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Abstract: This work presents a new approach for collaboration among sensors in Wireless 

Sensor Networks. These networks are composed of a large number of sensor nodes with 

constrained resources: limited computational capability, memory, power sources, etc.  

Nowadays, there is a growing interest in the integration of Soft Computing technologies 

into Wireless Sensor Networks. However, little attention has been paid to integrating 

Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks. The objective of 

this work is to design a collaborative knowledge-based network, in which each sensor 

executes an adapted Fuzzy Rule-Based System, which presents significant advantages such 

as: experts can define interpretable knowledge with uncertainty and imprecision, 

collaborative knowledge can be separated from control or modeling knowledge and the 

collaborative approach may support neighbor sensor failures and communication errors. As 

a real-world application of this approach, we demonstrate a collaborative modeling system 

for pests, in which an alarm about the development of olive tree fly is inferred. The results 

show that knowledge-based sensors are suitable for a wide range of applications and that 

the behavior of a knowledge-based sensor may be modified by inferences and knowledge 

of neighbor sensors in order to obtain a more accurate and reliable output. 
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1. Introduction 

Over the past few years, Wireless Sensor Networks (WSNs) [1,2] have drawn the attention of 

multiple researchers. WSNs are defined [1] as networks composed of a large number of sensor nodes 

and can be conceived of as small computers with extremely basic interfaces and components. Each 

node consists of a processing unit with limited computational capability and memory, sensors, a 

communication device and a limited power source, usually in the form of a battery. Hence, WSNs have 

strong constraints on their energy resources and computational capacity. In addition, network protocols 

and algorithms must possess self-organizing capabilities that enable them to autonomously adapt to 

changes resulting from external interventions or requests submitted by an external entity. 

As described in [1], sensor nodes can be used for continuous sensing, event detection, event 

identification, location sensing and local control of actuators. The range of applications of WSNs is 

very wide and includes intelligent agriculture, industrial control and monitoring, environmental 

monitoring systems, surveillance, health monitoring, traffic monitoring, etc. 

Nowadays there is a persistent trend to include more and more functionalities into sensors in order 

to apply them in complex systems, to reduce the need for inter-sensor communication and to prolong 

battery lifetimes. In this sense, sensors with some intelligent capabilities have been proposed and 

several Soft Computing (SC) technologies have been applied to WSNs.  

On the other hand, WSNs are perfect scenarios for sensor collaboration in order to obtain a global 

purpose. In this work, the term collaborative involves communication of individual measures among 

sensors to accomplish their tasks and to achieve a common goal.        

Despite the wide interest in sensors and collaborative WSNs, little attention has been paid to 

collaborative Fuzzy Rule-Based Systems (FRBSs) for WSNs. FRBSs [3] are considered an extension 

of classical rule-based systems, because they deal with “IF-THEN” rules whose antecedents and 

consequents are composed of fuzzy logic statements (fuzzy rules) [4], instead of classical logic ones. 

One of the main characteristics of these systems is their capacity to incorporate human knowledge by 

accounting for its lack of accuracy and uncertainty or imprecision. FRBSs present some advantages 

over classical rule-based systems; for example: a) the key features of knowledge captured by fuzzy sets 

involve the handling of uncertainty and b) inference methods become more robust with the 

approximate reasoning methods employed within fuzzy logic. 

This paper presents a new collaborative approach based on knowledge-based WSNs. The 

contributions of this work are as follows: 

(a) We propose a knowledge-based sensor that executes a small FRBS that has been adapted to it 

and allows experts to incorporate uncertain and vague knowledge about the sensor data into the 

sensors;  

(b) We define an application protocol that is adapted to sensor networks and enables the 

distribution of knowledge bases (KBs) and data communication between sensors; 

(c) We examine the performance of the sensor and protocol, and observe from the results that the 

sensor reaction time and the network throughput and delay allow the system to be used in a wide 

set of applications;  

(d) We propose a collaborative knowledge-based scheme that allows for collaboration among 

sensors in order to achieve a global network objective. The collaborative knowledge is defined 
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by means of a FRBS, which is a very effective approach to support uncertainty and imprecision. 

