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Abstract: A novel noise filtering algorithm based on ensemble empirical mode 

decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. 

Three noise patterns with different power—50 Hz, EMG, and base line wander – were 

embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, 

empirical mode decomposition (EMD) and EEMD were used to compare filtering 

performance. Mean square error between clean and filtered ECGs was used as filtering 

performance indexes. Results showed that high noise reduction is the major advantage of 

the EEMD based filter, especially on arrhythmia ECGs. 

Keywords: arrhythmia ECG; ensemble empirical mode decomposition; composite  

noise; filter 

 

1. Introduction  

Empirical mode decomposition (EMD) is a novel recently developed algorithm [1]. EMD is based 

on a decomposition derived from the data and is useful for the analysis of nonlinear and nonstationary 

time series signals [2]. With iterative decomposition of signals, EMD separates the full signal into 

ordered elements with frequencies ranged from higher to lower frequencies in each intrinsic mode 

function (IMF) level. Different from the classical Fourier decomposition with sine and cosine basis 

functions, EMD depends on the characteristics of the signal; therefore EMD behaves as a filter bank 
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without a predefined cut-off frequency [2]. This interesting property of EMD has been widely applied 

in biomedical signal analysis, such as monitoring the effect of anesthetic drugs [3], rapid screening of 

obstructive sleep apnea [4], and respiratory sinus arrhythmia estimation from ECGs [5].  

EMD is also used for ECG noise reduction [6-9]. Blanco-Velasco developed an EMD-based 

algorithm to remove the baseline wander and high-frequency noise of ECGs [10]. Nimunkar and 

Tompkin added a pseudo-high-frequency noise to IMFs as an aid to remove power-line noise. They 

also developed a complete ECG processing algorithm for R-peak detection and feature extraction, 

based on EMD approaches [11]. Owing to the fact that the lower IMF levels correspond to higher 

frequency components and vice versa, reconstruction without the lower IMF level can remove high-

frequency noise. Thus, low-frequency baseline wander can be removed by reconstruction without 

higher IMF levels [12]. 

The major disadvantage of EMD is the so-called mode mixing effect. Mode mixing indicates that 

oscillations of different time scales coexist in a given IMF, or that oscillations with the same time scale 

have been assigned to different IMFs. Hence, ensemble EMD (EEMD) was introduced to remove the 

mode-mixing effect [13]. The principle of the EEMD is to add white noise into the signal with many 

trials. The noise in each trial is different, and the added noise can be canceled out on average, if the 

number of trials is sufficient. Thus, as more and more trials are added to the ensemble, the residual part 

is the signal. EEMD was also widely used for signal processing. For example, reconstruction from 

selected IMFs was used for the evaluation of pipelines utilizing the magnetic flux leakage (MFL) 

technique [14]. EEMD was also been used to simulate cardio-respiratory signals in order to measure 

cardiac stroke volume. EEMD improved them better than EMD by mode mixing removal [15]. 

Arrhythmia ECGs have different ECG patterns than the normal state. Different arrhythmia states, 

such as premature arrhythmias, superavent arrhythmias, ventricular arrhythmias and conduction 

arrhythmias, present various ECG waveforms. During the ECG measurement, various types of noises, 

such as muscle noise, baseline wander, and power-line interferences, are recorded in the ECG signals, 

interfering with the ECG-information identification. Numerous signal-processing methods have been 

used on the studies of ECG noise reduction, especially on arrhythmia ECGs. Adaptive regression and 

the corresponding Kalman recursions were used to remove ventricular fibrillation (VF) 

electrocardiogram (ECG) signal noise [16]. Multichannel Wiener filter and a matching pursuit-like 

approach were applied to remove cardiopulmonary resuscitation artifacts from human ECGs [17]. The 

adaptive LMS filter used to remove cardiopulmonary resuscitation (CPR) artifacts from ECGs has 

achieved high sensitivity and specificity of around 95% and 85%, respectively [18]. Another adaptive 

filter based filter to suppress random noise in electrocardiographic (ECG) signals, unbiased and 

normalized adaptive noise reduction, can effectively eliminate random noise in ambulatory ECG 

recordings, leading to a higher SNR improvement than possible with a traditional LMS filter [19]. The 

time-frequency plane was also used to separate signal and noise components with an entire ensemble of 

repetitive ECG records, based on a Wiener filter. High noise reduction and low signal distortion was 

achieved after ensemble averaging problem involving repetitive deterministic signals mixed with 

uncorrelated noise [20].  

