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Abstract: This paper focuses on online scene learning astdcéanmera relocalisation which
are two key problems currently limiting the perf@amece of wide area augmented reality
systems. Firstly, we propose to use adaptive ranttees to deal with the online scene
learning problem. The algorithm can provide moreuaate recognition rates than traditional
methods, especially with large scale workspacesor@Hy, we use the enhanced PROSAC
algorithm to obtain a fast camera relocalisationthmé. Compared with traditional
algorithms, our method can significantly reduce tmmputation complexity, which
facilitates to a large degree the process of ontaenera relocalisation. Finally, we
implement our algorithms in a multithreaded marineusing a parallel-computing scheme.
Camera tracking, scene mapping, scene learningedadalisation are separated into four
threads by using multi-CPU hardware architecturéhil®Vproviding real-time tracking
performance, the resulting system also possessesalbility to track multiple maps
simultaneously. Some experiments have been cortiuctedemonstrate the validity of
our methods.
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1. Introduction

The objective of augmented reality (AR) is to adidual objects to real video sequences, allowing
computer-generated imagery to be overlaid on theovin such a manner as to appear part of the
viewed 3D scene [1,2]. Applications include compuatieled surgery, robot teleoperation, and special
effects for the film and broadcast industries. Rigtion between real and synthetic worlds is dne o
the major technological issues in order to creake gystems. As the user moves his/her head or
viewpoint, the virtual objects must be properlygaéd with the objects in the real world, or the
coexistence of the virtual world and the real wavil be compromised.

In recent years, registration methods for wide amerepared environments have attracted much
attention [3-6]. These methods have several adgaataompared with registration methods which
depend on prior knowledge of the user’s environm&ot example, tracking is not limited to the
prepared scenes, thus, users can walk anywhere waey and superimpose virtual objects
dynamically, according to the requirements of the &pplications.

The authors have previously proposed a wide amgatration framework based on multiple maps
and a natural features tracking technique [6]. Thisthod partitions the whole scene into some
geometry independent maps according to the usegiginements, and all the built maps are integrated
into a single tracking system by using a fast imegening and recognition engine. The result is a
system that copes with several hundreds of mapamae-rate, with an agility and scalability rivadin
that of single map based systems. While promisingas some limitations. For example, only two
keyframes are used to build the map of each tgget. The user’s line of sight is limited to theld
covered by these two images. Thus, user’'s scopetwities has been greatly restricted.

We can simply use the online structure from motiechnique proposed in [4,7] to improve the
tracking performance of our previous method. Whacking a map, new keyframes can be added to
the system dynamically and newly observed featoaesbe triangulated and optimized subsequently.
These reconstructed 3D features can then be addbd tracked map to improve the tracking agility.

While promising, there are some difficulties we mogpe with when using online structure from
motion technique to improve the performance of previous method. First, as described in our
previous work, an effective scene organizing merdmans needed to enable the system the ability to
learn scenes incrementally and recognize targatescén real-time. In our previous research, we
proposed to solve the above problem by using ranttees. However, we have found that the
performance of random trees deteriorates markely the increase of the scale of each map and the
number of local scenes. This is particularly nalde in our case since several dozens of keyframes
are needed for each map to provide flexible tragkiarformance. In this research, we propose to use
adaptive method to generate classification treeamtycally and use Graphics Processing Units (GPU)
to accelerate the recognition process. The resudt system whose scalability is significantly bette
than traditional methods while providing reasonabkognition rates.

Secondly, a fast natural features matching tecleniggether with an effective outliers removing
strategy are needed to enable our system with ltliéyao automatically relocalize from tracking
failures. While fast natural features matching andliers removing are not pivotal problems of our
previous research in which each map contains at moxireds of natural features, this is not the cas
in our current system since each map may cont@iossands of mapped 3D features. In this case,
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traditional natural features matching and outlrers®oving strategies may be major obstacles to ensur
the real-time performance. In this paper, we uselom ferns to generate descriptors of natural
features. These descriptors are fast both to camgd to match, while providing the discriminative
power that is comparable to that of state-of-therathods. We also propose an enhanced PROSAC
algorithm to accelerate the process of outliersongng. The algorithm can significantly reduce the
computation complexity compared with traditionajaithms, which facilitates the process of online
camera relocalisation to a large degree.

Thirdly, in our previous research, real-time periance could be obtained by implementing all the
computation steps in a single thread. However,sihgle thread work mode is not suitable for the
research of this paper since both online mappirdy stene learning are time-consuming steps. To
obtain a system with real-time tracking performamnee implement our algorithms in a multithreaded
manner by using a parallel-computing scheme. Carmacking, scene mapping, scene learning and
relocalisation are separated into four threads bwygu multi-CPU hardware architecture. While
providing real-time tracking performance, the resyktem also possesses the ability to track meltip
maps simultaneously.

The rest of this paper is organized as follows:tiSe is the related work and our contributions.
Section 3 presents adaptive random trees base@ $eaming and recognition methods. Section 4
deals with the problems of natural features matgl@ind camera relocalisation. Section 5 gives the
online mapping and camera tracking method. Sediiareals with our parallel-computing scheme
based registration method. Section 7 shows someriexgntal results. Section 8 discusses some
limitations. Section 9 is a conclusion.

2. Related Work and Our Contributions

There exists some related research on scene lganthrecognition problems for AR applications.
Lee et al. [8] proposed to solve the online scene recognipooblem by matching SIFT features
between input frame and previously stored featuliesctly. The scene which has the maximum
number of matched features among all scenes isnegtuas the recognition result if the number of
matched features exceeds a certain threshold. Wh@lenethod is feasible for a system which contains
several maps and each has hundreds of featuresndt fast and accurate enough for our research,
since our system may contain tens or hundreds psmach of which holds thousands of mapped 3D
features. Kleiret al. [4,9] proposed to facilitate the scene recognifioocesses by using keyframes.
Each keyframe is represented by a descriptor whilthbe compared to the input frame’s descriptor by
using NCC to find the closest match to assistamtstene recognition processes. Experimental results
indicate that the methods can deal with hundredegframes in real-time while spending virtually no
time for the learning process. However, this is eobugh to meet the requirement of our research
since our system may contain thousands or evendemisousands of keyframes. In our previous
research [6], we proposed to deal with scene legrproblem by using random trees. Each scene is
represented by a predefined numbers of local patsheounding the SIFT features [10] detected from
the two keyframes. These local patches will be usettain the random trees built in advance for
online scene recognition use. While promising, vaehfound that the recognition rates deteriorate
obviously with the increase of the scale of eaclp svad the number of local scenes. In this paper, we
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adjust the classification trees dynamically to ioy& recognition rates and use GPU to accelerate the
recognition process. Compared with our previouskwone method of this paper provides more
accurate recognition rates together with the sdaiabhat significantly better than state-of-thd-a
methods.