As a real-world application, we present a knowledge-based WSN that concretely models a 

system of olive tree pests. The development of the olive tree fly is strongly related to the 

temperature and humidity conditions of the environment. The suitability of insecticide 

treatments applications should be evaluated if the risk of the plague appearance in an area 

surpasses a threshold level. 

The remainder of the paper is organized as follows. The following section deals with related work 

and motivation. Section 3 shows the methodology that has been used: the structure of the collaborative 

knowledge-based WSN, the FRBS designed for the sensors, the main functions of the application 

protocol and the collaborative scheme. Section 4 shows the experimental results obtained related to the 

FRBS sensor and application protocol performance as well as a real-world application of collaborative 

FRBS sensors to modeling olive tree pests. Finally, conclusions are drawn in Section 5. 

2. Related Work and Motivation   

The introduction of some intelligent capabilities into sensor networks enables them to be applied to 

the control or modeling of complex systems. An intelligent sensor that modifies its internal behavior to 

optimize its ability to collect data from the physical world and to communicate it in a responsive 

manner to a host system was defined in [5]. Benoit et al. [6] presented a model of intelligent sensor 

systems and proposed three broad areas in which intelligence is applied to sensors: intelligence of 

perception, reasoning and social intelligence. Deckneuvel [7] reported an analysis of an intelligent 

sensor and proposed a language specifically developed for the design of such systems. As described  

in [8], a sensor network with intelligent behavior is a system that can adapt to the situation and present 

information that is relevant at the moment. Furthermore, Mekid [9] presented new structural concepts 

of intelligent sensors and networks with intelligent agents. 

The past few years have witnessed a growing interest in intelligent sensors based on SC, such as in 

neural networks [10], fuzzy logic [11-15], evolutionary algorithms [16] and hybrid systems composed 

of fuzzy logic and neural networks [17]. Srinivasan et al. [18] presented a scheme for data-centric 

multipath routing in WSNs utilizing a fuzzy logic controller architecture at each node. The authors  

of [19] presented a distributed, general-purpose reasoning engine designed for WSNs. As described  

in [20], inference is one of the most common methods, techniques and algorithms applied in data 

fusion. Inference-based methods make decisions based on the system’s knowledge of the perceived 

situation. In [17], the term “soft computing” was introduced to the field of WSNs.  

Recently more applications of SC in WSNs have been published: in [21] two intelligent localization 

schemes especially designed for WSN, in which SC technologies play a crucial role, are presented;  

in [22] a model to improve the distance estimation error between sensor is shown and in [23] the 

authors present a guideline on choosing the most optimal sensor combinations for accurate residential 

fire detection by mean of artificial intelligence techniques. 

In [24] and [25] two real-world applications which use fuzzy inference systems in order to 

implement a collaborative approach have been described. These papers present two techniques based 

on fuzzy inference systems which are used to control the navigation of an autonomous mobile robot 

equipped with sensors. 
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Lately, several studies have been devoted to collaborative WSNs. Due to the characteristics of 

sensor networks, Gracanin et al. [26] argued that the nodes used in their work have to collaborate in 

order to accomplish their tasks: sensing, signal processing, computing, routing, localization,  

security, etc. Moreover, in [27], P. J. Marrón claimed that “... recently the idea of WSNs has started to 

appear, where entities that sense their environment not only operate individually, but collaborate 

together using ad hoc network technologies to achieve a well-defined purpose of supervision of some 

area, some particular process, etc.” In both [27] and [28], a cooperating object (CO) was defined as a 

single entity or a collection of entities consisting of sensors, controllers (information processors), 

actuators or cooperating objects that communicate with each other and are able to achieve, more or 

less autonomously, a common goal. As described in [28], wireless sensors and actuator networks are 

typical examples of such cooperating objects. These networks consist of objects that are individually 

capable of simple sensing, actuation, communication and computation, but the full capabilities of such 

networks are reached only by the cooperation of all these objects. 

All the above works are related and relevant to: sensors which incorporate intelligent capabilities, 

sensors based on SC technologies, collaborative sensors and sensors as cooperating objects. As 

indicated in these works, an improvement in the reliability, responsiveness and accuracy of the sensors 

behavior can be achieved in WSNs if they incorporate collaborative algorithms. Nevertheless, they 

require a significant amount of resources in terms of CPU performance, memory, wireless 

communication bandwidth and battery consumption.  