The goal of this study is to investigate EEMD based filtering performance and the corresponding 

phase delay of filtered signals in arrhythmia ECGs. Low pass, high pass and band pass filters were 
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designed to meet various noises conditions: muscle contraction, 50 Hz power line and baseline wonder. 

Traditional Butterworth filter and Wiener filter was also used to compare the filtering performance. 

Phase distortion of the filtered ECG was also investigated. 

2. EMD and EEMD algorithm 

2.1. EMD 

The EMD algorithm used in this study comprises the following steps [1]: 

(1) Identify all the extrema (maxima and minima) of the signal, x(s). 

(2) Generate the upper and lower envelope by the cubic spline interpolation of the extrema 

point developed in step (1). 

(3) Calculate the mean function of the upper and lower envelope, m(t). 

(4) Calculate the difference signal d(t) = x(t)−m(t). 

(5) If d(t) becomes a zero-mean process, then the iteration stop and d(t) is an IMF1, named 

c1(t); otherwise, go to step (1) and replace x(t) with d(t). 

(6) Calculate the residue signal r(t) = x(t)−c1(t). 

(7) Repeat the procedure from steps (1) to (6) to obtain IMF2, named c2(t). To obtain cn(t), 

continue steps (1)–(6) after n iterations. The process is stopped when the final residual 

signal r(t) is obtained as a monotonic function. 

At the end of the procedure, we have a residue r(t) and a collection of n IMF, named from c1(t) to 

cn(t). Now, the original signal can be represented as: 

( ) )()(
1

trtctx
n

i

i +=∑
=

       (1) 

Often, we can regard r(t) as cn+1(t). 

2.2. EEMD 

According to Wu [9], the steps for the EEMD algorithm are as follows: 

(1) Add a white noise series n(t) to the targeted signal, named x1(t) in the following description, 

and x2(t)=x1(t)+n(t). 

(2) Decompose the data x2(t) by EMD algorithm, as described in Section 2.1. 

(3) Repeat Steps (1) and (2) until the trial numbers, each time with different added white noise 

series of the same power at each time. The new IMF combination Cij(t) is achieved, where i 

is the iteration number and j is the IMF scale. 

(4) Estimate the mean (ensemble) of the final IMF of the decompositions as the desired output: 
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=
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i
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_        (2) 

where ni denotes the trial numbers. 
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3. Method  

A simulated arrhythmia ECG segment with designed noises was used to examine filter output. 

Noises contained EMG, 50 Hz power line and baseline wanders. Low pass filter, high pass filter and 

band pass filters were designed with Butterworth filter, Wiener filter, EMD and EEMD based filters. 

The filtering performance was compared. The overall flowchart is shown in Figure 1. The detailed 

description is given in the following sub-section. 

Figure 1. Flowchart of this study. 

 

3.1. Simulated Arrhythmia ECG and Noise Data 

A. Clean synthetic ECG signal: 

 

Simulated normal and arrhythmia ECGs were derived from a ECG simulator (type number BC 

Biomedical PS-2210 Patient Simulator) with 60 s duration. The ECG simulator parameter  

was 80 BPM, temperature 37 °C, Maximum peak to minimum peak voltage was 5 mV, breath Rate 

was set at 30. There are one normal ECG, and six arrhythmia ECGs, such as premature arrhythmias, 

superavent arrhythmias, ventricular arrhythmias and conduction arrhythmias. The ECG segment is 

shown in Figure 2. The corresponding ECG label and disease type was also described in the caption of 

Figure 2. 

