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Abstract:  This paper focuses on online scene learning and fast camera relocalisation which 
are two key problems currently limiting the performance of wide area augmented reality 
systems. Firstly, we propose to use adaptive random trees to deal with the online scene 
learning problem. The algorithm can provide more accurate recognition rates than traditional 
methods, especially with large scale workspaces. Secondly, we use the enhanced PROSAC 
algorithm to obtain a fast camera relocalisation method. Compared with traditional 
algorithms, our method can significantly reduce the computation complexity, which 
facilitates to a large degree the process of online camera relocalisation. Finally, we 
implement our algorithms in a multithreaded manner by using a parallel-computing scheme. 
Camera tracking, scene mapping, scene learning and relocalisation are separated into four 
threads by using multi-CPU hardware architecture. While providing real-time tracking 
performance, the resulting system also possesses the ability to track multiple maps 
simultaneously. Some experiments have been conducted to demonstrate the validity of  
our methods. 
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1. Introduction  

The objective of augmented reality (AR) is to add virtual objects to real video sequences, allowing 
computer-generated imagery to be overlaid on the video in such a manner as to appear part of the 
viewed 3D scene [1,2]. Applications include computer-aided surgery, robot teleoperation, and special 
effects for the film and broadcast industries. Registration between real and synthetic worlds is one of 
the major technological issues in order to create AR systems. As the user moves his/her head or 
viewpoint, the virtual objects must be properly aligned with the objects in the real world, or the 
coexistence of the virtual world and the real world will be compromised. 

In recent years, registration methods for wide area unprepared environments have attracted much 
attention [3-6]. These methods have several advantages compared with registration methods which 
depend on prior knowledge of the user’s environment. For example, tracking is not limited to the 
prepared scenes, thus, users can walk anywhere they want and superimpose virtual objects 
dynamically, according to the requirements of the AR applications. 

The authors have previously proposed a wide area registration framework based on multiple maps 
and a natural features tracking technique [6]. This method partitions the whole scene into some 
geometry independent maps according to the user’s requirements, and all the built maps are integrated 
into a single tracking system by using a fast image learning and recognition engine. The result is a 
system that copes with several hundreds of maps at frame-rate, with an agility and scalability rivaling 
that of single map based systems. While promising, it has some limitations. For example, only two 
keyframes are used to build the map of each target place. The user’s line of sight is limited to the field 
covered by these two images. Thus, user’s scope of activities has been greatly restricted. 

We can simply use the online structure from motion technique proposed in [4,7] to improve the 
tracking performance of our previous method. When tracking a map, new keyframes can be added to 
the system dynamically and newly observed features can be triangulated and optimized subsequently. 
These reconstructed 3D features can then be added to the tracked map to improve the tracking agility. 

While promising, there are some difficulties we must cope with when using online structure from 
motion technique to improve the performance of our previous method. First, as described in our 
previous work, an effective scene organizing mechanism is needed to enable the system the ability to 
learn scenes incrementally and recognize target scenes in real-time. In our previous research, we 
proposed to solve the above problem by using random trees. However, we have found that the 
performance of random trees deteriorates markedly with the increase of the scale of each map and the 
number of local scenes. This is particularly noticeable in our case since several dozens of keyframes 
are needed for each map to provide flexible tracking performance. In this research, we propose to use 
adaptive method to generate classification trees dynamically and use Graphics Processing Units (GPU) 
to accelerate the recognition process. The result is a system whose scalability is significantly better 
than traditional methods while providing reasonable recognition rates. 

Secondly, a fast natural features matching technique together with an effective outliers removing 
strategy are needed to enable our system with the ability to automatically relocalize from tracking 
failures. While fast natural features matching and outliers removing are not pivotal problems of our 
previous research in which each map contains at most hundreds of natural features, this is not the case 
in our current system since each map may contains thousands of mapped 3D features. In this case, 
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traditional natural features matching and outliers removing strategies may be major obstacles to ensure 
the real-time performance. In this paper, we use random ferns to generate descriptors of natural 
features. These descriptors are fast both to compute and to match, while providing the discriminative 
power that is comparable to that of state-of-the-art methods. We also propose an enhanced PROSAC 
algorithm to accelerate the process of outliers removing. The algorithm can significantly reduce the 
computation complexity compared with traditional algorithms, which facilitates the process of online 
camera relocalisation to a large degree. 