In order to solve this problem, a fuzzy rule-based collaborative approach (D-FLER) has been 

presented in [19]. This system incorporates distributed and embedded collaborative mechanisms of 

reasoning on the observed data and taking decisions or actions in a coordinated manner. Following this 

idea, D-FLER uses two types of inputs: individual observations (sensor readings of the current node) 

and neighborhood observations (fuzzified sensor data from the neighboring nodes). However, D-FLER 

presents some limitations, derived from the need to:  

(a) Transmit a significant amount of data to neighbor nodes. 

(b) Process a significant amount of data.  

These features cause a decrease in the lifetime of the batteries.  

To improve the above-mentioned problem, in this work we propose a new scheme that fuse:  

(a) Individual observations.  

(b) The knowledge that was obtained from their neighbor nodes. 

To the best of our knowledge, the collaborative approach for WSNs presented in this paper is the 

first one that proposes the use of a FRBS to define the collaborative knowledge. This approach allows 

the users to define the collaboration among sensors by means of a specific KB (variables, fuzzy sets 

and rules), which presents significant advantages:  

(a) The collaborative scheme may deal with uncertainty and imprecision. 

(b) It is possible to separate control or modeling knowledge from collaborative knowledge, using 

interpretable rules in both cases. 

(c) The collaborative approach may support sensor failures and communication errors because, in 

this case, the collaborative sensor would infer a proportional value to the number of failures 
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between control or modeling knowledge (local knowledge without collaborative scheme) and 

the collaborative scheme. 

Some scenarios that could benefit from the proposed approach are real-world applications with 

complex control or modeling in which sensor inferences may be affected by measures or inferences of 

neighboring sensors, e.g., event detections (fire detection, alarms), environmental monitoring (water 

quality, pest detection), industrial process control, robotics, etc. 

3. Collaborative Knowledge-Based WSN Proposal 

Despite the propensity for highly constrained resources (microcontroller, memory, battery, 

communications, etc.) in sensors and sensor networks, there is a persistent trend to include more and 

more functionalities into sensors both to reduce the need for inter-sensor communication and to 

prolong battery lifetimes. Resource constraints make it impossible to directly utilize the traditional 

schemes or approaches of FRBSs and Evolutionary Algorithms (EAs) in the case of sensor systems. 

Instead, it is necessary to develop a new scheme by which sensors can execute a small knowledge-

based system of functions, leaving other functions to be executed in a system with greater information 

processing capacity. The current information processing capacity of sensors is low due to the 

microcontroller and the small amount of memory that such devices usually contain.  

Sensors do not have man-machine interfaces to enable users to update sensor data or to view the 

evolution of a particular variable. However, sensor networks do permit sensors to share data and 

knowledge; knowledge updates and sensor-to-sensor collaboration can support the attainment of global 

objectives. An objective of this work is to design a FRBS that can be executed in a sensor and that 

includes a collaborative scheme for sharing variables, data and knowledge. What follows is a 

discussion on the structure of the proposed system, the design of the FRBS, the main features of the 

application protocol and the collaborative scheme by which information is shared by sensors as well as 

proposed methods to share local and remote information.  

3.1. Structure of the System 

The proposed system was designed to separate some functions that are traditionally integrated into 

the inference engine of a FRBS, so as to allow sensors to execute a knowledge-based system. 

The system is composed of a computer, an access point, a sensor network, a FRBS adapted for 

execution in the sensors, a communication protocol and a collaborative scheme. The main functions of 

the components are as follows: 

(a) Computer: edit KBs using linguistic labels (variables, fuzzy sets and rules), access the sensor 

network, communicate with sensors, monitor sensor state, etc.  

(b) Sensor network: allow sensors and computer to communicate. The network consists of an 

access point and a set of sensor nodes with sensing capability, data processing and 

communicating capabilities. 

(c) FRBS adapted to the sensors: infer the output by means of an inference engine and knowledge 

about the system.  

(d) Application protocol: allow the elements of the system to communicate data and knowledge. 
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(e) Collaborative scheme: share and fuse data and knowledge between sensors and computer. 