 

B. Real ECG database 

 

Real ECG data was derived from an arrhythmia ECG database. Number 101, 102 and 103 and 104 

were used. A band-pass filter ranged 1–35 Hz was used as preprocessing filter. The cleaned ECG was 

then used a real ECG template. The signal was 30 min durations. [21]. 
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Figure 2. Illustration of normal and arrhythmia ECG signals used in this study. Signal 

durations are 30 s. From top to bottom: (a) normal ECG, (b) premature arrhythmia with 

PVC1, denoted as P1, (c) premature arrhythmia with multifocal PVC, denoted as P2, (d) 

superavent arrhythmia with atrial tach, denoted as S1, (e) superavent arrhythmia with sinus 

arrhythmia, denoted as S2, (f) ventricular arrhythmia with 24 PVCs per min, denoted as 

V1, (g) conduction arrhythmia with Lf bundle branch block, denoted as C1. 

 

 

C. Synthetic noises: 

 

High frequency ECG noise types, such as muscle contraction and 50 Hz power line interference, 

and low frequency ECG, baseline wander were investigated in the following session. All noises were 

also reduced to three noise levels, 25%, 50% and 100%, with respect to the maximum noise level. The 

maximum noise level was predetermined as an amplitude ratio with respect to normal ECG, Vpp, 
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which is amplitude of maximum peak to minimum peak. The noise simulation algorithm was similar to 

the suggestion in [22]: 

1.  EMG noise: EMG noise was model by a random number with normal distribution, originally 

manipulated with the Matlab code randn.m. The maximum EMG noise level was the scaling of 

random sequence and the multiplication to Vpp with reduced ratio of 1/8. EMG noise sequence 

was denoted as N1(t). 

2.  Power line noise: Power line interference was modeled by 50 Hz sinusoidal function with 

multiplication on amplitude derived with Matlab code rand.m. The maximum 50 Hz noise level 

was the scaling of random sequence and the multiplication to Vpp with reduced ratio  

of 1/4. 50 Hz noise sequence was denoted as N2(t). 

3.  Baseline wander: Baseline wander was model by a Baseline wander a 0.333 Hz sinusoidal 

function. The maximum noise level was the same amplitude scale with Vpp. Baseline wander 

was denoted as N3(t). 

4.  Composite noise: Composite noise was the combination of the above three noise with the 

following relation：  

N4(t) = 0.5*[N1(t) + N2(t)] + N3(t)     (3) 

Illustration of the four noises with three levels on a normal ECG is shown in Figure 3. 

Figure 3. Illustration of EMG noise, 50 Hz noise, baseline wander and composite of three 

noises on normal ECG. Noise levels of 25%, 50% and 100% are added, respectively. 

Signal durations are 3 s. 

 

 

D. Real noise database 

 

Real noises are extracted from the noise stress test database in MIT-BIH [23]. There are three noise 

patterns: baseline wander (in record “bw”), muscle (EMG) artifact (in record “ma”), and electrode 

motion artifact (in record “em”). Both one minute and total 30 min duration noises were selected, 

respectively. The short one minute noise was used for synthetic ECG and the 30 min duration noise 

was for real ECG signal derived from the arrhythmia ECG database. 
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3.2. EMD/EEMD Based Filtering Algorithm 

 

ECG was filtered (reconstructed) with partial reconstruction IMF by EMD, EEMD respectively with 

following equation: 

( ) ( )∑
=

=
q

ki

ikq tctemdRECG_ ,                   (4) 

( ) ( )∑
=

=
q

ki

ikq tcEEMDteemdRECG __ ,      (5) 

When k = 1, q = n, RECG_emd1q becomes equivalent to the original noised ECG. A low pass filter 

was derived from deletion of lower IMF scale, than means k > 1; A high pass filter was derived from 

deletion of high IMF scale, than means q < n; and a band pass filter was consequently with middle part 

of IMF scales, that means both conditions k > 1 and q < n must be satisfied. The optimal choice of 

(k,q) pairs for each filter was determined with minimum MSE by sequential search approach. The 

EEMD parameters was 10 dB added white noise and 200 times trial number, according to previous 

study [24]. 

