and generates messages in response to received messages and other
events that occur within its environment. This intelligence is either provided natively within the module
firmware or by platform-independent template classes. Through the use of a real-time operating system
within the software architecture, multiple module message handler tasks may execute concurrently on a
single TIM, each receiving and transmitting messages in real time. The general operation of a module
message handler task is depicted in Figure 15. The module message handler task is required to carry out
the following operations:

• Obtain the next service call to be processed, if any, from the Call At and Call By message queues.
Call At and Call By messages are inserted into their respective queues by deadline, but since
Call At messages need to be checked more regularly for a deadline match, using separate queues
ensures that the next Call At message is always accessible within a single operation. This might
not always be possible if a single queue was used for both message types.

• Process the service call by invoking the primary handler, and if necessary, the secondary
handler. For physical module agents, the primary handler is the relevant native driver function
for the transducer. For logical module agents, the primary handler is found within its associated
cross-platform template class. The primary handler is expected to process service calls that obtain
or modify the value and state of its associated transducer. The secondary handler, defined within
template classes, is invoked to process the service call if the primary handler provides no suitable
implementation for handling it. The secondary handler also processes service calls that obtain or
modify the pose and properties of a module. If the service call is still not handled after invocation
of the secondary handler, it is deemed to be invalid and is dropped.

• Perform various status checks that ensure the integrity of the module agent is maintained
throughout changes to the environment in which it executes. The checks include ensuring that
the module is not perpetually locked while executing atomic service calls; ensuring that modules
composing a logical entity formed using physical connections are still physically connected; and
ensuring that the remote members of a logical entity of which a module agent is a member are still
present within the environment.

Sensors 2010, 10 7538

Figure 15. Module message handler task operation.

START

Enter Built-in Native

Message Loop

Logical

Module Agent?

Enter Cross-Platform

Java Message Loop

Pending

Call-At

Message?

Yes

No

Deadline Missed?

Enqueue

MISSED DEADLINE

Message

Pending

Call-By

Message?

Deadline Missed?

Enqueue

MISSED DEADLINE

Message

Invoke Primary

Handler

Message

Processed?

Invoke Secondary

Handler

Module

Locked?

Perform Module

Lock Check

Physical

Dependency

Check Interval

Passed?

Perform Physical

Dependency Check

Yes

No

No

No

Yes

Yes Yes

No

Yes

No

Yes

No

Yes

No

Module

Lock Check Interval

Passed?

No

Yes

Logical

Module Agent?

Perform Local

Member Check

YesNo

Local

Member

Check Interval

Passed?

No

Yes

STOP

Local

Members

Present?

No

Yes

Sensors 2010, 10 7539

7. Virtual Machine

To facilitate the adaptability and reconfigurability of a group of physically or wirelessly collaborating
heterogeneous TIMs, a dynamic reprogramming mechanism is necessary that allows the TIMs to
automatically source, load, and execute platform-independent logical module template algorithms at
run-time. In this software architecture, this functionality is facilitated through the use of a virtual
machine (VM), which is a program that interprets and executes high-level, hardware-independent
abstract bytecodes. Each bytecode is a sequence of one or more bytes that represents an instruction to be
executed by the VM. Algorithms defined using these bytecodes are therefore completely decoupled from
the underlying hardware architecture on which they execute, and may therefore be specified once and
then used, without recompilation, in the dynamic reprogramming of a variety of heterogeneous modules
and hardware architectures as application requirements change. As a result, these algorithms are also
easy to create, debug, and maintain.

7.1. Dynamic Reprogramming Mechanism

The virtual machine dynamic reprogramming mechanism implemented within this software
architecture is a lightweight implementation of Sun Microsystems’ Java Virtual Machine
(JVM) [21,30], supported by an architecture-specific standard class library. The use of a Java-based
virtual machine provides the software architecture with a powerful and well-established platform
in which hardware-independent algorithms may be specified. Due to the widespread adoption of
and compiler support for the JVM, there is great flexibility in the choice of algorithm specification
language. At the core of the virtual machine is a continuously executing bytecode interpretation loop
that implements a fetch, decode, execute cycle similar to that found in modern microprocessors. A
disadvantage of using a virtual machine for dynamic reprogramming mechanisms is the moderate
execution overhead incurred during bytecode interpretation. However, this overhead is negligible on
sufficiently fast hardware, such as that utilized in this software architecture.

Upon the creation of a logical module agent, an appropriate platform-independent logical module
template class from the template class directory amss/algo is loaded to provide the intelligence
necessary for each member TIM to function as part of the logical entity. The standard entry point for
this class is the method main, as is normal for Java classes that are intended to be executed. However,
unlike typical executable Java classes that accept a String array as a parameter to the main method,
logical module template classes accept a Module class reference specific to the software architecture.
This reference provides an interface through which the behaviour of the members of the logical module
may be controlled within the template class.

7.2. Standard Class Library

The software architecture provides a standard collection of classes and methods, grouped into
packages, designed specifically for use within template classes. These classes are not physically present
on the local storage of the modules; rather, invocations of the methods within these classes, which occur
very frequently, are caught and handled natively at runtime. This results in minimal flash memory and

Sensors 2010, 10 7540

RAM usage, and also substantially increases performance due to the removal of interpretive overhead
for these classes.

Due to flash memory and RAM constraints, the extensive standard class library provided within a full
Java implementation is not present in its entirety. Provided instead is a very lightweight and useful subset
of the standard class library as well as architecture-specific classes that encapsulate the functionality
necessary to support the collaboration of a group of TIMs. These classes are outlined in the following
two subsections.

7.3. The java.lang Package

The official Java class library is comprised of numerous packages and classes that provide a base for
the development of Java applications. One of the most important of these packages is java.lang,
which provides critical functionality such as mathematical operations and string processing. A subset
of the complete java.lang package was included within the standard class library of the software
architecture, to provide these two critical features. The two constituent classes are outlined below:

• Math—The class java.lang.Math contains methods that facilitate the calculation of various
arithmetic and trigonometric operations. It also defines the mathematical constants e and π .