Some research has been carried out on the fasr@agiecalisation problem. Williamat al. [11]
designed a fast method to relocalize a monoculsmayi SLAM system after tracking failure. The
monocular SLAM system stores the 3D locations slual landmarks, together with a local image
patch. When the system gets lost, candidate matuieesbtained using correlation, and then the pose
of the camera is solved via an efficient implemgata of RANSAC using a three-point-pose
algorithm. Williamset al.[12] also proposed to use a randomized lists dlassnstead of correlation
in their latest research to improve matching penémmce. Some other similar methods can be found
in [13,14]. While feasible, the scalabilities oketlabove methods are not satisfying since prominent
feature point descriptors allow reliable real-timatching but at a computational cost that limits th
number of points (less than one hundred) that @hdndled on PCs. In this research, we design a
scalable camera relocalisation method by usingsa dad compacted natural features description
method. We also propose an enhanced PROSAC algotith accelerate the process of outliers
removing. Compared with traditional algorithms, owethod can significantly reduce the computation
complexity, which enables our system the abilitydlocalize the camera from tracking failures ripid
even when the recognized map contains thousandsah#gatures.

There are some researchers who propose to usdepaomhputing schemes to realize real-time
wide area registration for AR applications. Kleihal.[4] proposed the separation of camera tracking
and scene reconstruction into two individual tagiycessed in parallel threads on a dual-core
computer: one thread deals with the task of ropustmera pose tracking, while the other produces a
3D map of point features from previously observeiddes frames. This allows the use of
computationally expensive bundle adjustment optatndn technique not usually associated with real-
time operation. In [8] and [15], researchers alsagppse to speed up natural features (SIFT) detgctin
and matching processes by using parallel-compwoihgmes to realize real-time camera tracking for
registration use. In this paper, we demonstratettieatasks of scene learning and camera relotialisa
can also be separated as individual threads tbefummprove tracking performance. Camera tracking,
scene mapping, scene learning and relocalisatiersplit into four threads in our system by using
multi-CPU hardware architecture. While providingalréme registration performance, the result
system also possesses the ability to track multi@ps simultaneously.

Compared to the authors’ previous work [6], thenm@ontributions of the research reported in this
paper can be summarized as follows:

(1) We propose to use adaptive random trees towiigalthe online scene learning problem. The
result is a system whose scalability is signifibariietter than traditional methods, while
providing reasonable recognition rates.

(2) We design a scalable camera relocalisation odethy using a fast and compacted natural
features description method. Moreover, the procéssutliers removing is accelerated by an
enhanced PROSAC algorithm that can reduce the catigu complexity significantly. The
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resulting system has the ability to recover froracking failures rapidly, even when the
recognized map contains thousands of natural festur

(3) We also employ a parallel-computing scheme withti-CPU hardware architecture to improve
tracking performance. We split camera tracking, necanapping, scene learning and
relocalisation into four individual tasks, processe four parallel threads on a 4-core computer.
While providing real-time tracking performance, ttesult system also possesses the ability to
track multiple maps simultaneously.

Subsequent sections describe in detail the methset,upresent results and evaluate the
method’s performance.

3. Scene Learning and Recognition Using Adaptive Raom Trees

This section gives the adaptive random trees bsseake learning algorithm. We first briefly review
the method used in our previous work, and then tiieedetailed description of the ameliorations we
made to improve the performance of our previoushoubt

3.1. The Implementation of Our Previous Method

At the center of our previous work is a classifleconstructed by a set of randomized trees. Each
internal node of each tree contains a test as eugl) that splits the space of data to be cleeskif

it (f(a)3= f(b)) go toleftchild
otherwise go to righ child

Qi = (1)
Each tesiQ simply compares the patch’s gray scale valfeat two pixel locationg andb. The
random trees are built in advance by randomly selgcthe node tests.e., the a and by in
Equation (1).
The leaf nodes of each tree store the number ohesbpatches of each class as:

N (A(f)=c)=n} (2)

wherec is a class labeh!is the number of patches of clags the training set that reach the leaf
nodeL.

To train the randomized trees when a new Maps added into the system, we firstly get a certain
number of local patched{, fi», ... , fin} from the keyframes used to reconstruct the mapeseé
patches are dropped down each tree according tarthey tests as Equation (1), and then Equatipn (2
is used to deduce the class patch numbers which will be stored in the reachmdes for
recognition use.

In the recognition stage, a scene is identifiedltmpping the detected patchds, {, ... , fn} of the
input frame down each tree and considering the efithe patch numbers (subject to a threshold)
stored in the leaf nodes they reach as:

" RiryA(f)=0) 3)

clasg{ f;, f,,....fy}) =argmax
c =1 t=1

WhereIQL(t,fi)(A(fi) =c)is the number corresponding to clas®red in the leak(t, f;) of treet reached
by patchf;, andt is a tree label.
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3.2. Adaptive Random Trees

While feasible, there are some problems we musketd with when we use the above method to
fulfill the scene learning and recognition tasksthis paper. Firstly, we use the sum of the patch
numbers as Equation (3) as the recognition metlbah is based on the precondition that each scene
contains only two keyframes and the patch numbedestical for each class. However, the above
precondition will not be guaranteed in this reskarsince different maps may contain different
numbers of keyframes which results in the patchlmemnfor different classes not being identical.

Secondly, the recognition rates of our previoushoetdeteriorate obviously with the increase of the
scale of each map and the number of local scert@s.i3 particularly noticeable in our case since
several dozens of keyframes are needed for eachonapvide flexible tracking performance.