Thirdly, in our previous research, real-time performance could be obtained by implementing all the 
computation steps in a single thread. However, the single thread work mode is not suitable for the 
research of this paper since both online mapping and scene learning are time-consuming steps. To 
obtain a system with real-time tracking performance, we implement our algorithms in a multithreaded 
manner by using a parallel-computing scheme. Camera tracking, scene mapping, scene learning and 
relocalisation are separated into four threads by using multi-CPU hardware architecture. While 
providing real-time tracking performance, the result system also possesses the ability to track multiple 
maps simultaneously. 

The rest of this paper is organized as follows: Section 2 is the related work and our contributions. 
Section 3 presents adaptive random trees based scene learning and recognition methods. Section 4 
deals with the problems of natural features matching and camera relocalisation. Section 5 gives the 
online mapping and camera tracking method. Section 6 deals with our parallel-computing scheme 
based registration method. Section 7 shows some experimental results. Section 8 discusses some 
limitations. Section 9 is a conclusion. 

2. Related Work and Our Contributions 

There exists some related research on scene learning and recognition problems for AR applications. 
Lee et al. [8] proposed to solve the online scene recognition problem by matching SIFT features 
between input frame and previously stored features directly. The scene which has the maximum 
number of matched features among all scenes is returned as the recognition result if the number of 
matched features exceeds a certain threshold. While the method is feasible for a system which contains 
several maps and each has hundreds of features, it is not fast and accurate enough for our research, 
since our system may contain tens or hundreds of maps each of which holds thousands of mapped 3D 
features. Klein et al. [4,9] proposed to facilitate the scene recognition processes by using keyframes. 
Each keyframe is represented by a descriptor which will be compared to the input frame’s descriptor by 
using NCC to find the closest match to assistant the scene recognition processes. Experimental results 
indicate that the methods can deal with hundreds of keyframes in real-time while spending virtually no 
time for the learning process. However, this is not enough to meet the requirement of our research 
since our system may contain thousands or even tens of thousands of keyframes. In our previous 
research [6], we proposed to deal with scene learning problem by using random trees. Each scene is 
represented by a predefined numbers of local patches surrounding the SIFT features [10] detected from 
the two keyframes. These local patches will be used to train the random trees built in advance for 
online scene recognition use. While promising, we have found that the recognition rates deteriorate 
obviously with the increase of the scale of each map and the number of local scenes. In this paper, we 
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adjust the classification trees dynamically to improve recognition rates and use GPU to accelerate the 
recognition process. Compared with our previous work, the method of this paper provides more 
accurate recognition rates together with the scalability that significantly better than state-of-the-art 
methods. 

Some research has been carried out on the fast camera relocalisation problem. Williams et al. [11] 
designed a fast method to relocalize a monocular visual SLAM system after tracking failure. The 
monocular SLAM system stores the 3D locations of visual landmarks, together with a local image 
patch. When the system gets lost, candidate matches are obtained using correlation, and then the pose 
of the camera is solved via an efficient implementation of RANSAC using a three-point-pose 
algorithm. Williams et al. [12] also proposed to use a randomized lists classifier instead of correlation 
in their latest research to improve matching performance. Some other similar methods can be found  
in [13,14]. While feasible, the scalabilities of the above methods are not satisfying since prominent 
feature point descriptors allow reliable real-time matching but at a computational cost that limits the 
number of points (less than one hundred) that can be handled on PCs. In this research, we design a 
scalable camera relocalisation method by using a fast and compacted natural features description 
method. We also propose an enhanced PROSAC algorithm to accelerate the process of outliers 
removing. Compared with traditional algorithms, our method can significantly reduce the computation 
complexity, which enables our system the ability to relocalize the camera from tracking failures rapidly 
even when the recognized map contains thousands natural features. 

There are some researchers who propose to use parallel-computing schemes to realize real-time 
wide area registration for AR applications. Klein et al. [4] proposed the separation of camera tracking 
and scene reconstruction into two individual tasks, processed in parallel threads on a dual-core 
computer: one thread deals with the task of robustly camera pose tracking, while the other produces a 
3D map of point features from previously observed video frames. This allows the use of 
computationally expensive bundle adjustment optimization technique not usually associated with real-
time operation. In [8] and [15], researchers also propose to speed up natural features (SIFT) detecting 
and matching processes by using parallel-computing schemes to realize real-time camera tracking for 
registration use. In this paper, we demonstrate that the tasks of scene learning and camera relocalisation 
can also be separated as individual threads to further improve tracking performance. Camera tracking, 
scene mapping, scene learning and relocalisation are split into four threads in our system by using 
multi-CPU hardware architecture. While providing real-time registration performance, the result 
system also possesses the ability to track multiple maps simultaneously. 