• String—The class java.lang.String is used to represent an immutable string of characters,
and contains methods that facilitate a variety of commonly used string comparisons and operations.

7.4. The amss.system Package

In addition to the java.lang package, a package of classes unique to the software architecture is
provided to support and provide an interface to the core functionality of the architecture. This package,
amss.system, consists of the five classes outlined below:

• AMSS—The class amss.system.AMSS contains methods and constants that support various
system-level operations provided by the software architecture, including explicit garbage
collection and atomic operations.

• Message—The class amss.system.Message contains methods and constants that facilitate
performing operations on and obtaining data from messages.

• Module—The class amss.system.Module contains methods that facilitate performing
operations on and obtaining information about physical and logical modules, such as querying
the state and properties of a module, determining the number of matched modules to each role
within a logical entity, and issuing service calls to and retrieving results from matched members.

• Pose—The class amss.system.Pose contains methods that facilitate the acquisition of five
pose vectors that are derived from the matrices representing the poses of one or a pair of modules.
These pose vectors are utilized within template classes to facilitate the determination of the relative
positions between any two indirectly or directly connected modules in a logical entity, irrespective
of their orientations. The first vector represents the absolute position of a module; the other four
vectors are depicted in Figure 16.

Sensors 2010, 10 7541

Figure 16. Module pose vectors.

Face Normal

Face North
Vector

Face East
Vector

Module
Separation
Vector

• Vector3D—The class amss.system.Vector3D contains methods that facilitate operations on
three-dimensional vector quantities.

8. Composition Layer

At the composition layer, logical module template algorithms are loaded and executed that enable a
group of TIMs to collaborate and behave as a logical entity known as a logical module. The intelligence
needed to facilitate module collaboration is encompassed within a Java class that is interpreted by the
virtual machine, and is accompanied by a logical module template TEDS that describes the standard
characteristics of the composite logical module entity. Within each template TEDS, various role
descriptors are also defined. A role descriptor represents the characteristics required of a particular
module agent within the environment to satisfy a particular behavioural role within a logical entity.

Each module agent within a sensing system continually tests the others in its environment against
the roles defined within its locally stored logical module template TEDS in order to locate a match.
If a module agent is found that is capable of providing the sensing or actuation behaviour outlined
by at least one of the specified roles, the matched agent will be assimilated into an existing or a newly
created logical entity containing the matched role. Physically connected TIMs within a logical entity will
also intelligently relay their position and orientation to each other, ensuring that all the member TIMs
comprising the logical entity possess a representation of their position and orientation that is relative to
the pose of one of the members, designated the pose base.

8.1. Template and Role Matching

Creation of new logical module entities or the addition of module agents to existing logical modules
is facilitated through the matching of the various roles defined in a logical module template TEDS. Each

Sensors 2010, 10 7542

TIM in a sensing system observes the presence (PRE) packets being transmitted by the other modules
within its environment, which are first tested against the logical module template representations already
loaded into memory, and then against the various template TEDS specifications present within the local
template TEDS directory of each TIM. As previously stated, each presence packet contains various fields
that reveal the capabilities of the module that transmitted it. Thus, matches against templates represent
suitable candidate modules that may be used in the formation or augmentation of logical modules.

Template matches are only attempted by a TIM when new modules are detected within its
environment, or if the module is physically connected to or disconnected from another. Only physical
connections and disconnections trigger template TEDS directory searches, since frequently searching
the template TEDS directory for matches is expensive in terms of processing time and memory usage,
especially when the directory consists of numerous TEDS specifications. In order to prevent infinitely
recursive matching, a logical module is not allowed to match itself. Logical module creation proceeds
when the assignment constraints for every role in its associated template is satisfied, in which a join
message is issued by the primary module of the logical entity to each of the matched candidate module
agents. The primary module possesses the lowest address of all detected member modules comprising
the logical entity and is responsible for managing its operation. A module message handler task (see
Section 6.4) associated with the logical entity is created on each member module such that during the
times in which any member module assumes the position of primary member, that module is capable of
processing messages addressed to the logical entity.

The issued join messages provide information to each candidate module agent indicating the location
of or containing the logical module template TEDS and template class it should load, identifying the
matched role it should perform, as well as identifying whether membership within the logical entity
depends on the candidate module agent being physically connected to other members of the logical
entity. Allowing the data comprising a template TEDS and template class to be transmitted within a
join message enables the library of template TEDS specifications and processing algorithms available to
the modules within a particular sensing system to be distributed and remain up to date in an automatic,
peer-to-peer fashion, without requiring user intervention. For newly created logical modules a random
64-bit logical module address not already present within the environment is generated and assigned to it.
The most significant bit of this address, termed the logical module bit, is always set, and differentiates
logical entities from standard module agents.

8.2. Transducer Composition

The mechanism behind transducer composition in logical modules is illustrated in Figure 17, using the
example of a logical module possessing two defined roles. Each role within the memory representation of
a logical module possesses a role environment list, which stores member (MEM) packets corresponding
to the currently detectable module agents within the environment that were assigned to the role after
having been issued a join request.

As shown in Figure 17, the logical module F3 (8-bit addresses are depicted for simplicity), which has
a representation present in memory on all its members, consists of two roles. Module 1A is the primary
member due its possession of the lowest address among the members of the logical entity. Therefore 1A
currently processes messages transmitted to the logical module, and also generates messages on behalf

Sensors 2010, 10 7543

of the logical entity. Since only four of the eight other modules that comprise F3 are within range of 1A,
the regularly transmitted member packets of these four modules are the only ones that are detectable by
F3. Thus, from the perspective of 1A, only five modules, including itself, are currently available to fulfil
the specific roles within F3 that they were matched and assigned to.

Figure 17. Logical module operation block diagram.