Thirdly, the scalability is not satisfied since tleeognition time grows sharply with the increage o
the number of classes.

To solve the first problem, we use posterior praiiags of the original definition of randomized
trees [16] as Equation (4) instead of patch numhkersmeasure the similarity between two
local patches:

. L
PL(A(f)=c>=”°Sﬂ ©)
L

C
where n; is the total patch number of classthat is used in the trainings, = nl/n, is a
c=1

normalization term that enforcesc P (A(f)=c)=1.
The recognition method used in this paper can tiergiven by considering the average of the
posterior probabilities as:

T

tzllsL(t,fi)(A( fi)=c) (5)

clas¢{ f;, f5,..., f,\,}):argmaxi )
c N i=1

whereﬁL(t,fi)(A(fi) =c)is the posterior probability corresponding to claseduced from the data stored
in the leafL(t, f,)of treet reached by patch

For the second problem, there are mainly two reagdnch cause the deterioration of our previous
method’s recognition rates. The first reason i®m@sequence of the training data. Since we represent
local patches by grayscale images, the similariiyvben different patches will become increasingly
evident with the increase in the number of locdtipas. The second reason is from the method used to
build the random trees. Since the random testsitefnal nodes are generated in advance and the
structures of the built trees can not be chandeal,capability to split the space of data can not be
adjusted with the change of the training data.

We solve the above two problems as follows:

Firstly, instead of grayscale values, we use HSMesto describe local patches. Compared with
grayscale values, HSV gives higher dimensionalufeatectors that allow the algorithm to build a
classifier able to distinguish between large nummlmdrclasses. Moreover, the HSV representation is
more robust to illumination changes than the RGBrcepace because it tends to largely limit the
effects of the most important, practically occugrihumination changes to just one of the threedsan
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Secondly, we make use of the adaptive method penpios[16] to generate node tests and adjust the
structures of the random trees dynamically accgrtbrthe input data. We define two thresholds which
will be used in our method. The first thresholdNismyax which denotes the maximum number of local
patches that each leaf node holds. The other thigeshDepyax Which denotes the maximum depth of
each tree. With the above two thresholds definedgiwe the adaptive random trees generating method
as follows: when training a local patch, we dingcitop it down the random tree by using the random
tests as Equation (1) that already exist in therim@l nodes. If the total patch number in the redch
leaf node exceeds the predefined threshlldh,ax, We simply generate a new random test and assign i
to the reached leaf node. The local patches imghehed leaf node can then be split into the two ne
generated leaf nodes (right and left child of th&ched leaf node) according to the generatedTiest.
above leaf node splitting process will be repedtmdeach new generated node until any of the
following cases is satisfied:

(1) The number of patches in the leaf is smallanttihe predefined threshd\limyax

(2) The tree reaches the given deptpnax

(3) All patches are constant in the leaf, which nsethat new partitions can make no changes in
the leaf node.

An experiment is carried out on UKBench image dasab[17] to prove the validity of the above
two ameliorations. There are 2,550 classes in UKBémage database, and each class contains four
images corresponding to the same scene. The reiogrates are computed as follows:

(Number of correct images in first 4 retrieved ges /40,800) x 100%

When using adaptive random trees, we set the tweshioldsNumy.x and Depnax to 10 and 30,
respectively. When using our previous method, welsedepth of each tree to 15. Ten trees are used
in each method and the recognition rates are showdgure 1. We can see that the recognition rates
are improved obviously with the use of adaptive hadtand HSV vectors. Moreover, when all the
10,200 images have been trained, the average défitle adaptive random trees is 13.5 which is still
less than the depth of our previous method. Theselts prove that while not increase the memory
consumption, the adaptive method can provide moearate recognition rate than traditional approach
especially with a large number of classes.

For the third problem, we use GPU to acceleratergcegnition process to get a more scalable
system. We do not store the built adaptive randestin GPU since we cannot ensure that GPU has
enough memory to store these trees, whose memane spill change dynamically according to the
number of scenes. Instead, we execute node test$bhfor all the input patches and transfer all the
reached leaf nodes to GPU. The posterior probegdsilas Equation (4) can then be computed by using
CUDA directly. The implementation details of CUDAeaout of the scope of this paper, we refer the
reader to consult the related literatures [18-B@Jadvanced details. Figure 2 gives the resulfgave
the GPU based recognition method’s effectivenes®dlucing recognition time. Figure 2a gives the
recognition time of a single class with differentnmber of patches when using CPU. Figure 2b is the
results when using GPU (NVIDIA GeForce GTX260). \6&n see that the recognition time of the
GPU based method does not increase with patch nuamgeclass number markedly and is much less
than the time needed in CPU based method. Thesdsre®nvincingly prove that the GPU based
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recognition method makes the recognition processedaough for online implementation even with a
large number of scenes (classes).

Figure 1. Comparison of recognition rates of different meiho
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3.3. Adaptive Random Trees Based Scene Learnineoaignition

With the above improvements completed, we now miteser adaptive random trees based scene
learning and recognition algorithms. When a newfieayge belongs to scene (clas$$ added into the
system, we firstly get a set of local patchgs, §i 2, ... , fin} surrounding the detected natural features.
All the HSV vectors converted from these local pagare dropped down each tree according to the
binary tests as Equation (1) that already exigheinternal nodes. In this process, if the tottkch
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number in a reached leaf node exceeds the predetimesholdNumy., we simply use the method
discussed in Section 3.2 to split the reached raodeadjust the corresponding random tree. With all
the patches trained, we use Equation (2) to echeeelass’s patch numbers which will be stored in
the reached nodes for online recognition use.

In recognition stage, a scene is identified by gnog the HSV vectors of the detected patches
{f1,f2,....fN} In the input frame down each tree. The postepimbability of each class in each reached
node is then computed by using Equation (4) and GPe recognition result is deduced by
considering the average of the posterior probasligsubject to a threshold) as Equation (5).

4. Natural Features Matching and Camera Relocalis@dn

This section firstly introduces the natural feasudgescribing and matching methods used in our
research, after which we mainly discuss the enlthREEOSAC method that will be used to realize fast
camera relocalisation.