Compared to the authors’ previous work [6], the main contributions of the research reported in this 
paper can be summarized as follows: 

(1) We propose to use adaptive random trees to deal with the online scene learning problem. The 
result is a system whose scalability is significantly better than traditional methods, while 
providing reasonable recognition rates. 

(2) We design a scalable camera relocalisation method by using a fast and compacted natural 
features description method. Moreover, the process of outliers removing is accelerated by an 
enhanced PROSAC algorithm that can reduce the computation complexity significantly. The 
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resulting system has the ability to recover from tracking failures rapidly, even when the 
recognized map contains thousands of natural features. 

(3) We also employ a parallel-computing scheme with multi-CPU hardware architecture to improve 
tracking performance. We split camera tracking, scene mapping, scene learning and 
relocalisation into four individual tasks, processed in four parallel threads on a 4-core computer. 
While providing real-time tracking performance, the result system also possesses the ability to 
track multiple maps simultaneously. 

Subsequent sections describe in detail the method used, present results and evaluate the  
method’s performance. 

3. Scene Learning and Recognition Using Adaptive Random Trees 

This section gives the adaptive random trees based scene learning algorithm. We first briefly review 
the method used in our previous work, and then give the detailed description of the ameliorations we 
made to improve the performance of our previous method. 

3.1. The Implementation of Our Previous Method 

At the center of our previous work is a classifier Â constructed by a set of randomized trees. Each 
internal node of each tree contains a test as Equation (1) that splits the space of data to be classified:  
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Each test Q simply compares the patch’s gray scale values f() at two pixel locations a and b. The 
random trees are built in advance by randomly selecting the node tests, i.e., the ai and bi in  
Equation (1). 

The leaf nodes of each tree store the number of reached patches of each class as: 
L
cL ncfN ==Â ))((ˆ      (2) 

where c is a class label. Lcn is the number of patches of classc in the training set that reach the leaf  
node L. 

To train the randomized trees when a new map Mi is added into the system, we firstly get a certain 
number of local patches {fi,1, fi,2, … , fi,N} from the keyframes used to reconstruct the map. These 
patches are dropped down each tree according to the binary tests as Equation (1), and then Equation (2) 
is used to deduce the class i’s patch numbers which will be stored in the reached nodes for  
recognition use. 

In the recognition stage, a scene is identified by dropping the detected patches {f1, f2, … , fN} of the 
input frame down each tree and considering the sum of the patch numbers (subject to a threshold) 
stored in the leaf nodes they reach as:  
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=Â is the number corresponding to classcstored in the leaf L(t, fi) of tree t reached 
by patch fi, and t is a tree label. 
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3.2. Adaptive Random Trees 

While feasible, there are some problems we must to deal with when we use the above method to 
fulfill the scene learning and recognition tasks in this paper. Firstly, we use the sum of the patch 
numbers as Equation (3) as the recognition method, which is based on the precondition that each scene 
contains only two keyframes and the patch number is identical for each class. However, the above 
precondition will not be guaranteed in this research, since different maps may contain different 
numbers of keyframes which results in the patch numbers for different classes not being identical. 

Secondly, the recognition rates of our previous method deteriorate obviously with the increase of the 
scale of each map and the number of local scenes. This is particularly noticeable in our case since 
several dozens of keyframes are needed for each map to provide flexible tracking performance. 

Thirdly, the scalability is not satisfied since the recognition time grows sharply with the increase of 
the number of classes. 

To solve the first problem, we use posterior probabilities of the original definition of randomized 
trees [16] as Equation (4) instead of patch numbers to measure the similarity between two  
local patches:  
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The recognition method used in this paper can then be given by considering the average of the 
posterior probabilities as: 
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where ))((ˆ
),( cfP iftL i

=Â is the posterior probability corresponding to class c deduced from the data stored 
in the leaf L(t, fi)of tree t reached by patch fi. 