Role 1

Logical Module F3 (Structure on 1A)

Module 2A 1A 1B 2D

Role 22A 1E

F3: Role 2

Module 1E

F3: Role 2

Module 1B

F3: Role 1

Module 2B

F3: Role 2

Module 1C

F3: Role 2

Module 2D

F3: Role 1

Module 1D

F3: Role 1

Module 1A

F3: Role 1

Module 2C

F3: Role 1

Wireless Signal

Range of 1A

Readings from physical and logical modules are acquired through Get service calls. Within a call to
the Get service call handler for the logical module F3, the role environment counts for each of its defined
roles are determined. The role environment count is the number of detected members in the environment
that satisfy a particular role. The role environment counts are then utilized within the template class
providing the intelligence for F3 to acquire transducer readings from all the member modules within each
role through the invocation of a number of Get service calls. These readings are then stored or processed
on the fly to produce a composite reading that is returned to the invoking module. If other logical modules
are assigned to fulfil roles within the logical module, the composition process is recursively invoked on
each member logical module until the composed readings produced by each are generated and returned
up the tree of logical modules. Combined with the ability to dynamically determine role environment
counts, service functions provide convenient access to the services of the member modules available to
a particular role without necessarily knowing how many members are accessible or their addresses.

8.3. Pose Representation and Theory

The pose (position and orientation) of each TIM in a modular sensing system is represented locally
on each TIM in the form of a 4 × 4 pose matrix P. Other popular methods as described in [31] of
representing orientation itself include Euler angles and quaternions. A matrix is chosen to represent
position and orientation rather than Euler angles and quaternions because among these, only a matrix can

Sensors 2010, 10 7544

provide a unique representation of a given orientation. Euler angles in particular are susceptible to the
phenomenon of gimbal lock, where a degree of freedom may occasionally be lost due to a pitch rotation
of 90 degrees causing the roll and yaw rotations to effectively occur about the same axis. Matrices
also facilitate the convenient representation of position and orientation as an atomic, combined entity,
enabling operations to be performed on both a position and its associated orientation simultaneously. In
addition, to facilitate transformations between coordinate spaces, representations such as Euler angles
and quaternions must, in any case, be converted to matrix representations. The data stored within a pose
matrix is as shown in Equation 3:

P =

axx ayx azx px

axy ayy azy py

axz ayz azz pz

0 0 0 1

 (3)

Each column within the pose matrix represents a three-dimensional geometric vector, defined relative
to the cardinal axes within a right-handed coordinate system. The first three columns of the pose matrix,
ax, ay, and az, respectively represent the x, y, and z axes defining the object coordinate space of the
TIM, depicted in Figure 18. The subscripts x, y, and z of the terms ax, ay, and az represent the x, y, and
z components of the axis vectors defined relative to the cardinal axes within the coordinate system. The
fourth column represents the absolute position in centimetres (cm) of the TIM (more specifically, the
origin of its object coordinate space) relative to the cardinal axes and within the object coordinate space
of the pose base, described within the following paragraph. The matrix representation chosen facilitates
the transformation of one TIM coordinate space into another to be performed through consecutive pose
matrix multiplications applied from right to left.

The pose matrix of each TIM is set to the identity matrix upon initialization, resulting in the axis
vectors being identical to the cardinal axes within the coordinate system, and the position being identical
to the origin. However, within a TEDS specification, the initial pose may be overridden through the
specification of initial rotations about the cardinal axes, and an initial translation from the origin. These
user-specified transformations may be derived from measurements obtained using external measurement
systems. The transformations are thereafter immediately applied to the identity pose matrix when the
TEDS is loaded.

Within a logical module comprised of physically connected TIMs, the pose of all member modules
must be defined relative to the object coordinate space of a single member module defined as the pose
base. The use of a pose base allows each member module to access the pose of any other physically
connected member knowing that the pose matrix returned will be within the same coordinate space as
the locally represented pose. This may be done even if the TIMs are indirectly connected through any
number of physically connected members. The transformation of the pose matrix coordinate space of
member TIM A into that of member TIM B is facilitated through the matrix multiplication shown in
Equation 4, applied from right to left:

PAnew = PB ×PA (4)

Sensors 2010, 10 7545

Figure 18. Standard TIM object coordinate space.

Face 1

Face 2Face 5

Y

XZ

8.4. Pose Composition

Pose updates are triggered whenever physical connections or disconnections between TIMs occur,
and are issued through service calls. The local pose matrix of the TIM receiving a pose update
service call is transformed through a series of rotations and translations based on pose matrix and
face connection information from the remote module provided within the service call. A pose rotation
through the cardinal z, y, and x axes of angles γ , β , and α respectively, in that order, followed by a pose
translation along these axes of ∆z, ∆y, and ∆x centimetres respectively, is performed through the matrix
multiplication shown in Equation 5, applied from right to left:

Pnew = T×Xrot ×Yrot ×Zrot ×P (5)

where:

Zrot =

cos γ −sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1

 (6)

Yrot =

cos β 0 sin β 0

0 1 0 0
−sin β 0 cos β 0

0 0 0 1

 (7)

Sensors 2010, 10 7546

Xrot =

1 0 0 0
0 cos α −sin α 0
0 sin α cos α 0
0 0 0 1

 (8)

T =

1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

 (9)

After the transformations are applied, the local pose of the TIM on which the pose update was
invoked will be completely defined in terms of the object coordinate space of the remote TIM. However,
the coordinate spaces of all physically connected TIMs must be defined relative to the TIM in the
composite entity designated the pose base. Since the pose of the remote module would have already
been transformed such that it is defined in terms of the coordinate space of the pose base, the local pose
may also be brought into the coordinate space of the pose base by multiplying it by the remote pose,
as per Equation 4. This operation is valid even if the pose base is only indirectly connected to both the
local and remote TIMs, due to the accumulative effect of multiplying transformation matrices in which
all previously applied transformations are carried over into successive transformations.