3.3. Wiener Filter  

The formula of the Wiener filter is given as [25]: 

XXXX RRw
111

1−
=        (6) 

where w is the Wiener filter coefficients, and the cross correlation of x1(t) and x(t), XXR
1

, 

autocorrelation of x1(t), 
11XXR were estimated. The x1(t) and x(t), represent the input signal and desired 

signal corresponding to x1(t) and x(t) introduced in the earlier section, respectively. Wiener filter theory 

is based on the minimization of difference between the filtered output and desired output. Filter 

coefficient was estimated by the least mean squares method on the square of the difference between the 

desired and the actual signal after filtering. In this study, the Wiener filter was derived from Matlab 

function firwiener.m, with filter order 300. 

3.4. Traditional IIR Filter 

A Butterworth filter was used with three filter speculation. The low pass filter was a 10th order 

Butterworth filter with a 35 Hz cutoff frequency, and the high pass filter was a 3rd order Butterworth 

filter with a 1 Hz cutoff frequency. The band pass filter was the cascade computation result of the low 

pass filter and high pass filter. 

3.5. Filtering Performance Index 

Three are two indexes used to indicate the filter performance on EEMD and the other filter, one is 

mean square error (MSE) and the other is phase delay. MSE was to measure the difference between the 

original “clean” ECG and the reconstructed ECG. MSE is mainly from the residual noise and also ECG 

distortion after filtering process. MSE can be defined as follows: 
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where the nominator part is the square error, and ( )tx
�

 is the reconstructed ECG, such as RECG_emdkq 

or RECG_eemdkq in Equations (4) and (5). The phase delay of ( )tx
�

 was also calibrated before MSE 

calculation. L is the length of the signal. The lower the MSE value, the higher filtering performance 

was evaluated for filters. Another quantitative feature, MSEQRS  is also defined as the MSE within the 

windowed QRS complex:  
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where L is the number of QRS complex, and W is the window duration of each QRS complex. 

MSEQRS is used to measure the recovery performance of QRS complex with various filter method. 

4. Results: 

4.1. EMD and EEMD Decomposition: 

The typical EMD and EEMD decomposition and extracted IMF are illustrated in Figure 4. The low 

level IMF contained high frequency components; while the high level IMF contained low frequency 

components. IMF distribution is very similar to a filter bank. Unlike a traditional filter bank, and 

similar sub-band decomposition algorithms, such as wavelets, IMF is not band restricted. Adaptive 

decomposition based on the signal pattern complexity is the main feature of IMF. Not specific IMF 

level would contain pre-determined frequency range components, that means an adaptive frequency 

range filtering process. 

Figure 4. Illustration of IMF distribution of a ventricular arrhythmia ECG (V1) with 100% 

composite noise by: (a) EMD, and (b) EEMD. From top to bottom is low level IMF to high 

level IMF. Signal durations are 30 s.  
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Figure 4. Cont. 
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Figure 4. Cont. 

 

The difference between EMD and EEMD is the mode mixing reduction of EEMD. Comparing the 

IMF component of the same level, EEMD has more concentrated and band limited components. High 

frequency noises are more localized in the low IMF level. That can be seen from Figure 5, the 

corresponding IMF spectrum distribution of EMD and EEMD. The 50 Hz spike is in the 1st–4th level 

in EMD and EEMD; while the 0.33 Hz baseline wander is in the 8th and 9th level in EMD and only  

in 9th level in EEMD. ECG components are located between the 4th to 7th level in EMD and 4th  

to 8th level in EEMD.  

Figure 5. Corresponding IMF spectrum distribution of (a) EMD, and (b) EEMD of  

Figure 4. The x-axis unit is Hz, y-axis is power. There is less spectrum overlapping of 

EEMD than EMD due to reduction of mode mixing in EMD.  
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Figure 5. Cont. 