For the second problem, there are mainly two reasons which cause the deterioration of our previous 
method’s recognition rates. The first reason is a consequence of the training data. Since we represent 
local patches by grayscale images, the similarity between different patches will become increasingly 
evident with the increase in the number of local patches. The second reason is from the method used to 
build the random trees. Since the random tests of internal nodes are generated in advance and the 
structures of the built trees can not be changed, the capability to split the space of data can not be 
adjusted with the change of the training data. 

We solve the above two problems as follows: 
Firstly, instead of grayscale values, we use HSV values to describe local patches. Compared with 

grayscale values, HSV gives higher dimensional feature vectors that allow the algorithm to build a 
classifier able to distinguish between large numbers of classes. Moreover, the HSV representation is 
more robust to illumination changes than the RGB color space because it tends to largely limit the 
effects of the most important, practically occurring illumination changes to just one of the three bands. 
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Secondly, we make use of the adaptive method proposed in [16] to generate node tests and adjust the 
structures of the random trees dynamically according to the input data. We define two thresholds which 
will be used in our method. The first threshold is Nummax which denotes the maximum number of local 
patches that each leaf node holds. The other threshold is Depmax which denotes the maximum depth of 
each tree. With the above two thresholds defined, we give the adaptive random trees generating method 
as follows: when training a local patch, we directly drop it down the random tree by using the random 
tests as Equation (1) that already exist in the internal nodes. If the total patch number in the reached 
leaf node exceeds the predefined threshold Nummax, we simply generate a new random test and assign it 
to the reached leaf node. The local patches in the reached leaf node can then be split into the two new 
generated leaf nodes (right and left child of the reached leaf node) according to the generated test. The 
above leaf node splitting process will be repeated for each new generated node until any of the 
following cases is satisfied: 

(1) The number of patches in the leaf is smaller than the predefined threshold Nummax. 
(2) The tree reaches the given depth Depmax. 
(3) All patches are constant in the leaf, which means that new partitions can make no changes in 

the leaf node. 

An experiment is carried out on UKBench image database [17] to prove the validity of the above 
two ameliorations. There are 2,550 classes in UKBench image database, and each class contains four 
images corresponding to the same scene. The recognition rates are computed as follows: 

 (Number of correct images in first 4 retrieved images /40,800) × 100% 
When using adaptive random trees, we set the two thresholds Nummax and Depmax to 10 and 30, 

respectively. When using our previous method, we set the depth of each tree to 15. Ten trees are used 
in each method and the recognition rates are shown in Figure 1. We can see that the recognition rates 
are improved obviously with the use of adaptive method and HSV vectors. Moreover, when all the 
10,200 images have been trained, the average depth of the adaptive random trees is 13.5 which is still 
less than the depth of our previous method. These results prove that while not increase the memory 
consumption, the adaptive method can provide more accurate recognition rate than traditional approach 
especially with a large number of classes. 

For the third problem, we use GPU to accelerate the recognition process to get a more scalable 
system. We do not store the built adaptive random trees in GPU since we cannot ensure that GPU has 
enough memory to store these trees, whose memory space will change dynamically according to the 
number of scenes. Instead, we execute node tests on CPU for all the input patches and transfer all the 
reached leaf nodes to GPU. The posterior probabilities as Equation (4) can then be computed by using 
CUDA directly. The implementation details of CUDA are out of the scope of this paper, we refer the 
reader to consult the related literatures [18-20] for advanced details. Figure 2 gives the results to prove 
the GPU based recognition method’s effectiveness in reducing recognition time. Figure 2a gives the 
recognition time of a single class with different number of patches when using CPU. Figure 2b is the 
results when using GPU (NVIDIA GeForce GTX260). We can see that the recognition time of the 
GPU based method does not increase with patch number and class number markedly and is much less 
than the time needed in CPU based method. These results convincingly prove that the GPU based 
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recognition method makes the recognition process fast enough for online implementation even with a 
large number of scenes (classes).  

Figure 1. Comparison of recognition rates of different methods. 

 

Figure 2. Comparison of the recognition timings between CPU and GPU based methods 
when using different number of patches. 