 

3.2. Fuzzy Rule-Based System Adapted to a Sensor Node 

 

The knowledge-based sensor is based on the structure of the Mandani FRBS, which consists of the 

following components [3]: 

(a) A KB, which stores knowledge about the problem. The KB is composed of a Data Base (DB), 

which contains the linguistic term sets considered in the linguistic rules, and a fuzzy control 

Rule Base (RB), which comprises the collection of linguistic rules representing expert 

knowledge in the following form: 

IF X1 is A1 and … and Xn is An    THEN Y is B, 

where Xi are input variables, Ai are fuzzy sets related to the input variables, Y is the output 

variable and B is a fuzzy set related to the output variable.  

(b) A fuzzy inference engine is composed of the following: 

• A fuzzification interface, which transfers the values of the input variables into fuzzy 

information, assigning grades of membership to each fuzzy set defined for that variable; 

• An inference system, which infers fuzzy actions by means of fuzzy implications and the 

rules of inference of fuzzy logic;  

• A defuzzification interface, which yields a non-fuzzy control action from an inferred fuzzy 

control action. This interface aggregates the information provided by the output fuzzy sets 

to obtain an output value from them.  

Due to sensor constrains, we introduced several modifications to the structure of Mandani FRBS, 

and utilized technologies requiring the least computational burden in order to minimize computational 

cost and battery consumption.  

To reduce the computational burden, we propose the following:  

(a) An approach in which sensor nodes execute a small, but complete, FRBS;  

(b) Only triangular or trapezoidal fuzzy sets be made available, which decreases the number of 

operations executed in the inference process;  

(c) The input and output interfaces only admit linear conversions;  

(d) A First Infer Then Aggregate (FITA) inference approach be used; 

(e) Experts define the knowledge by means of linguistic labels, variables and rules, editing a KB in 

the computer. The KB is then translated into appropriate numerical values that are transmitted 

to the sensors.  

(f) The inference engine work with numerical values of variables, fuzzy sets and rules instead of 

linguistic labels. The translation of linguistic labels is executed in the computer, so the sensor 

nodes do not have to do this task; 

(g) The number of fuzzy sets defined in each variable be small. Although there is not a direct 

relationship between the number of fuzzy sets defined in each variable and the inference time, 

an excessive number of fuzzy sets would involve a large number of rules, and as a 

consequence, the inference time would increase.  
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To reduce the battery consumption and prolong the battery lifetime, we propose that:  

(a) Sensors operate in a work cycle in which they first infer the output, and then are configured in a 

sleep mode;  

(b) Sensors only transmit remarkable outputs to their neighbors (e.g., when an inferred alert 

surpasses a threshold).      

Figure 1 shows the structure of a FRBS sensor that consists of a communication module, input and 

output interfaces with scaling functions, fuzzification and defuzzification interfaces, a KB and an 

adapted inference engine. 

The communication module mainly allows the sensor to update its KB and communicate the results 

of its inferences to other sensors. Other functions are described in Section 3.3. 

The input and output interfaces obtain and translate crisp values into the interval [0,1] using a linear 

conversion, and the fuzzification and defuzzification interfaces establish the correspondence between 

the normalized values of the variables and fuzzy sets defined on the universe of discourse. 

Figure 1. Structure of the knowledge-based sensor. 

 

 

The KB, composed of data and rule bases, includes variable definitions, fuzzy sets defined for each 

variable and rules. After the variables are defined, fuzzy sets are associated to each variable. Each 

fuzzy set is defined by means of only four real numbers, enabling the system to utilize triangular or 

trapezoidal shapes. The KB includes a set of IF- THEN rules in which every rule has an antecedent, 

composed of several propositions, and one consequent. Every antecedent preposition and the 

consequent relate a variable and a fuzzy set defined in the variable. The adapted inference engine 

infers the system output by means of the inputs and the KB, taking into account those modifications 

that have been previously proposed. 

3.3. Application Protocol 

The application protocol is designed to transfer data and KBs between the computer and sensors and 

among sensors using transport layer services. Although KBs are usually edited in the computer, 

transmitted to sensors and executed in sensors, it is also possible for information generated in sensors 

(e.g., values of inferred output) to be sent to other sensors or the computer. 
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In order to reduce battery consumption, we propose that the application protocol work 

incrementally (i.e., the complete KB is first sent from the computer to the sensors, only after which can 

a part of the KB (variables, fuzzy sets, etc.) be updated) and that the protocol allow the sensors to 

operate in a sleep mode.  