Upon completion of the pose update process, the pose matrices of other TIMs physically connected to
the other faces of the updated module will in turn require updating. For each of the physically connected
TIMs (except the TIM that issued the initial pose update service call to the updated module), an
appropriate pose update service call containing the updated pose matrix and face connection information
will be issued.

9. Architecture Evaluation

This section presents an evaluation of the behaviour and performance of the software architecture
when utilized on actual TIM hardware. This evaluation will be facilitated through two tests, in
which select homogeneous and heterogeneous sensors and actuators will be associated with TIMs and
connected together. Upon assuming a composite representation, the interactions of the TIMs are then
logged locally on the non-volatile storage present on each TIM and examined thereafter.

The first test will be used to evaluate the operation of a logical module in which the constituent TIMs
interact entirely through wireless communication. The second test will be used to evaluate the behaviour
of a logical module in which the constituent TIMs are physically connected in various orientations,
and interact through both wireless communication as well as through their physically connected faces.
During these tests, performance criteria that strongly impact the real-world performance of a composite
sensing system are considered for each constituent layer of the architecture implemented on top of the
real-time operating system, drivers, and module hardware.

9.1. Wireless Collaboration Evaluation Setup and Procedure

The purpose of this test is to evaluate the behaviour of a modular sensing system when its constituent
TIMs are wirelessly connected. A modular sensing system will be created in which an analog

Sensors 2010, 10 7547

light-dependent resistor (LDR) TIM (designated Module A), a digital accelerometer TIM (designated
Module B), and a servo motor TIM (designated Module C) are placed within range of each other.
Interfaces to three 5 V adaptors and an RS232 port connected to the personal computer workstation
are provided through means of a standard breadboard. These interfaces solely serve the respective
purposes of providing a stable voltage to the TIMs and providing a link to their administrative task
through which their behaviour may be monitored, and otherwise have no influence of the behaviour of the
composite system.

Upon discovering each other, the modules in the sensing system are expected to be capable of utilizing
an appropriate template specification and class to automatically form a composite entity that implements
a new behaviour. A single composite system should be created that finds and utilizes the average readings
of all the available voltage-based sensing TIMs (specifically, the LDR in a potential divider configuration
and the accelerometer) in the system to influence the position of all the available rotational actuator TIMs
(the servo motor), as per the provided template specification and template class.

To test if the described system behaviour is realized, the accelerometer TIM is physically rotated
through five increasing angular degree positions of 0◦, 45◦, 90◦, 135◦, and 180◦ once the formation of
a logical module entity is confirmed through the administrative interface. For each accelerometer angle,
the LDR TIM is also exposed to high and low levels of ambient light. The angular position assumed by
the servo motor TIM is then examined and analyzed in order to determine the correlation between the
accelerometer TIM angular positions, LDR TIM ambient light voltage readings, and servo TIM angular
positions. The angular position of the servo motor is more easily identified through a black indicator
attached to the rotating head.

9.2. Wireless Collaboration Results and Analysis

Figure 19 depicts the behaviour of the composite sensing system formed in the first evaluation setup at
angles of 45◦ and 135◦. In the template class executing on primary module C, the readings from all of the
acceleration (utilizing solely their x-axis readings) and voltage sensing module agents which comprise
the logical entity are continuously acquired and averaged, through the use of Get service calls, to produce
a value that is then applied, through the use of Set service calls, to all of the rotational module agents
within the entity. The position of the rotational head of the servo motor directly assumes, within the
limits of its physical rotational range, an angle proportional to the degree to which the accelerometer is
offset about its x-axis. Likely due to its limited sensitivity, varying the ambient light incident on the LDR
did not affect the angle of the servo to as great a degree as changing the orientation of the accelerometer;
however, minor variations were distinctly noticeable, indicating that the voltage readings returned by the
LDR were in fact influencing the average reading applied to the servo motor.

As a result of overhead encountered during the transmission and processing of the continuous
stream of service calls issued by the primary module to the sensor module agents within the logical
entity, reliable real-time performance was difficult to achieve. Nevertheless, the modular sensing
system exhibited correct behaviour, with real-time performance limited mainly by the capabilities of the
microcontroller and wireless transceiver utilized in the TIMs. Improvements in real-time performance
may be attained through the utilization of a more recent variant of the ARM microcontroller as well as
a transceiver capable of higher sustained transmission speeds in a newer version of the TIM hardware.

Sensors 2010, 10 7548

The cost of such attaining such components for prototyping purposes is rapidly falling to reasonable
levels, and these components will facilitate greatly reduced latencies in scenarios where service calls are
continuously invoked.

Figure 19. Servo TIM positions for given accelerometer TIM angles. (a) Accelerometer
TIM angle of 45◦. (b) Accelerometer TIM angle of 135◦.

(a)

(b)

Sensors 2010, 10 7549

9.3. Physical Collaboration Evaluation Setup and Procedure

The purpose of this test is to evaluate the behaviour of a modular sensing system when its constituent
TIMs are physically connected. A modular actuator system will be created in which two 16 × 4 character
HD44780-based liquid-crystal display (LCD) TIMs (designated Modules A and B) are physically
connected in various orientations. A breadboard is also used within the experiment solely to provide an
interface to a single 5 V adaptor to provide power and an RS232 port connected to a personal computer
workstation for administrative purposes. As with the wirelessly interacting composite module test, the
components on this breadboard otherwise have no influence on the behaviour of the composite system.

After being placed within range of each other, the LCD modules are expected to detect each other and
attempt to form a composite entity. Upon connection, a composite system should be created that finds
and utilizes all of the available text displays (the two LCD TIMs) in order to form a suitable logical entity
that effectively functions as a larger display if the displays detect that they are connected in a suitable
orientation, as per the provided template specification and template class.