4.1. Natural Features Describing and Matching

Recently, a lot of studies [21-24] have been cdroat by researchers to design efficient feature
describing methods. Among these studies, we hawedfthe descriptors generated by the method of
Calonder [21-22] especially suitable for our pugbgcause these descriptors are fast both to cemput
and to match, while providing the discriminativewgo that is comparable to that of state-of-the-art
methods.

The method of Calonder [21-22] relies on the faet if we train a Random Fern (RF) classifier to
recognize a number of feature points extracted faamimage database, all other points can be
characterized in terms of their response to thasdam ferns. Remarkably, a fairly limited number
(500) of base feature points are sufficient.

Descriptors are computed as follows. A set Bfbase feature points are extracted from a
representative image and the RF classifier is ediito recognize them under changes in scale,
perspective, and lighting. It consists of a seNdRandom Fern§;, where the binary test is a simple
comparison of two random locations as Equationn(B patchp around the feature point. At each leaf
of a FernF;, there is a vector of responses for all base poagdmputed from the training set. ligp)
be the vector found by testing the pagpdfirough the= to a leaf node. The total response vectqy isf
taken to be:

r(p)=(m) fi (p) (6)
i=1
The response can be normalized to generate a plibpabthe patchp belonging to any member of
the base set. In practice, whebelongs to some feature points that are similartbase keypoiri, r(p)
contains high values df's position in the vector where all others are eldés zero. Otherwise, it
contains a few relatively large values that coroespto reference feature points that are similar in
appearance and small values elsewhere.
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For any new feature poirktnot in the base set, the respon@@ will have high values at locations
corresponding to base points that are similds, tind low values elsewhere. Thus, the responservect
r(k) can be considered as the descriptor of feature go

To compress the descriptors into smaller vectomydtige [25] also uses a simple PCA scheme to
extract a dense 176-element vedfothat replaces the 500-elemédnbn each leaf node. As a further
reduction, each element of bothand the corresponding descriptt')(p)z(N) f'i(p) are represented
by a single byte instead of a floating-point numkéus the descriptors could be compared more
quickly by using sum of absolute differences (SAZH].

In our work, we use the image of Figure 3 to obtexamples that will be used to train our
descriptor generator. We use a fast corner detéztdetect 500 natural features and then implement
the above descriptor generating method by using NO=binary randomized ferns of depth 10.
Experimental results [25] prove that the descriptgenerated by this configuration provide a
discriminative power that is comparable to U-SURB]|[ which is considered as the most efficient
robust descriptor. Moreover, we also use GPU and&UWo accelerate the SAD based matching
processes to get a method that is many times festartraditional approaches. For example, the time
for generating 300 descriptors by using dense Ranéerns on a 2.66GHz CPU and matching these
descriptors with 5,000 existing descriptors by gs@®PU (NVIDIA GeForce GTX260) accelerated
SAD are 3.7ms and 6.1 ms respectively. In contrdaee U-SURF will take 70 ms
and 350 ms respectively.

Figure 3. The image we used to train the ferns based déscgpnerator.

4.2. PROSAC Based Camera Relocalisation

This section gives the enhanced PROSAC based caelecalisation method. When a scene has been
identified, we use the GPU accelerated SAD andl#seriptors generated with the method introduced
in the Section 4.1 to get the feature corresporeemetween the current frame and the recognized
scene. The proportion of outliers (mismatches) f@aywery high in the above obtained matching set
since each map may contain thousands of 3D feaitui@ms system. In this case, traditional threenpoi
RANSAC may take large numbers of iterations to @yetorrect camera pose, which will be a main
obstacle to fast camera relocalisation.
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The standard RANSAC algorithm [27] treats all thatches equally, which means that the random
samples are selected uniformly from the whole matrket. It can be considered as a black box that
producesN tentative matches.e. the error-prone matches established by compaoica descriptors.

In the research of this paper, we find that thechmeg with higher similarity scores are more likiy
be correct matches than the lower ones. Motivatgdhis property, we use the PROSAC [28]
algorithm in which samples are semi-randomly drdmm a subset of the matches with the highest
similarity scores, and the size of the hypothesisegation set is gradually increased. In fact, PROS

is designed to draw the same samples as standalBR@ algorithm, but only in a different order.
The matches more likely to be inliers are testéor po the others; thereby, the algorithm can arav
termination criterion and stop sampling earlier.

In PROSAC, The set dk potential matches is denoted [dg The matches ilNx are sorted in
increasing order with respect to the SAD valsies

n,n T N :i<j o s(n)£s(n;) (7

A set ofk matches with the lowest SAD values is represeasddl. Then, the initial subset contains
the three top-ranked matches that can be usedripute a candidate camera pose. If all of the sanple
from the current subsét, = (ny,ny,...,Nm) have been tested and a valid camera pose i®uaotf then,
the next subset iBln+1 = (Ny,Ny,...,NmNm+1), and the following samples consist mf.; and the two
matches drawn fronn,, at random.

We further improve the performance of PROSAC byckhrey whether a sample is valid, before
actually computing a camera pose. This would awstimating the camera pose and searching for
inliers, which are by far the two most expensiveragions in PROSAC. The checking methods we
used are as follows:

(1) We reject samples in which two matches comenftbe same mapped feature or the same
detected feature point as these can not produdd camera poses. We also reject samples in which
three matches are collinear or very close to edbkre in the image as these produce poor pose
estimates [12].

(2) We reject sets of matches which can not bergbdetogether by a single keyframe. This check
prevents attempting to calculate a pose using tfeaires from distant parts of the map which are
unlikely all be correct.

(3) We also reject samples which do not meet themgdric constraint defined as follows [29]:
Given a sample of three matchdsA4),(B,B),(C,C) in whichA,B,CandA ,B,C are mapped features
and detected features respectivelyA,B,Ccome from a planar structure in the real worldhalkds that
relative order of point#,B,C and that ofA,B,C should be the same. Formally, using the vectors
f=B- A,j =C- A and their corresponding vectérsB - A,/ =C - A, we express the rule as:

(1) (¢), éfg “
() G)y e,
wherefx is the determinant functiony), and (r)y refer to the coordinates andy of vectorr
respectively, and sgx(is the sign function defined as usual. This cbadiis graphically depicted in
Figure 4. We discard all samples which do not hblkl above geometric constraint since they will
surely lead to an invalid pose under planar strestwhich exist in man made environments widely.