 

4.2. MSE Performance: 

Noise reduction performance was evaluated by MSE. MSE performance of low pass filter and high 

pass filter spec is represented in Figure 6(a) and Figure 6(b). As shown in Figure 6(a), as IMF level 

increased, MSE value would be decreased due to the remove of high frequency noise components; 

while k increased and signal components were also be deleted, MSE increased due to signal distortion. 

Therefore the optimal IMF level was chosen on the concave with minimum MSE value, and an 

EMD/EEMD based low pass filter was determined. For the same reason, a high pass filter was also 

determined with another concave with the deletion from high IM level.  

Figure 6. MSE distribution of ventricular arrhythmia ECG (V1) with (a) 25% EMG noise , 

(b) 100% baseline wander for EMD (dot line with triangle mark), EEMD (dot line with 

square mark),on different IMF levels. Corresponding MSE of Wiener filter (dash line) and 

IIR filter (solid line) with low pass filter spec are also shown in (a) and in (b) with high 

pass filter spec. The minimum MSE of EMG noise is at k = 3 for EMD and k = 4 for 

EEMD, and minimum MSE of baseline wander is at q = 8 (EEMD) and q = 4 (EMD), 

respectively. 
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Figure 6. Cont. 

 

 

EMD and EEMD based band pass filter need the reduction of both high level and low level IMF, 

and optimally the middle part of IMF would be conserved, that corresponds to the clean ECG 

component. Sequential search of MSE with all possible (k,q) combinations was evaluated. A contour 

map with x-axis as k and y-axis as q was sketched. A minimum MSE point to indicated the  

optimal (k,q) pair location is achieved for the optimal band pass filtering performance and is illustrated  

in Figure 7. 

Figure 7. Contour map of MSE under various (k,q) pairs for Ventricular arrhythmia ECG 

(V1) with 100% composite noise by EEMD. The (k,q) location with lowest MSE was 

triangle mark. In this case, k = 4 and q = 8 was the optimal solution. 

 

 

Figure 6 shows that the MSE ranking from high to low was IIR > Wiener > EMD > EEMD. EEMD 

always has lowest MSE under various noise contamination scenarios, which perform as low pass filter, 

high pass filter and also as band pass filter. This result, indicating that EEMD is also superior to other 

filters, not only for normal ECG, but also performs well for arrhythmia ECG, is also shown in Figure 8. 

That means EEMD has good noise reduction performance, under various ECG patterns. With the 

deletion of low IMF level, EEMD performed as a low pass filter; while with the deletion of high IMF 
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level, EEMD performed as high pass filter. Sequential search of lowest MSE on (k,q) pairs also 

indicated the optimal band pass filter performance.  

Figure 8. MSE percentage of all ECG contaminated with 100% composite noise. X-axis is 

the seven ECG segments, the same sequence with that shown in Figure 2. Each ECG 

segment has average MSE of four filters, from left to right sites are IIR, Wiener, EMD and 

EEMD. EEMD always has lowest MSE percentage among the four filters, and it is always 

true for normal ECG, and also for arrhythmia ECG.  

 

 

The detailed MSE values for synthetic ECG are listed in Table 1. From the results of Table 1, 

EEMD performed better with light noise percentage, and also better on baseline wander than on high 

frequency noise, both on 50 Hz interference and EMG noise.  

Table 1. MSE result of Ventricular arrhythmia ECG of four filter methods with four 

noises. Minimum MSE of the same noise are mark bold. 