To test if the described system behaviour is realized, the LCD TIMs are connected together in four
configurations such that the LCD displays on the modules are aligned in suitable horizontal and vertical
orientations. In the horizontal configurations, the two 16 × 4 character LCD displays should form and
behave as a logical 32 × 4 LCD display, thus possessing double the width. In the vertical configurations,
the two 16 × 4 character LCD displays should form and behave as a logical 16 × 8 LCD display,
thus possessing double the height. Once formation of a logical module entity is indicated through
confirmation received on the administrative interface, alphanumeric text strings are then transmitted
through the administrative interface to the logical module. The text output on the LCD displays is then
examined and analyzed in order to determine the correlation between the orientations of the LCD display
modules and the text outputs observed.

9.4. Physical Collaboration Results and Analysis

Figures 20 and 21 depict the behaviour of the composite sensing system formed in the second
evaluation setup. As long as the LCD displays associated with the member TIMs are aligned horizontally
or vertically alongside each other in a common plane, the alphanumeric string is always displayed in a
consistent left-to-right, top-to-bottom fashion across TIMs. This behaviour is realized even if the relative
positions of Module A and Module B are swapped. Since the member TIMs are physically connected,
they possess a common pose base, and the template class executing on primary module B is therefore
able to query and analyze their pose vectors (see Figure 16), derived from their respective pose matrices,
in order to determine their relative orientations and thus the overall geometry of the logical entity. With
knowledge of the overall geometry, the original alphanumeric string is internally split (if necessary) into
segments by the primary module, each of which is recursively transmitted using Set service calls to the
appropriate member LCD TIMs in order to achieve the correct behaviour.

Due to limitations in the amount of memory available within the TIMs, which restrict the complexity
of the template classes utilized by logical module agents as well as the size of the structures used
to maintain the state of the logical module agents themselves, the template class utilized in this test
is unable to scale beyond two LCD modules. Nevertheless, the logical module entity exhibited the

Sensors 2010, 10 7550

ability to assume a new behaviour based on the relative orientations between its physically connected
member modules, and by extension, the overall geometry of the composite entity. Through the utilization
of TIMs possessing greater amounts of memory (which is quickly becoming less cost prohibitive as
semiconductor fabrication techniques improve), scaling to three LCD modules and beyond would not be
difficult to achieve.

Figure 20. 32 × 4 character composite LCD TIM configurations. (a) Face 2 of Module A
connected to Face 4 of Module B. (b) Face 2 of Module B connected to Face 4 of Module A.

(a)

(b)

Sensors 2010, 10 7551

Figure 21. 16 × 8 character composite LCD TIM configurations. (a) Face 5 of Module A
connected to Face 3 of Module B. (b) Face 5 of Module B connected to Face 3 of Module A.

(a) (b)

9.5. Collaboration Performance Analysis

In this subsection, measurements obtained during the evaluation of various performance criteria in
the wireless and physical collaboration tests are graphically presented. For each criterion, the maximum,
minimum, and mean performance readings are shown, as well as the standard deviation from the mean.
At least one hundred and up to three thousand event occurrences are timed, logged, and analyzed during
the collaboration test runs. These readings are then analyzed in order to characterize the performance of
the architecture in each case.

9.5.1. Channel Reservation Latencies

Figure 22 depicts the MAC protocol channel reservation latencies encountered at the communication
layer during the collaboration tests. This latency is defined as the time elapsed between the transmission

Sensors 2010, 10 7552

of an RTS packet and reception a CTS packet in response. The results show that the time required
to reserve a channel is on the order of tens of milliseconds. In comparison, the channel reservation
latencies encountered in typical 802.11/WiFi networks are typically around 20 ms when few nodes
are contending for access to the wireless channel [32]. The relatively large channel reservation period
typically encountered during the operation the software architecture can likely be attributed to the greatly
reduced interrupt response due to frequent usage of critical sections during timing-critical operations.
Critical sections are facilitated through the disabling of interrupts, during which reception of medium
allocation packets by the wireless transceiver may go undetected for a substantial period of time. The
impact of the large channel reservation overhead is somewhat mitigated by the fact that it occurs only
once per message transmission, is independent of the message length, and only becomes a major issue
in real-time scenarios in which data is streamed between TIMs.

Figure 22. MAC protocol channel reservation latencies.

4527.9

3.5

54.9

180.2

1093.0

3.5

41.2

144.9

Channel Reservation Latency (ms)

Maximum

Minimum

Mean

Standard
Deviation

Wireless Collaboration Test
Physical Collaboration Test

0 1000 2000 3000 4000 5000500 1500 2500 3500 4500

9.5.2. Message Transmission Speeds

Figure 23 depicts the speeds at which messages are wirelessly transmitted using the PAR protocol
at the communication layer during the collaboration tests. The results clearly show a maximum
transmission speed of about 9.42 kBps (kilobytes per second), with mean transmission speeds
approaching this maximum. The generally larger messages transmitted during the physical collaboration
test (due to the relatively lengthy alphanumeric strings) resulted in increased packet retransmissions, and
thus a lower mean message transmission speed as well as a noticeably larger transmission speed variance
during that test. The 9.42 kBps maximum transmission speed is much lower than the specified theoretical
maximum of 2 Mbps (megabits per second), or 256 kBps, attainable by the nRF24L01 transceiver.
This performance discrepancy may be attributed to the speed of the SPI bus linking the microcontroller
and the transceiver, acknowledgement packet transmission overhead, and packet encryption/decryption

Sensors 2010, 10 7553

overhead. The maximum message transmission speed of 9.42 kBps is, however, very well suited to a
wide variety of sensor-actuator systems and applications.

Figure 23. PAR protocol message transmission speeds.

9643.2

323.3

9400.8

868.8

9646.3

392.9

8703.9

2001.7

Message Transmission Speed (bytes/second)

Maximum

Minimum

Mean

Standard
Deviation

Wireless Collaboration Test
Physical Collaboration Test

0 2000 4000 6000 8000 10000 12000

9.5.3. Service Call Round-Trip Latencies

Figure 24 depicts the latencies encountered during the invocation of synchronous Call By service
functions in the collaboration tests. This latency is defined as the time elapsed, or round-trip interval,
between the transmission of a service call message and the reception of the associated return message.
Service calls that are asynchronous or Call At calls are not considered since such service calls are
typically subject to lengthy and/or widely varying latencies, and will be utilized less often in practice
than synchronous Call By service calls.