(8)

sgn =sgn
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Figure 4. Geometric constraint that must be met by samplesnweatures come from a
planar structure. (a) Points A, B and C in a kewka (b) Corresponding points,Band
Cin input frame. Point @ust not be located in shaded region, singeBA Cmust have
the same relative order than A, B, C.

B ¢
- @
C
(@) (b)

It is possible that few good samples are thrownyawaconsidering the last two checking methods,
but because of the great speed-up they give, mame reamples are tested. Besides the above
ameliorations, we also set a time limit for theagithm to insure the continuity of the system. ifadid
pose is not obtained by relocalisation thread lgetbe arrival of the next frame. The relocalisation
thread will accept the next frame from trackingetidt and the recognition algorithm will be run again
We do this to ensure that the obtained inliers lmanracked between consecutive frames in tracking
thread for camera pose estimating and registratsen

The completed camera relocalisation method is destias follows:

Step 1: Get feature matches between the recogeate and the current frame by using SAD and
the descriptors generated with the method introdlircéhe Section 4.1.

Step 2: Sort the feature matches in increasingravidh respect to the SAD values.

Step 3: If the remaining time is not enough to yawut a test, go to step 7. Otherwise, generate a
sample by using PROSAC.

Step 4: Check whether the generated sample is bgligsing the four criterions defined above. If
the generated sample is valid, turn to the next €éherwise, go to step 3.

Step 5: Compute the candidate pose by using thergiea sample and three-point algorithm.
Reproject all the 3D features into the current &am using the computed candidate pose.

Step 6: If the number of inliers is smaller thae firedefined threshold, go to step 3. Otherwise,
optimize the candidate pose by minimizing the rggmtion errors and transfer the optimized camera to
the tracking thread for camera tracking use, themto the next step.

Step 7: Wait for the next recognized scene ancatepe above steps.

5. Online Mapping and Camera Tracking

While online mapping and camera tracking are net ficuses of this paper, we still briefly
introduce the methods we used for the sake of ialiég

5.1. Online Mapping

We use the method proposed in our previous workd@erform system initialization. The method
requires users to choose four pairs of correspgngmints manually in the two reference images
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respectively, and then system can calibrate thesgtspautomatically to define the position of the
virtual object. When tracking a map, new keyfraraes added to the system conditionally to allow the
map to grow. Once a new keyframe is added, featomeespondences between this keyframe and its
closest keyframe are established by using epigaarch. With the matches set obtained, we calculate
the 3D positions of the newly observed featuresigipg triangulation, and carry out an optimization
process by using local bundle adjustment [4,7] mc only a subset of cameras and 3D points are
optimized to improve mapping accuracy. The optimi3® features can then be added to the system
for camera tracking use. When local bundle adjustrhas been finished and no new keyframes are
inserted, the global bundle adjustment considedalhgcameras and points is carried out to further
improve accuracy. This process can be interrupteenwnew keyframes is added to the map, so that
newly observed features can be integrated intdrieking system within shortest possible time. We
also stipulate that new keyframe can be added whBn the time since the last keyframe was added
exceeds the predefined interval (200 ms in ourare$@. This is to ensure that the system has enough
time to finish previous local bundle adjustment.

5.2. Camera Tracking

Once a successful relocalisation has been doneekiestep is to track the natural features in the
input video sequence to compute camera posesd@tnagion use. To find a single mapped feature in
the current frame, a fixed-range patch search sodiog the feature’s predicted image location is
carried out. To perform this search, the correspangatch is first warped by using affine transfdon
take account of viewpoint changes between the [mfitst observation and the current camera
position. With the feature matches obtained, wenthee the Tukey biweight estimator [30] and
Levenberg-Marquardt algorithm to eliminate outliarel compute the camera pose simultaneously.

6. Registration Based On Multithreaded Approach

This section introduces our multithread based tegisn method of which the flowchart is shown
in Figure 5. As can be seen from the figure, camexeking, scene mapping, scene learning and
relocalisation are separated into four paralleballs. Tracking thread copes with the tasks of camer
poses estimation and virtual objects augmentaMapping thread receives keyframes to build maps.
Scene learning thread is used to train and adjestandom trees. Relocalisation thread deals \wih t
tasks of scene recognition and camera pose redatain.

We build a randomized ferns based descriptor gésreira advance by using the method discussed
in Section 4.1. This generator will be used inth# experiments described in this paper. When the
system is started, an initialization stage is edrout to generate the random trees to be usexhfiore
scene learning and recognizing. We do this by geimgr ten trees each of which contains only one
random test and two leaf nodes. The two threshdldey.x and Depnax are set to 10 and 30
respectively to enable the trees to expand dyndiyioaonline stage.



Sensor01Q 10 6030

Figure 5. Multithread based registration method.

_ _ _ _ Trackingthread _ _ _ _ ] Relocalisation thread
S
I R i ! I
> Scene recognition |
| | Input video I | i
| P i | I ¥ |
Sleep 30ms | | | Match natural feature | |
| | between current frame
| | and he recoanized sce |
| | I ! I
| | | Camera relocalisation | |
| | | | using modified RANSA¢ | |
Matchnatural fature: ] T I
| between current frame andl . E———————— .
eachtrackedmar | Mapping thread Scene learning thread
| I r————————= === === 1
! = L !
| Compute camera poses fo I | 1 G Y ; |
enerate vector:« o
I each tracked m: I | New keyframe added>>> new features detected fronj |
| T | | | 11 thenewkeyframe |
v Yes
I Superimpose virtual object: I || Match featurebetweer L - * - I
| . 11 | new keyframe andits || | | Train and adjust random |
in each tracked mi closestkeyframe trees
| ] Iy 3 : | |
| I || Triangulat new feature: I |
—————————————— -1 and perform local bundle || | 1
| adijustmer |} —————— = ——
: 5 '
I PerformGlobal bundle :
| adjustmer |
| ]

The tracking thread mainly deals with the probleoiscamera tracking and virtual objects
augmentation. It receives input video from the canand relocalisation results from the relocalsati
thread. For each input frame, it matches naturaiufes between current frame and all the tracked
maps. Then, camera pose for each tracked map ceonfgeuted individually for augmentation purpose
by using the method discussed in Section 5.2.drcdse where no map is tracked, a delay of 30 ms is
taken before the input of the next frame. We ds thi allow the relocalisation thread has adequate
time to relocalize the first map. We also stipuldteat at most three maps can be tracked
simultaneously to ensure the real time performaaair system.