Noise type 
Noise 

percentage 
IIR Wiener 

EMD 

(IMF level) 

EEMD 

(IMF level) 

EMG (* E-3) 25 % 4.1 4.0 2.8 (k = 3) 1.8 (k = 4) 

 50% 6.6 12.3 11.1 (k = 4) 4.6 (k = 4) 

 100% 18.1 34.4 24.6 (k = 4) 18.1 (k = 4) 

50 Hz (* E-3) 25 % 3.3 1.0 7.2 (k = 2) 2.0 (k = 4) 

 50% 3.8 3.0 11.9 (k = 4) 3.0 (k = 4) 

 100% 5.7 9.4 10.7 (k = 4) 5.1 (k = 4) 

Baseline (* E-2) 25 % 49.5 10.1 3.0 (q = 5) 2.3 (q = 9) 

 50% 49.7 18.4 8.5 (q = 5) 4.8 (q = 8) 

 100% 50.5 30.4 7.4 (q = 4) 5.7 (q = 8) 

Composite (* E-2) 25 % 52.6 10.3 8.5 (k = 3, q = 8) 2.3 (k = 4, q = 9) 

 50% 52.8 18.8 5.5 (k = 3, q = 8) 5.0 (k = 4, q = 8) 

 100% 54.2 31.7 19.5 (k = 4, q = 7) 6.6 (k = 4, q = 8) 

“em”(* E-2) 100% 49.1 19.6 19.3 (k = 1, q = 5) 16.3 (k = 4, q = 7) 

“ma” (* E-2) 100% 36.1 10.7 13.3 (k = 3, q = 7) 8.5 (k = 5, q = 9) 

“bw” (* E-2) 100 % 23.1 6.9 2.7 (k = 1, q = 7) 1.5 (k = 4, q = 9) 
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For real noises, baseline wander, muscle contraction and motion artifact, EEMD still had lowest 

MSE performance than other filters with synthetic V1 signal. The typical filtered ECG of the four 

filters used in this study is sketched in Figure 9. The IIR filtered ECG has some waveform distortion, 

especially on the S peak, and there is a pseudo positive peak on PVC pattern; while the output of EMD 

and EEMD remaining similar to the original ECG signal pattern. That is the advantage of EMD and 

EEMD with the near zero phase delay character.  

Figure 9. From top to bottom: (a) ventricular arrhythmia ECG (V1) with 100% composite 

noise and corresponding filter output by (b) IIR, (c) Wiener, (d) EMD  

(k = 4, q = 7) and (e) EEMD (k = 4, q = 8). 

 

 

The filter output for V1 with real noise corruption is shown in Figure 10. It is obvious that EEMD 

has better filtering performance under muscle contraction contamination.  

Figure 10. From top to bottom are (a) ventricular arrhythmia ECG (V1), (b) with muscle 

artifact ’ma’ noise and corresponding filter output by (c) IIR, (d) Wiener, (e) EMD and  

(f) EEMD. 
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Figure 10. Cont. 

 

 

The QRS complex recovery for synthetic ECG is organized in Table 2. It is obvious from the data in 

this Table that MSE is higher with higher noise percentage. For baseline noise and composite noise, 

EEMD has lowest MSE than the other approach. There is no significant difference between the four 

filter methods on MSEQRS result for real noise contamination. The MSE performance of real noises on 

the real ECG database is shown in Table 3. Like Table 1, EEMD still has the lowest MSE than the 

other filters. 

Table 2. MSEQRS result of ventricular arrhythmia ECG of four filter methods with 

synthetic 100% composite  noise and real noises. Minimum MSE of the same noise are 

mark bold. 

Noise type Noise 

percentage 

IIR Wiener EMD EEMD 

EMG 

(* E-3) 

25 % 9.5 19.1 19.7 18.6 

50% 12.0 65.1 75.8 67.7 

100% 44.6 140.5 172.3 164.4 

50Hz 

(* E-3) 

25 % 8.6 2.1 8.4 3.4 

50% 9.1 26.2 41.4 27.8 

100% 12.2 11.9 19.2 12.0 

Baseline 

(* E-2) 

25 % 53.4 9.3 2.4 1.6 

50% 53.7 19.4 7.0 4.5 

100% 54.5 34.5 7.5 6.1 

Composite 

(* E-2) 

25 % 57.7 9.5 5.7 1.6 

50% 58.2 20.3 5.1 4.8 

100% 58.9 37.7 18.6 7.1 

‘em’(* E-2) 100% 63.6 33.4 38.7 34.5 

'ma' (* E-2) 100% 54.9 41.4 55.7 50.8 

‘bw’ (* E-2) 100 % 22.9 34.7 42.9 41.7 
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Table 3. MSE result of real ECG of four filter methods with three real noises. Minimum 

MSE of the same noise are mark bold.  