The main functions of the communication protocol are the following: 

(a) Transmit elements of a DB to sensors, including the number of variables in the KB, number of 

fuzzy sets in each variable, the fuzzy set associated with each variable, the type of each variable 

(local or remote) and the data range of each crisp value; 

(b) Transmit elements of a RB to sensors, including the number of rules, number of propositions in 

the antecedent as well as the antecedent and consequent themselves; 

(c) Transmit values of input and output variables among sensors or between a sensor and the 

computer.  

(d) Perform operations such as add, update, delete or activate a KB; define the interval between 

inferences and remain in sleep mode or in active mode between inferences. 

(e) Register the state of system variables, so as to register a variable and obtain the value of 

variables in order to represent them in the computer, etc. 

The protocol allows the user to change the knowledge of the system in real time, to incorporate 

different knowledge in different sensors and to verify the evolution of some variables in the system. 

The main aspects of the implementation of the application protocol are the following: 

(a) The computer and every sensor have a communication agent, which has been developed in 

Java; 

(b) The application protocol utilizes transport layer services which are available in WSNs 

(connection-oriented, connectionless and broadcast); 

(c) An Application Protocol Data Unit (APDU) has been defined to support the protocol 

commands and responses between nodes (computer and sensors). In this work, the following 

commands have been utilized: 

• KBs transmission. Based on a connection-oriented service, this command allows the 

computer to send a complete KB to the sensors. 

• Variable values transmission. This command allows the sensor to send the value of an input 

variable or the value of an inference. 

• Work cycle. The sleep mode interval between inferences is sent from the computer to 

sensors using a connection-oriented transport service. 

• Alarm notification. Based on a connectionless broadcast service with only one hop, each 

sensor can notify remarkable variable values to neighbor sensors (e.g., when a variable 

surpasses a threshold). 

3.4. Collaborative Scheme 

In Section 3.2, we described a system in which every sensor has an FRBS including a KB. This 

knowledge, which may differ for each sensor, allows every sensor to infer its local outputs; it may thus 

be considered local knowledge. On the other hand, sensor networks and knowledge-based systems are 
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well poised to take advantage of collaboration and data and knowledge sharing between elements of 

the systems (sensors and computer) to support global objectives. 

Each sensor is able to share its data (e.g., the value of a local variable) and/or knowledge (e.g., a 

fuzzy set) with another sensor, with a group of sensors or with all the elements of the system. 

Therefore, it is conceivable that a sensor may have local and remote data: local data being that 

obtained directly by the sensor by means of its own resources (e.g., measurements of temperature) and 

remote data being that obtained by others sensors and subsequently transmitted to the given sensor. 

The same occurs sharing scenario with knowledge; that is, sensor may have local and remote 

knowledge. Local knowledge allows the sensor to infer its local decision, while remote knowledge 

complements the local knowledge to promote a global objective. 

This section presents a scheme for collaboration among knowledge-based sensors to obtain a shared 

objective. The subsections that follow reveal what information may be shared and discuss different 

schemes to incorporate remote data and knowledge. 

3.4.1. Information to be Shared by Sensors 

Every knowledge-based sensor has a set of input variables, a KB and an output variable whose 

value is obtained by its inference engine. Due to the structure of the network and the application 

protocol, it is possible for sensors to share the following information with the rest of the system in 

order to obtain a global objective: shared data may include the values of input variables, the value of 

the output variable, fuzzy sets, variable definitions and rules. 

Sensors may share the value of variables, which are locally obtained, with other sensors by sending 

it through the network. Therefore, the values of the input variables for a sensor node may be locally or 

remotely obtained and represent the values of the antecedent variables of its knowledge. 

Figure 2 a shows a sensor sharing an input variable. In this scenario a sensor obtains the value of a 

variable (e.g., the sensor measures the temperature) and transmits this value to other sensors, which 

can utilize it to infer their output.      

Figure 2. Sharing input and output variables between two sensors. 

 

 

Another possibility is to share the value of an output variable of a sensor (Figure 2b). This value is 
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case, the shared value takes into account the transmitting sensor’s knowledge; thus, it is a way to  

share knowledge. 