Mapping thread accepts keyframes from the tracktingad and performs optimization processes to
reconstruct new features. Once a new keyframe dedydwe first triangulate the newly observed
features and then perform a local bundle adjustnmewhich only a subset of cameras and 3D points
are considered. With the local bundle adjustmentemyed, the tracked map will be expanded directly
by adding the new 3D features to improve trackigiitg. When local bundle adjustment has been
finished and no new keyframes are inserted, we geform a global bundle adjustment to further
improve accuracy. However, the global bundle adjesit can be interrupted by the arrival of new
keyframes. This is to ensure new 3D features canskd in tracking thread within shortest possible
time. In case of tracking multiple maps, the magpihread will continue to expand the map that
currently being processed until the tracking irs tlmap is cancelled (manually or automatically)her t
map reaches the predetermined number of keyfraviigs.the above process completed, the tracking
thread will turn to expand another tracked map Witas the least number of keyframes. The reason
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why we do this is to give the weakest map the fiyido expand to improve the overall performance of
our system.

Scene learning thread deals with the tasks ofitrgiand adjusting the random trees by using input
keyframes. When a new keyframe is added into tiheestimap, we firstly get the set of local patches
surrounding the new observed features. These [wtghes will be converted into HSV vectors for
training use. We drop each HSV vector down eaadh aiccording to the binary tests that exist in the
internal nodes. If the total patch number in a lhedcleaf node exceeds the predefined threshold
Numnax, We simply use the method discussed in Sectiona3split the reached node. With all the HSV
vectors trained, we make use of Equation (2) topugmthe patch numbers which will be stored in the
reached nodes for online recognition use.

The relocalisation thread receives input framesnfrthe tracking thread and copes with the
problems of scene recognition and camera relot@isa-or each input frame, the HSV vectors of the
detected patches are simply dropped down eaclairee¢he posterior probability of each class in each
reached node is computed by using Equation (4)@RU. The scene that has the greatest average
probabilities (returned by Equation 5) and is notrently being tracked by tracking thread will be
returned for camera relocalisation use. With a egecognized, the next step is to compute thealniti
camera pose for tracking use. We firstly generasture descriptors of the current frame by usirg th
built ferns as discussed in Section 4.1. Then, niaches set between the current frame and the
recognized scene will be established by using Géd¢larated SAD. With the matches set obtained,
the enhanced PROSAC algorithm discussed in Sedtwill be used to compute the initial pose that
will be passed to tracking thread for camera tragkand augmentation use. All the above
computations should be accomplished before theahmof the next frame. A time limit computed from
the frame rate of tracking thread is set for thieagiced PROSAC algorithm. If the correct pose is not
found within this time limit then the algorithm @is up: a new frame is taken from the tracking threa
and the algorithm is run again. We do this to emshat the camera pose will not be too far outatéd
when found.

In our system, the tracking thread runs as the rttai@ad, while the other three threads run as
background processes and provide services to tirethraad. Since these threads share some common
data such as 3D maps and random trees, we musiatomith these data carefully in each thread to
ensure the accuracies of various calculations. é@mple, the random trees will be visited by
relocalisation and learning threads at the same tirequently. The recognition results will be
unreliable if we allow the learning thread to adljiie random trees when these trees are beinghysed
relocalisation thread for scene recognition purp@ge solve this problem by storing the adjusted lea
nodes in the learning thread’s local variables Whidll be used to update the random trees when the
relocalisation thread performs feature matching eahera pose computation operations. Similarly,
the new 3D features will be stored in the mappinmgdd’s local variables, and the map will be updiate
when it is not used by the tracking and relocalsathreads.

7. Experiments

The experiments are performed on a computer wihcare Xeon 2.66 GHz CPU and 4G RAM,
using a Logitech Quick-Cam Pro 9000 video camertn W40 x 480 resolution. Intrinsic camera
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parameters are calibrated in a one-time offlinp s&ng a 6 x 8 checkerboard pattern and the OpenCV
implementation in [31].

7.1. Mapping and Tracking Results

We build a system using our algorithm to prove ubability of the proposed method for wide area
AR applications. The built system contains sevesoar maps and five outdoor maps. The seven
indoor maps are built around our laboratory, theaasf which is about 80 square meters. The five
outdoor maps are built around our campus. Eacheuoafains 21 to 92 keyframes and 1,392 to 4,215
map points, which added up to a total of 725 key&a and 25,251 3D points.

Figures 6a,b,c show the results of camera trac&imty map building processes of the first indoor
map. Figures 6¢c—Figure 6l show the augmentationlteesrhen tracking some of the built maps. The
virtual objects are the 3D words indicating the mamber. Figure 6m and Figure 6n are augmentation
results of view angles and volume changes wherkitrgcthe 7th and 10th maps respectively.
Figure 60 gives the augmentation results in cassoiusion while tracking the 9th map. Figure 6p is
the augmentation result of illumination changes mhecking the 3rd map. The above results
convincingly demonstrate the validity of the propdsonline scene reconstructing and camera
tracking method.

The robustness of the proposed scene recognitidrcamera relocalisation methods to occlusion
and illumination changes is illustrated in FigureFigure 7a and Figure 7b give the relocalisation
results of the 2nd and 3rd maps respectively vlitimination changes. Figure 7c and Figure 7d give
the relocalisation results of the 1st and 12th miappectively in case of occlusions. The aboveltesu
soundly prove the robustness of the proposed semognition and camera relocalisation methods to
occlusion and illumination changes.

Figure 6. Mapping and augmentation results.
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Figure 6. Cont.