Signal Noise IIR Wiener EMD EEMD 

101 

(* E-2) 

em 
14.7 6.7 8.6 6.5    

ma 6.0 2.4 3.6 2.2    

bw 4.1 1.6 1.0 0.7    

102 

(* E-2) 

em 18.2 7.5    10.9 7.9 

ma 9.5 2.3 3.2 1.9    

bw 7.6 1.9 1.3 0.8    

103 

(* E-2) 

em 13.7 6.2 7.3 5.7    

ma 5.0 2.4    3.7 2.8 

bw 3.1 1.3 1.0 0.6    

5. Discussion: 

This article investigated the effect of EEMD filtering both on normal ECG and arrhythmia ECG. In 

additional to normal ECG, EEMD seem more useful on arrhythmia ECG filtering. Arrhythmia ECG 

with composite noise is the most common case during clinical ECG measurement. Not only is the 

lower MSE performance, but also on conservation of filtered ECG waveform performed by EEMD. In 

this study, signal P1, P2, V1, C1 displayed impressive filtering advantages with EEMD, especially on 

the PVC peak. There are some pseudo peaks produced by the IIR filter, especially on the S peak and a 

pseudo PVC positive peak. These pseudo peaks could lead to an improper medical diagnosis.   

Mode mixing reduction between adjacent IMF levels is the main advantage of EEMD over 

traditional filters on arrhythmia ECG noise filtering. With the higher computation effort, it leads to 

better filtering performance. Due to the added noise used during EEMD, there is better filtering 

performance for EEMD on low noise power conditions.  

ECG noise reduction procedure by EEMD on arrhythmia ECG with composite noise was proposed 

in this article. Something similar has been proposed based on EMD [10], but EEMD had better 

filtering performance than EMD by reducing mode mixing. The previous study was devoted to the high 

frequency noises, this study has tried to include the baseline wander noise and extend the signal to 

arrhythmia ECG. The criterion to achieve an optimal EEMD level selection rule is also proposed. For 

low pass filtering, iterative deletion of low level IMF until a minimum MSE is reached. The same 

method is used for high pass filtering, but with deletion of high level IMF to reserve the high frequency 

component in the low IMF level. It is a little time-consuming to obtain the optimal band pass filtering 

criteria on suitable IMF levels, but it can be replaced by visual inspection with relative IMF 

components. From Figure 4 it can be seen that level 4 to level 7 on the EMD contain R peak 

information, seen in level 4 to level 8 in EEMD. Therefore a smart guess of (k,q) pairs with slight IMF 

level modification may be necessary to achieve the minimum MSE points with less computation. In the 

future, optimal selection criteria of IMF level in an interesting issue. Since each IMF is a filter-like 

output, it is reasonable to expect a predictable IMF level for ECG noise reduction. Unfortunately, the 

frequency range of each IMF level is not “predictable”, unlike traditional filter banks; therefore there is 
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no criterion now to predict an optimal IMF level for noise reduction. This will be a challenging topic to 

be investigated in future work. 

6. Conclusions  

This paper proposes a high performance and easy implemented ECG noise reduction procedure 

based on EEMD. Application of EEMD with adaptive IMF basis properties also has potential for other 

biomedical signals or other fields. For arrhythmia ECG with PVC it is more useful to use EEMD to 

remove composite noise than traditional filters. Although EEMD has a heavy computational load, it is 

still suitable for getting better noise reduction performance on arrhythmia ECG under off line analysis. 
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