EAs could be applied to sensors’ local knowledge. The constrained resources of the sensors restrict 

application of the EA to tuning the points of fuzzy sets or scale functions in order to improve their 

behavior. Therefore, elements that undergo tuning, such as fuzzy sets and scaling functions, could be 

shared with the rest of the sensors.  

3.4.2. Integration of Data and Knowledge 

In the proposed collaborative knowledge-based WSN, each sensor can base its inferences on local 

or remote data and knowledge. This section proposes different ways to integrate local and  

remote information. 

Local data are the values of variables that are locally obtained by the sensor, whereas remote data 

are the values of variables that are obtained or inferred by another sensor. Similarly, local knowledge 

refers to the KB (variables, fuzzy sets and rules) that is locally utilized by a sensor in order to infer the 

value of an output variable, while remote knowledge refers to knowledge that may utilize local and 

remote variables in order to promote a global objective.  

The sensor network and the application protocol allow the sharing of data and knowledge, so, if 

remote information is available, each sensor can base its inferences on local information (data and 

knowledge) and remote information (data and knowledge). However, if remote information is not 

available, each sensor can only base its inferences on its local information. 

The following methods are suggested to fuse local and remote information (data and knowledge): 

(a) Utilize only a KB, which incorporates local and remote information. Remote variables and 

rules are added to the KB so that the rules are able to use external data in their inferences. The 

inference engine will then take into account those remote rules if remote information is 

available.  

(b) Incorporate a complete collaborative KB (Figure 3). In this method the sensor utilizes a KB 

with local information (data and knowledge) and another complete KB with collaborative 

information (remote data and knowledge). In this case, the local output and remote variables 

represent inputs to a second FRBS. After inferring the output based on the local knowledge 

base, the inference engine will take into account the collaborative KB, which makes available 

all the external information. This method presents additional advantages: the number of rules is 

smaller and the rules are more interpretable because of the two KBs.       

(c) Finally, the third option is to design a hierarchical system (using several KBs) in which local 

and remote data and KBs can be mixed. 

A common feature of all three methods is the use of a FRBS to fuse local and remote information; 

this feature is very effective in an environment with uncertainty and imprecision.  
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Figure 3. A sensor with local and collaborative knowledge. 

 

4. Experimental Results  

This section presents the results of several experiments carried out to measure the performance of 

the knowledge-based sensor and the application protocol. Subsequently, an evaluation of the 

collaborative scheme is presented in order to show the effects of collaborative FRBS sensors on a 

modeling system for outbreaks of olive tree pests. The collaborative knowledge-based approach 

proposed here follows from our previous works [29,30], in which we presented the performance of a 

preliminary FRBS sensor node without the collaborative scheme. 

4.1. Knowledge-Based Sensor Performance  

The knowledge-based sensor has been designed and developed for Sun SPOTs [31] sensors, which 

have the following main characteristics: they can execute Java programs (J2ME), 180 MHz, 32-bit 

ARM920T CPU, 512 K RAM, 4M Flash, 3.7 V 720 mAh battery, three modes (awake: draw  

current 86 mA; shallow sleep: 24 mA; deep sleep: 32 µA), integrated sensors (3-axis accelerometer, 

temperature, light), several inputs and outputs (analog and digital), and a IEEE 802.15.4 compliant 

radio to perform wireless communication. Routing, meshing and fragmentation with the Sun SPOT 

stack are accomplished through the LowPAN protocol. Multi-hop connectivity is accomplished by 

AODV, a sophisticated routing protocol for ad hoc networks. In the transport layer, the protocols that 

allow Sun SPOT applications to access the network are the RadioGram protocol and the  

RadioStream protocol. 

In order to evaluate the performance of the knowledge-based sensor, we utilized a testbed 

comprising a WSN with 10 Sun SPOTs, a base station (access point) and a personal computer 

connected to the Internet. Several experiments were conducted, including the use of a preliminary 

FRBS adapted to the Sun SPOT sensor [30] to study the relationship between the number of inferences 
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per second and the number of rules in the KB, as well as the relationship between the number of 

inferences per second and the number of antecedent  propositions per rule.  

In this work, the reaction time of the knowledge-based sensors was measured, taking into account 

that the KB we used has 25 rules, with two propositions in the antecedent per rule (Table 1); it is 

possible to reduce the KB to 14 rules because of redundant knowledge; the collaborative KB  

has 9 rules with two propositions in the antecedent per rule (Table 2). The reaction time of the sensor 

(i.e., the time to execute both KBs) was 5.7 ms, which agrees with previous work and is sufficient for 

the real-world application presented in this work.   