(i) @) (k) ()

(m) (n) (0) (p)

Figure 7. Relocalisation results with occlusions and illuation changes.

(@) (b)

(©) (d)

Figure 8. Multiple maps tracking results.

(a) (b) (c)
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Figure 8. Cont.

(d) (€) (f)

The capability of tracking multiple maps simultaosly is illustrated in Figure 8. Figure 8a gives
the tracked features of the 4th (red points), $étigw points) and 6th (green points) maps. Figtlre
and Figure 8c give the augmentation results whacking two and three indoor maps respectively.
Figure 8d gives the tracked features of the 11dld froints) and 12th (green points) maps. Figure 8e
and Figure 8f give the augmentation results whacking these two outdoor maps. The above results
effectively prove the validity of the proposed nattio deal with multiple maps tracking problem.

7.2. Computation Time for Each Thread

Each thread’s computation time of the experimestwised in Section 7.1 is also recorded. Table 1a
gives the computation time of tracking thread wloetly one map is tracked. The total time is
about 60 ms, in which a delay of 10 ms is takegite relocalisation thread enough time to reloealiz
another map. Thus the frame rate is 16.7 fps wraakihg a single map. The time for tracking two
maps is about 65 ms and the corresponding frareegdt5.3 fps. The time for tracking three maps is
about 81 ms and the corresponding frame rate &fp2.

Table 1. Computational timings.

Tracking thread

Video capture 33 ms
Feature projection and match 12 ms
Iterative pose optimization 5ms
Sleep 10 ms

Total 60 ms

(a)

Relocalisation thread
Feature detecting and scene recognitilon 4 ms
Descriptors generating and matching 10 ms
Modified RANSAC 30 ms
Iterative pose optimization 5 ms

Total 49 ms

(b)
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Table 1.Cont.
Mapping thread
Feature detecting and epipolar searching 10 ms
Local bundle adjustment 150 ms
Total 160 ms
(©)
Scene learning thread
Keyframe preparation 1ms
Learning 121 ms
Total 122 ms
(d)

Table 1b gives the computation time of relocal@atihread when no or only one map is tracked.
The time for scene recognition and feature matcisrgpout 14 ms. lterative pose optimization takes
about 5 ms. We give 30 ms to the enhanced PROSAGritm to perform outliers removing
processes. Thus, it takes about 49 ms to relocalizew camera when no or only one map is tracked
(as discussed in Section 7.5, we left 11 ms toescenognition process to deal with scene number
increase). Since the time for tracking two mapabisut 65 ms, we can then alot more time (35 ms) to
the enhanced PROSAC algorithm, thus it takes abéuns to relocalize the third camera in case of
tracking two maps.

Table 1c gives the computation time of the mapghrgad. The maximum time to map the new
features by using local bundle adjustment is a60tms. Since we stipulate that new keyframe can be
added only when the time since the last keyframe adled exceeds the predefined interval 200 ms,
thus new 3D features can always be added to atkitigasystem before the input of the next keyframe.
The time for global bundle adjustment varies withprsize obviously. It takes about 1.7 s for our
largest map which contains 92 keyframes and 4,21 features to converge. A practical limit to insure
good usability for our system is about 100 keyfrarite each single map.

Table 1d gives the computation time of the sceaenlag thread. The maximum time recorded for
learning a keyframe is about 122 ms, which is fagbugh to allow a reasonable rate of
map exploration.

7.3. Performance of the Enhanced PROSAC Algorithm

In this section, we carry out two experiments topare the enhanced PROSAC algorithm with
other methods [27-28,32-36]. To perform the firskp&iment, we first build a map
containing 35 keyframes and 2,102 3D features. A®swnva in Figure 9a, the green points are the
mapped 3D features and the yellow line segmenhdscamera trajectory. We then capture a video
sequence containing 500 frames by moving the camleray the trajectory shown by the red line
segment. This video sequence will be used to testperformances of different outliers removing
methods. For each frame we give 30 ms to each mdthperform outliers removing operation. The
numbers of successful relocalisation times in tH&Xeframes of different methods will be compared.
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The map used in the second experiment is showiguré-9b. It contains 41 keyframes and 3,751 3D
features. The second test video also contains radfes.

Figure 9. Maps and trajectories used to test the performaotethe enhanced
PROSAC algorithm.

(@)

(b)

The recorded numbers of successful relocalisatiores of different methods in these two
experiments are given in Table 2. We can see tieahtimber of successful relocalisation times of our
method is far more than other methods’. These tepubve that the enhanced PROSAC algorithm can
get significant improvements in speed over existimghods, thus is more suitable for use in rea¢tim
applications with a limited time budget.

Table 2. Comparison of successful relocalisation times.

Enhanced
RANSACI[27] | Td,d Test[32] | Preemptive[33] | Bail-out[34] | Wald [35] PROSACI28]
PROSAC
Video 1 54 112 153 185 225 302 417
Video 2 76 151 167 201 247 363 448

7.4. Performance of the Ferns Based Features DeisgyiMethod

We also carry out an experiment to compare the maties of U-SURF descriptors and ferns based
descriptors by using the vidoe sequence from tisedcene of the experiment given in Section 7.&. W
generate the ferns based descriptor by using N birkyy randomized ferns of depth 10 and then use
these descriptors to establish matches betweemdukeled scene and the input sequence images. In
parallel, we compute U-SURF descriptors for theplogyts extracted from the modeled scene and
match each of them against the keypoints in theiesszp images by selecting the one which has the
nearest U-SURF descriptor. We retain the 1,437ngést keypoints in the modeled scene
and 400 keypoints in the sequence images for tlee methods. Then in both cases we use our
modified PROSAC estimation to compute the cameise pwhich is then refined using a non-linear
estimation method using all matches that are catvpawith it. All matches are checked against this
pose and those whose reprojection using this mog&thin 10 pixels are retained as inliers. Thepgra
of Figure 10 depicts the number of correct matatigsined by both methods for all frames in the
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sequence. Despite their simplicity, ferns basedrgasrs match at least as many points as U-SURF
descriptors and often even more.

Figure 10.Comparing of matching performance between U-SURFHams descriptors.