  
(a)                                                 (b) 

3.3. Adaptive Random Trees Based Scene Learning and Recognition 

With the above improvements completed, we now present our adaptive random trees based scene 
learning and recognition algorithms. When a new keyframe belongs to scene (class) i is added into the 
system, we firstly get a set of local patches {fi,1, fi,2, … , fi,N} surrounding the detected natural features. 
All the HSV vectors converted from these local patches are dropped down each tree according to the 
binary tests as Equation (1) that already exist in the internal nodes. In this process, if the total patch 
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number in a reached leaf node exceeds the predefined threshold Nummax, we simply use the method 
discussed in Section 3.2 to split the reached node and adjust the corresponding random tree. With all 
the patches trained, we use Equation (2) to educe the class i’s patch numbers which will be stored in 
the reached nodes for online recognition use. 

In recognition stage, a scene is identified by dropping the HSV vectors of the detected patches 
{ f1,f2,…,fN} in the input frame down each tree. The posterior probability of each class in each reached 
node is then computed by using Equation (4) and GPU. The recognition result is deduced by 
considering the average of the posterior probabilities (subject to a threshold) as Equation (5). 

4. Natural Features Matching and Camera Relocalisation 

This section firstly introduces the natural features describing and matching methods used in our 
research, after which we mainly discuss the enhanced PROSAC method that will be used to realize fast 
camera relocalisation.  

4.1. Natural Features Describing and Matching 

Recently, a lot of studies [21-24] have been carried out by researchers to design efficient feature 
describing methods. Among these studies, we have found the descriptors generated by the method of 
Calonder [21-22] especially suitable for our purpose because these descriptors are fast both to compute 
and to match, while providing the discriminative power that is comparable to that of state-of-the-art 
methods. 

The method of Calonder [21-22] relies on the fact that if we train a Random Fern (RF) classifier to 
recognize a number of feature points extracted from an image database, all other points can be 
characterized in terms of their response to these random ferns. Remarkably, a fairly limited number 
(500) of base feature points are sufficient. 

Descriptors are computed as follows. A set of B base feature points are extracted from a 
representative image and the RF classifier is trained to recognize them under changes in scale, 
perspective, and lighting. It consists of a set of N Random Ferns Fi, where the binary test is a simple 
comparison of two random locations as Equation (1) in a patch p around the feature point. At each leaf 
of a Fern Fi, there is a vector of responses for all base points, computed from the training set. Let fi(p) 
be the vector found by testing the patch p through the Fi to a leaf node. The total response vector of p is 
taken to be: 

Õ
=

=
N

i
i pfpr

1

)()(       (6) 

The response can be normalized to generate a probability of the patch p belonging to any member of 
the base set. In practice, when p belongs to some feature points that are similar to a base keypoint b, r(p) 
contains high values at b’s position in the vector where all others are close to zero. Otherwise, it 
contains a few relatively large values that correspond to reference feature points that are similar in 
appearance and small values elsewhere. 
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For any new feature point k not in the base set, the response r(k) will have high values at locations 
corresponding to base points that are similar to k, and low values elsewhere. Thus, the response vector 
r(k) can be considered as the descriptor of feature point k.  

To compress the descriptors into smaller vectors, Konolige [25] also uses a simple PCA scheme to 
extract a dense 176-element vector'

if  that replaces the 500-element fi on each leaf node. As a further 
reduction, each element of both 'if and the corresponding descriptor Õ= )()( '' pfpr i  are represented 
by a single byte instead of a floating-point number, thus the descriptors could be compared more 
quickly by using sum of absolute differences (SAD) [26].  

In our work, we use the image of Figure 3 to obtain examples that will be used to train our 
descriptor generator. We use a fast corner detector to detect 500 natural features and then implement 
the above descriptor generating method by using N = 50 binary randomized ferns of depth 10. 
Experimental results [25] prove that the descriptors generated by this configuration provide a 
discriminative power that is comparable to U-SURF [23], which is considered as the most efficient 
robust descriptor. Moreover, we also use GPU and CUDA to accelerate the SAD based matching 
processes to get a method that is many times faster than traditional approaches. For example, the time 
for generating 300 descriptors by using dense Random Ferns on a 2.66GHz CPU and matching these 
descriptors with 5,000 existing descriptors by using GPU (NVIDIA GeForce GTX260) accelerated 
SAD are 3.7 ms and 6.1 ms respectively. In contrast, the U-SURF will take 70 ms  
and 350 ms respectively. 

Figure 3. The image we used to train the ferns based descriptor generator. 