The results show that the return message reception latencies for synchronous Call By service
function invocations are typically around 300 to 500 ms on average. In comparison, the round-trip
latencies encountered during the operation of the standard Remote Procedure Call (RPC) protocol
usually employed on high-speed wired and wireless networks are typically below 100 ms for small
messages [33]. The relatively large round-trip latency at the middleware layer can noticeably limit the
ability of the TIMs (in their current form) to be applied to real-time streaming applications. In addition to
the previously outlined factors that impact channel reservation latencies and message transmission speeds
(which in turn impact the speed of service function invocations), a major factor impacting message
round-trip latencies is the substantial overhead encountered in the interpretation of Java bytecodes during
service calls.

Sensors 2010, 10 7554

Figure 24. Service call round-trip latencies.

5218.4

8.0

563.3

581.5

4095.0

14.1

322.1

434.3

Maximum

Minimum

Mean

Standard
Deviation

Service Call Round-Trip Latency (ms)

Wireless Collaboration Test
Physical Collaboration Test

0 1000 2000 3000 4000 5000 6000

9.5.4. Bytecode Execution Speeds

Figure 25 depicts the speeds at which the Java virtual machine bytecode instructions comprising
logical module template classes are interpreted and executed at the virtual machine layer. The mean and
maximum bytecode execution speeds (47 and 91 instructions/second respectively) attained during the
wireless collaboration test are noticeably lower than the mean speed of about 266 instructions/second
attained during the physical collaboration test. This discrepancy may be attributed to the much higher
incidence of synchronous service calls during the wireless collaboration test, which result in the frequent
suspension of template class execution.

Figure 25. Virtual machine bytecode execution speeds.

90.9

5.1

46.6

15.0

886.1

2.2

265.5

268.3

Bytecode Execution Speed (instructions/second)

Maximum

Minimum

Mean

Standard
Deviation

Wireless Collaboration Test
Physical Collaboration Test

0 100 200 300 400 500 1000600 700 800 900

Sensors 2010, 10 7555

The attained bytecode interpretation speeds during the collaboration tests are considerably slower (on
the order of thousands of times) than native machine code execution. The microcontroller clock speeds
and limited memory available in the TIM hardware are not conducive to popular acceleration techniques
such as just-in-time recompilation (JIT) [34]. Newer versions of the ARM processor core overcome these
performance limitations by supporting the execution of Java bytecodes directly in hardware, through the
use of the Jazelle [34] architecture extension.

9.5.5. Startup Memory Utilization

Figure 26 depicts the amount of random access memory (RAM) utilized on the TIMs (out of the 31
kilobytes integrated into the LPC2148 microcontroller) by the software architecture upon formation of
the logical modules within each collaboration test. The results clearly show that about 20 to 24 KB
(kilobytes) on average, or about 65% to 77% of the available memory, is typically utilized upon logical
module formation. The consistently larger memory utilization by the physical collaboration test may be
attributed to the larger and more complex template class utilized in the test. Due to the fact that complex
template classes will often require on the order of 4 KB of RAM or more, scalability of logical module
combinations is limited. Nevertheless, the software architecture is designed to scale with increasing
amounts of processing power and available memory, which is quickly becoming less cost prohibitive
with improvements in semiconductor fabrication techniques.

Figure 26. Startup memory utilization after logical module creation.

21160

17784

20876.9

622.1

29768

24216

24632.3

1002.9

Startup Memory Utilization (bytes)

Maximum

Minimum

Mean

Standard
Deviation

Wireless Collaboration Test
Physical Collaboration Test

0 5000 10000 15000 20000 25000 30000 35000

Sensors 2010, 10 7556

10. Conclusions

10.1. Concluding Remarks

This paper presented a novel software architecture and knowledge representation scheme that
facilitates the flexible, scalable, and reliable combination of heterogeneous modular sensor and actuator
components.

The main feature of this architecture is the composition system that allows a sensor to be combined
with an actuator, thereby augmenting the sensor with motion capability and enabling the now active
sensor to adapt to changing process requirements. Each modular component, known as a TIM, provides
a core sensing or actuation functionality and also possesses embedded knowledge of its capabilities, in
the form of a TEDS specification, which may be communicated to other modules in its environment. This
facilitates collaboration among a group of sensor and actuator modules, and enables all or a subset of the
group to dynamically exhibit completely new behaviour. This dynamic reprogramming intelligence is
provided in the form of hardware-independent, Java-based template classes. A lightweight, customized
Java virtual machine specific to this software architecture was implemented in order to support the
dynamic reprogramming of TIMs containing highly resource-constrained embedded hardware. Such
hardware is incapable of running the traditional, much more resource intensive Java virtual machines.

The proposed software architecture was implemented and evaluated using a prototype transducer
module implementation in order to test its viability, and this work is a first step towards a highly adaptive
architecture that will prove useful in applicable domains such as flexible inspection, mobile robotics,
surveillance, and even space exploration.

10.2. Recommendations

Although the adaptive modular sensing system software architecture exhibited correct behaviour
when implemented and evaluated on actual TIM hardware, a number of areas in the design and
implementation of the software architecture may be improved, and new features may be added, in order
to increase its applicability.

Processing and memory limitations imposed by the current TIM hardware implementation introduced
relatively large latencies into multiple layers of the software architecture, limiting its applicability to
demanding scenarios where real-time performance is required. Utilizing a revision of the TIM hardware
possessing a microcontroller based on more recent, high-speed versions of the ARM processor, such as
those in the ARM9 and ARM11 series, would result in substantially improved architecture performance
and allow the usage of highly bandwidth-intensive sensors such as embedded cameras.