7.5. Comparison with Other Methods

This section compares the results obtained usiegptoposed method with other methods. The
comparisons made are (1) comparison with the asitipoevious method [6] and (2) comparison with
the PTAM (Parallel Tracking and Mapping) [4].

Firstly, we compare our multiple keyframes basedking method with the method based on two
keyframes reported previously by the authors [§Jufes 11 and 12 give the registration resultdef t
above two methods when moving camera along twoerdifft trajectories. Figures l1la,b,c and
Figures 12a,b,c show the results using the two raeys based method. Figures 11d,e,f and
Figures 12d,e,f are the results using our multgeddrames based method. The recorded RMS errors of
these two experiments are shown in Figure 13. Whe s=e that tracking accuracy is improved
obviously by adding new keyframes and mapped featto tracking system dynamically. These results
convincingly prove the effectiveness of using oalmapping to improve tracking accuracy.

Figure 11. Results of the first experiment used to compaeentultiple keyframes based
method with two keyframes based method.

(@) (b) (©)
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Figure 11.Cont.
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Figure 12.Results of the second experiment used to comparmtltiple keyframes based
method with two keyframes based method.

(@) (b) (c)

(d) (€) (f)

Figure 13. Comparison of RMS errors.

(@) (b)

We also carried out an experiment to compare ouhodewith the PTAM [4] by using the video
sequence recorded from the experiment discussedkeation 7.1. We test this sequence using the
publicly accessible code PTAM (http://www.robotsaxxuk/~gk/PTAM/). The input frame rate is set
to 8 fps to give enough time to the local bundlpistinent thread, and the sequence is repeatetidor t
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global bundle adjustment to converge. Even so, ime PTAM can only succeeded in mapping and
tracking about half part of the indoor scenes, faileéd when the keyframes number exceeds 195. In
contrast, as discussed in Section 7.1, our multi@es based method can provide a satisfying trgckin
and mapping experience. These results prove thramnethod is more flexible than PTAM especially
with large scale scenes because to build a single for such a workspace requires computationally
expensive global bundle adjustment which cannatdre online.

7.6. Scalability

There are mainly two factors that limit the scdigbof our method. The first factor is the maximum
keyframe number that each map can accommodatee &hdwing a reasonable rate of exploration.
The second factor is the maximum scene number tihod can deal with while maintaining the
speed of the camera relocalisation.

As discussed in Section 7.2, since the global muadjustment is very time-consuming with large
numbers of keyframes, we stipulate that each mapasts at most 100 keyframes to ensure that the
global bundle adjustment can be completed withiim#&ed time. This enables the tracking thread to
obtain 3D features timely and accurately to ingioed tracking performance.

The maximum scene number that our system can d#alkdepends on the time left to the adaptive
random trees based scene recognition process.sdgsdied in Section 7.2, in order to accomplish the
camera relocalisation before the arrival of thetrfeme, we stipulate that the feature detecting an
scene recognition time should not exceed 14 ms.dRem the time for feature detecting and HSV
vectors preparation (3 ms), the times left to scerwgnition is about 11 ms. According to the
computation time of GPU accelerated scene recagndigorithm given in Figure 2, our system can
manage about 3,800 maps for wide area AR use anddalability is significantly better than our
previous method which can only deals with about B&(ps.

8. Discussion

In this paper, we implement a flexible multithrebdsed registration method for wide area AR
systems by using online scene mapping and leatagimiques. The proposed method can work in any
environment without the need to prepare the saeaevance. Moreover, multiple maps can be tracked
simultaneously in real time which really enhandesusability of the proposed method.

Real-time implementation is an important issuewate area AR systems. The proposed method can
meet real-time performance requirements becausedonsuming steps such as mapping and learning
are separated as background processes to reduceoitiutation complexity of tracking thread.
Moreover, we also separate camera relocalisatslnftam tracking thread to further improve tracking
performance. While leaving more time for trackirnyead to deal with multiple maps tracking

processes to recover the lost camera even when rébegnized map contains thousands
natural features.

In case of tracking multiple maps, our current rodtlsan only expand a single map at the same
time. Tracking failures in other tracked maps whare currently not being expanded cannot be
avoided especially when camera moves out of thpescoovered by these maps. The above problem
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weakens the usability of the proposed registratiihod to some degree. Merging all the tracked
maps into a single larger map may be an effectigthod to solve this problem. Developing an online
merging algorithm that can integrate all the trackeaps into a single map to further improve the
tracking performance of current system is leftdar future work.

Modern mobile phones have become a compellinggstatfor mobile Augmented Reality [36-37].
They contain all the equipment typically required ¥ideo based AR. A lot of researches have been
carried out to implement natural features matctBgj, online mapping [39] and hardware based
localization [40,41] to realize real time pose mstiion on mobile devices. By contrast, little atiem
has been paid to realize online scene learning@rmgnition on mobile phones for wide area mobile
AR use. We think that adaptive random trees wiivite a good solution to solve the above problem.
However, the main obstacle is that they use vegelamounts of memory (For example, the classifier
in the system described in Section 7.1 will takew96 M), which makes them impractical for
implementation on low-memory mobile devices (Theewices do usually not allow more than
about 5-10 MB per application). In our future wonke will design a flexible compressing algorithm
to reduce the memory usage, by which to facilithee implementation of adaptive random trees on
low-memory mobile devices.

9. Conclusions

This paper deals with on online scene learning tasil camera relocalisation problems that
currently limit the usability of multi-maps basedde area registration systems. Firstly, we use
adaptive method to adjust random trees dynamicaflg use GPU to accelerate the recognition
process. The result is a system whose scalakslisygnificantly better than traditional methods,ilerh
still providing reasonable recognition rates. Sellgpnwe design a scalable camera relocalisation
method by using the enhanced PROSAC algorithm ¢hat reduce the computation complexity
significantly. The result system has the abilityeégover from tracking failures rapidly even whéae t
recognized map contains thousands of natural festdrhirdly, we implement our algorithms in a
multithreaded manner by using a parallel-computieeme. While providing real-time tracking
performance, the result system also possessesbility 80 track multiple maps simultaneously. In
future work, we will design a flexible compressiatgorithm to facilitate the implementation of
adaptive random trees on low-memory mobile devices.
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