Taking into account the time to execute both KBs (5.7 ms in awake mode, with a current draw  

of 86 mA), the interval between inferences (30 min in deep sleep mode, drawn current = 32 µA) and 

the battery capacity (720 mAh), we estimate that the lifetime of the batteries in this system to be  

around 608 days. 

In addition, we carried out a battery consumption test on the Sun SPOT sensors of the testbed. First, 

the battery was completely charged. Next, the sensor followed a cycle composed of an inference of 

both KBs and an interval of 30 s between inferences in deep sleep mode. The capacity of the sensor 

battery was transmitted to the computer every 30 min for post analysis. The test ended when the 

battery was completely discharged. In these conditions, the average power consumption  

was 0.0218 mAh/cycle; the estimated lifetime of the battery is around 688 days, taking into account a 

cycle every 30 min.  

4.2. Application Protocol Performance  

In the previous section, we showed that the sensors are able to execute the FRBSs that have been 

adapted to them. In this section, the aim is to measure the main characteristics of the distribution of the 

KB among the sensors of a WSN by means of the application protocol described in Section 3.3. 

This application protocol has been implemented in the 2.33 release of the network simulator  

ns2 [32] and configures the network and nodes with the same characteristics as the Sun SPOT network 

and nodes to measure the delay and throughput of the KB distribution.  

The WSN was configured with 25 sensors uniformly scattered in a 100 m by 100 m area, with the 

PAN coordinator located in the center. The size of the KB was 340 Bytes. The nodes were configured 

using the transport protocol RadioStream (simulated using TCP), the routing protocol for the ad hoc 

network AODV, a link and MAC layer IEEE 802.15.4 (2.4 GHz), a transmit power of 0 dBm, a 

receiver threshold of –77 dBm, and a receiver sensitivity –90 dBm. During the simulation, the PAN 

coordinator sent the KB to the sensors sequentially. 

In these conditions, the time to distribute the KB to all sensors was 33 s, and the throughput 

remained around 15 KB/s (120 Kbps) during the simulation. This distribution time is sufficient for the 

real-world application presented in this work; sensors can only transmit the results of their own 

inferences to neighboring sensors after the initial distribution.  

4.3. Evaluation of the Collaborative Scheme 

In order to show the effects of the collaborative scheme on each sensor, a model system for olive 

tree pests is given as a real-world application of the collaborative knowledge-based WSN. We consider 



Sensors 2010, 10                            

 

 

6056

this application as a case of FRBS modeling instead of FRBS control since there is no real time action 

that affects the input variables. However, it would be possible to evaluate the suitability of insecticide 

treatments on the trees. 

The development of the olive tree fly is strongly related to the temperature and humidity conditions 

of the environment. In real world, it is possible to observe isolated or grouped areas with high 

concentrations of flies; experimental observations have shown that the concentration of these areas 

increases the risk of degradation of olive trees. For this reason, the risk of the appearance of a plague in 

an area will increase if the risk of plague also increases in a proximal area. 

 In the proposed system, each sensor collaborates with neighboring nodes to produce a more 

accurate and reliable alert status. Each node has an embedded cooperative algorithm (a collaborative 

FRBS) that uses local observations to infer its local output and the perceptions from its neighbor’s alert 

to infer the alert status of its area. 

To facilitate the model, a collaborative system composed of two FRBSs was embedded in each 

sensor (Figure 4). The first FRBS has two inputs: the local humidity and temperature; and one output: 

the local alert status.  The second takes this local alert status in addition to the neighbors’ alert statuses 

as inputs, and produces the alert status as output. If the alert status produced surpasses a certain 

threshold (e.g., 0.75), indicating a risk of pest appearance, the suitability of insecticide treatments 

applications should be evaluated. 

Figure 4. Inner structure of collaborative knowledge-based system. 

 

 

 

The KB that generates the local alert status (local knowledge) is composed of two input variables 

(temperature and humidity), one output fuzzy variable (local alert status), membership functions 

(Figure 5) and the RB (Table 1). 
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Figure 5. Membership functions of the inputs and output variable fuzzy sets (local knowledge). 