Greater sustained packet and message transmission speeds would also noticeably improve the
performance of the overall software architecture, particularly in scenarios requiring real-time
collaboration between member modules transferring substantial amounts of data, since the round-trip
latency for every service call issued would be reduced. Moving channel reservation and switching
logic, as well as packet encryption and decryption, into the firmware of the transceiver would also aid
in reducing these latencies. Utilizing a Bluetooth [35] transceiver would be well suited to achieving
these goals.

Sensors 2010, 10 7557

Throughout the software architecture, critical sections are extensively utilized to facilitate the atomic
operation of timing-critical operations, which has the side effect of preventing the real-time operating
system (RTOS) from performing context switches between concurrently executing tasks. With frequent
utilization, critical sections often result in greatly increased execution latencies. On hardware possessing
greater processing capability, mutexes and semaphores should be utilized to implement task-safe access
to shared data without greatly reducing execution latencies.

To keep the virtual machine within the software architecture lightweight, features of complete Java
virtual machine implementations deemed non-critical, such as threads and automatic garbage collection,
were not implemented. On more capable TIM hardware, these features should be provided for increased
flexibility. Alternatively, more resource-intesive interpreters for well-supported and well-documented
scripting languages such as Lua [36] and Python [37] may be incorporated in place of the Java-based
virtual machine. Template scripts would be interpreted on the fly, and would thus be easier to implement,
deploy, and debug.

The library of template TEDS specifications and processing algorithms local to each TIM within
a modular sensing system is updated in an automatic, peer-to-peer fashion. However, no mechanism
is provided by which only the latest version of a particular template TEDS specification and its
associated template class is transferred between TIMs before execution. A versioning scheme should
be incorporated into TEDS specifications to ensure that a module with the latest version of a particular
specification (and its associated template class if applicable) does not have its stored specification
overwritten by older versions during peer-to-peer updates.

In summary, implementing and evaluating the software architecture proposed in this thesis has
enabled numerous performance limitations to be exposed that would otherwise be difficult to discover.
Addressing the latencies encountered at multiple layers within the software architecture stack as well as
improving the speeds of message transmission and bytecode execution will result in a greatly improved
adaptive modular sensing system architecture that will prove useful in its many applicable domains.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of
Canada under Grant No. 312383.

References

1. Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 82–85.
2. Henderson, T.; Hansen, C.; Bhanu, B. A framework for distributed sensing and control. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI ’85), Los
Angeles, CA, USA, August 1985; pp. 1106–1109.

3. Dekhil, M.; Henderson, T.C. Instrumented sensor systems. In Proceedings of the 1996
IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent
Systems, Washington, DC, WA, USA, December 1996; pp. 193–200.

Sensors 2010, 10 7558

4. Mottola, L.; Picco, G.P. Logical neighborhoods: A programming abstraction for wireless sensor
networks. In Distributed Computing in Sensor Systems; Springer: Berlin, Germany, 2006;
pp. 150–168.

5. Ciciriello, P.; Mottola, L.; Picco, G.P. Building virtual sensors and actuators over logical
neighborhoods. In Proceedings of the International Workshop on Middleware for Sensor Networks
(MidSens 2006), Melbourne, Victoria, Australia, 28 November 2006; Association for Computing
Machinery: Melbourne, Australia, 2006; pp. 19–24.

6. Lee, K. IEEE 1451: A Standard in Support of Smart Transducer Networking. In Proceedings of the
17th IEEE Instrumentation and Measurement Technology Conference, Baltimore, MD, USA, 1–4
May 2000; pp. 525–528.

7. National Institute of Standards and Technology. NIST IEEE-P1451 Draft Standard Home Page.
Available online: http://ieee1451.nist.gov/ (Accessed on 5 June 2010).

8. Hill, J.L.; Culler, D.E. Mica: A wireless platform for deeply embedded networks. IEEE Micro.
2002, 22, 12–24.

9. Hill, J.; Szewczyk, R.; Woo, A.; Hollar, S.; Culler, D.; Pister, K. System architecture directions for
networked sensors. ACM Sigplan Notices 2000, 35, 93–104.

10. Holmquist, L.E.; Gellersen, H.W.; Kortuem, G.; Schmidt, A.; Strohbach, M.; Antifakos, S.;
Michahelles, F.; Schiele, B.; Beigl, M.; Mazé, R. Building intelligent environments with smart-its.
IEEE Comput. Graph. Appl. 2004, 24, 56–64.

11. Cotterell, S.; Mannion, R.; Vahid, F.; Hsieh, H. eBlocks—An enabling technology for basic sensor
based systems. In Proceedings 2005 Fourth International Symposium on Information Processing in
Sensor Networks, Los Angeles, CA, USA, 25–27 April 2005; IEEE: Los Angeles, CA, USA, 2005;
pp. 422–427.

12. Cotterell, S.; Downey, K.; Vahid, F. Applications and experiments with eBlocks – Electronic blocks
for basic sensor-based systems. In Proceedings 2004 First Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara, CA, USA, 4–7
October 2004; pp. 7–15.

13. Ngo, T.D.; Lund, H.H. Modular artefacts. In Proceedings of Component-Oriented Approaches to
Context-aware Computing (ECOOP 2004), Oslo, Norway, 14 June 2004.

14. Edmonds, N.; Stark, D.; Davis, J. MASS: Modular architecture for sensor systems. In Proceedings
of the 4th International Symposium on Information Processing in Sensor Networks (IPSN 2005),
Los Angeles, CA, USA, 25–27 April 2005; pp. 393–397.

15. Tanenbaum, A.S. Computer Networks, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003.
16. Bug Labs. Bug Labs: Products. Available online: http://www.buglabs.net/products/ (Accessed on

5 June 2010).
17. Weller, M.P.; Do, E.Y.L.; Gross, M.D. Posey: Embedding computation in a poseable hub and strut

construction kit for undirected play. In Proceedings of the 2nd ACM Conference on Tangible and
Embedded Interaction, Bonn, Germany, February 2008.