 

Table 1. Base of rules used in the local FRBS.  

Alert Temperature 

Humidity 

 VL L M H VH 

VL VL VL L M VL 

L VL L M M VL 

M VL M H H L 

H VL H VH H L 

VH VL H VH VH L 

VL: Very Low; L: Low; M: Medium; H: High; VH: Very High 

 
The KB that generates the alert status (collaborative knowledge) is composed of two input variables 

(the local and neighbor’s alert status), one output fuzzy variable (alert status), membership functions 

(Figure 6) and the rule base (Table 2). 

Figure 6. Membership functions of the inputs and output variables fuzzy sets 

(collaborative knowledge). 
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Table 2. Base of rules used in collaborative knowledge.   

Global Alert Neighbor Alerts 

Local Alert 

 L M H 

L VL L M 

M L M H 

H M H VH 

VL: Very Low; L: Low; M: Medium; H: High; VH: Very High 

 

The collaborative scheme was developed in Java (J2ME) for embedding in a Sun SPOT sensor. 

However, since the objective of this experiment is to evaluate the effects of the collaborative scheme 

on the sensor model surface, a wide set of system states, defined by the values of the temperature, 

humidity and neighbor alert status, is needed to generate the surfaces. Therefore, this experiment was 

carried out on a computer (with the same collaborative scheme designed for the sensors) in order to 

facilitate manipulation of the values of the variables. 

In order to test the viability of the proposed approach, a comparative analysis of the sensor behavior 

is shown for four different situations: sensor nodes with a local knowledge only-based system  

(Figure 7a), sensor nodes with a collaborative knowledge-based system with low (Figure 7b), medium 

(Figure 7c) and high (Figure 7d) values of the number of neighbor sensors with an alert status  

above 0.75. 

Figure 7. Input-output model surface for a single knowledge-based (a) and collaborative 

knowledge-based system, with a low (b), medium (c) and high (d) value of the number of 

neighbor sensors with an alert status above 0.75. 

 

 

(a) (b) 
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Figure 7. Cont. 

 

(c) 
 

(d) 

 

Note the following observations about the control surfaces: 

(a) Figure 7a presents a high risk/peak value and decreases quickly, so it surpasses the threshold 

level only in areas of low humidity and temperature. 

(b) Figure 7b presents a low risk/peak value, and does not surpass the threshold level. 

(c) Figure 7c presents a medium risk/peak value and decreases quickly, so it surpasses the 

threshold level only in an area of very low humidity and temperature. 

(d) Figure 7d presents a high risk/peak value and decreases slowly, so it surpasses the threshold 

level in a large area of humidity and temperature. 

As can be observed in Figures 7 b-d, the collaborative FRBS sensor adapts its behavior (i.e., its 

model surface) depending on the number of neighbors that have detected the possibility of pest 

appearance, increasing or decreasing its own alert status depending on neighbor’s alert status. 

5. Conclusions  

This work has presented an effective approach to collaboration in knowledge-based WSNs in which 

sensors can execute a small FRBS, share variables, data and knowledge, and collaborate in order to 

achieve a global objective by fusing local and remote information. In addition, a real-world application 

of the collaborative FRBS scheme has been shown in order to model outbreaks of pests among  

olive trees. 

The results show that the behavior of a sensor may be modified by the knowledge of its neighbor 

sensors. Such sensors take into account not only their own knowledge but also the inferences and 

knowledge of neighbor sensors in order to obtain an output that is based on a wide set of measures. In 

this real-world application, the alarm status of individual sensors is modified by a knowledge-based 

system that incorporates the local alarm status and the alarm status of neighbor sensors.  

Moreover, the experiments have shown that the reaction time of the knowledge-based sensor is 

more than sufficient for this real-world application. Additionally, the throughput and delay obtained in 

the network indicate that it is possible to transmit KBs (from the computer to each sensor) in a short 
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time, taking into account that the complete KB is transmitted once before sensors operate. Afterwards, 

only the values of significant variables are transmitted.  

These results suggest that the collaborative scheme for FRBS-embedded sensors produces a more 

accurate and reliable alert status than a single knowledge-based system; moreover, this scheme can be 

utilized in a wide range of applications in which there is expert knowledge coupled with uncertainty 

and imprecision. 
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