18. NXP Semiconductors. LPC2141, LPC2142, LPC2144, LPC2146, and LPC2148 device highlight.
Available online: http://ics.nxp.com/products/lpc2000/lpc214x/ (Accessed on 5 June 2010).

Sensors 2010, 10 7559

19. Nordic Semiconductor. nRF24L01 Single Chip 2.4GHz Transceiver Product
Specification. Available online: http://www.nordicsemi.com/files/Product/data sheet/
nRF24L01 Product Specification v2 0.pdf (Accessed on 5 June 2010).

20. Jain, A.; Naish, M.D. Building blocks for adaptive modular sensing systems. In Proceedings of
the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montréal, QC, Canada,
October 2007; pp. 184–189.

21. Oracle Corp. Java technology. Available online: http://java.sun.com/ (Accessed on 5 June 2010).
22. Tiomkin, Y. TNKernel real-time kernel. Available online: http://www.tnkernel.com/ (Accessed on

5 June 2010).
23. Microsoft Corporation. FAT technical reference. Available online: http://technet.microsoft.com/

en-us/library/cc758586.aspx (Accessed on 5 June 2010).
24. Kaukonen, K.; Thayer, R. A stream cipher encryption algorithm: Arcfour. Available online:

http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt (Accessed
on 5 June 2010).

25. Mills, D.L. Simple network time protocol (SNTP) Version 4 for IPv4, IPv6 and OSI. Available
online: http://www.faqs.org/rfcs/rfc4330.html (Accessed on 5 June 2010).

26. Mills, D.L. Network time protocol (Version 3) specification, implementation and analysis. Available
online: http://www.faqs.org/rfcs/rfc1305.html (Accessed on 5 June 2010).

27. Strangio, C.E. The RS232 standard: A tutorial with signal names and definitions. Available online:
http://www.camiresearch.com/Data Com Basics/RS232 standard.html (Accessed on 5 June 2010).

28. Hurwitz, J. Sorting out middleware. DBMS 1998, 11, 10–12.
29. Srinivasan, R. RPC: Remote procedure call protocol specification version 2. Available online:

http://www.faqs.org/rfcs/rfc1831.html (Accessed on 5 June 2010).
30. Lindholm, T.; Yellin, F. The JavaTM virtual machine specification, 2nd ed. Available online:

http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html (Accessed on 5
June 2010).

31. Dunn, F.; Parberry, I. 3D Math Primer for Graphics and Game Development; Wordware Publishing,
Inc.: Plano, TX, USA, 2002.

32. Yun, L.; Ke-Ping, L.; Wei-Liang, Z.; Chong-Gang, W. Analyzing the channel access delay of
IEEE 802.11 DCF. In Proceedings of the 2005 IEEE Global Telecommunications Conference
(GLOBECOM ’05), St. Louis, MO, USA, November 2005; Volume 5, pp. 2997–3001.

33. Khandker, A.M.; Honeyman, P.; Teorey, T.J. Performance of DCE RPC. In Proceedings of the
Second International Workshop on Services in Distributed and Networked Environments, Whistler,
BC, Canada, June 1995; pp. 2–10.

34. Porthouse, C. High-performance Java on embedded devices. Available online:
http://www.eetasia.com/ARTICLES/2006JUN/PDF/EEOL 2006JUN16 EMS EDA TA.pdf
(Accessed on 5 June 2010).

35. Bluetooth Special Interest Group Inc.. How bluetooth technology works. Available online:
http://www.bluetooth.com/English/Technology/Works/Pages/default.aspx (Accessed on 5
June 2010).

Sensors 2010, 10 7560

36. Ierusalimschy, R.; de Figueiredo, L.H.; Filho, W.C. Lua—An extensible extension language. Softw.
Pract. Exp. 1996, 26, 635–652.

37. Python Software Foundation. The python programming language. Available online:
http://www.python.org/ (Accessed on 5 June 2010).

c© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article
distributed under the terms and conditions of the Creative Commons Attribution license
http://creativecommons.org/licenses/by/3.0/.

	Introduction
	Sensors and Actuators in Industry
	The Need to Combine Sensors and Actuators
	Research Objective

	Survey of Related Work
	Logical Sensor Architectures
	The IEEE 1451 Standards
	Existing Modular Sensing Systems

	Architecture Description
	Module Hardware Overview
	Other Module Types
	Administration Module
	Interconnect Module

	Software Architecture Stack
	Module Hardware
	Real-Time Operating System/Device Drivers
	Communication Layer
	Middleware Layer
	Virtual Machine
	Composition Layer

	Real-Time Operating System
	File System

	Communication Layer
	Logical Link Control
	Medium Access Control
	Time Synchronization
	Wireless Security
	Packet Format
	Channels and Packet Types
	Network Communication Task
	Presence Handler
	Member Handler
	Timeout Handler
	Synchronization Handler
	Garbage Handler
	Outgoing Message Handler
	Control Packet Handler

	Face Connectivity
	Face Identification Packet Format
	Face Communication Task

	Middleware Layer
	Middleware Classifications
	Message Format
	Service Functions and Service Calls
	Module Message Handler Task

	Virtual Machine
	Dynamic Reprogramming Mechanism
	Standard Class Library
	The java.lang Package
	The amss.system Package

	Composition Layer
	Template and Role Matching
	Transducer Composition
	Pose Representation and Theory
	Pose Composition

	Architecture Evaluation
	Wireless Collaboration Evaluation Setup and Procedure
	Wireless Collaboration Results and Analysis
	Physical Collaboration Evaluation Setup and Procedure
	Physical Collaboration Results and Analysis
	Collaboration Performance Analysis
	Channel Reservation Latencies
	Message Transmission Speeds
	Service Call Round-Trip Latencies
	Bytecode Execution Speeds
	Startup Memory Utilization

	Conclusions
	Concluding Remarks
	Recommendations