 

4.2. PROSAC Based Camera Relocalisation 

This section gives the enhanced PROSAC based camera relocalisation method. When a scene has been 
identified, we use the GPU accelerated SAD and the descriptors generated with the method introduced 
in the Section 4.1 to get the feature correspondences between the current frame and the recognized 
scene. The proportion of outliers (mismatches) may be very high in the above obtained matching set 
since each map may contain thousands of 3D features in our system. In this case, traditional three-point 
RANSAC may take large numbers of iterations to get a correct camera pose, which will be a main 
obstacle to fast camera relocalisation.  
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The standard RANSAC algorithm [27] treats all the matches equally, which means that the random 
samples are selected uniformly from the whole matching set. It can be considered as a black box that 
produces N tentative matches, i.e. the error-prone matches established by comparing local descriptors. 
In the research of this paper, we find that the matches with higher similarity scores are more likely to 
be correct matches than the lower ones. Motivated by this property, we use the PROSAC [28] 
algorithm in which samples are semi-randomly drawn from a subset of the matches with the highest 
similarity scores, and the size of the hypothesis generation set is gradually increased. In fact, PROSAC 
is designed to draw the same samples as standard RANSAC algorithm, but only in a different order. 
The matches more likely to be inliers are tested prior to the others; thereby, the algorithm can arrive at 
termination criterion and stop sampling earlier. 

In PROSAC, The set of K potential matches is denoted as Nk. The matches in Nk are sorted in 
increasing order with respect to the SAD values s: 

)()(:, jiKji nsnsjiNnn £�<Î      (7) 

A set of k matches with the lowest SAD values is represented as Nk. Then, the initial subset contains 
the three top-ranked matches that can be used to compute a candidate camera pose. If all of the samples 
from the current subset Nm = (n1,n2,…,nm) have been tested and a valid camera pose is not found, then, 
the next subset is Nm+1 = (n1,n2,…,nm,nm+1), and the following samples consist of nm+1 and the two 
matches drawn from mN  at random. 

We further improve the performance of PROSAC by checking whether a sample is valid, before 
actually computing a camera pose. This would avoid estimating the camera pose and searching for 
inliers, which are by far the two most expensive operations in PROSAC. The checking methods we 
used are as follows: 

(1) We reject samples in which two matches come from the same mapped feature or the same 
detected feature point as these can not produce valid camera poses. We also reject samples in which 
three matches are collinear or very close to each others in the image as these produce poor pose 
estimates [12].  

(2) We reject sets of matches which can not be observed together by a single keyframe. This check 
prevents attempting to calculate a pose using three features from distant parts of the map which are 
unlikely all be correct. 

(3) We also reject samples which do not meet the geometric constraint defined as follows [29]: 
Given a sample of three matches (A�,A),(B�,B),(C�,C) in which A,B,C and A�,B�,C� are mapped features 
and detected features respectively. If A,B,C come from a planar structure in the real world, it holds that 
relative order of points A,B,C and that of A�,B�,C� should be the same. Formally, using the vectors 

ACA, B -=-= jf  and their corresponding vectors '''''' AC, AB -=-= jf , we express the rule as: 
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where×  is the determinant function, (r)x and (r)y refer to the coordinates x and y of vector r 
respectively, and sgn(x) is the sign function defined as usual. This condition is graphically depicted in 
Figure 4. We discard all samples which do not hold the above geometric constraint since they will 
surely lead to an invalid pose under planar structures which exist in man made environments widely.  
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Figure 4. Geometric constraint that must be met by samples when features come from a 
planar structure. (a) Points A, B and C in a keyframe. (b) Corresponding points A�,B�and 
C�in input frame. Point C�must not be located in shaded region, since A�, B�, C�must have 
the same relative order than A, B, C. 

 

A 

B

C

A’ 
B’

C’ 

 
(a)                              (b) 

 
It is possible that few good samples are thrown away by considering the last two checking methods, 

but because of the great speed-up they give, many more samples are tested. Besides the above 
ameliorations, we also set a time limit for the algorithm to insure the continuity of the system. If a valid 
pose is not obtained by relocalisation thread before the arrival of the next frame. The relocalisation 
thread will accept the next frame from tracking thread and the recognition algorithm will be run again. 
We do this to ensure that the obtained inliers can be tracked between consecutive frames in tracking 
thread for camera pose estimating and registration use. 

The completed camera relocalisation method is described as follows: 
Step 1: Get feature matches between the recognized scene and the current frame by using SAD and 

the descriptors generated with the method introduced in the Section 4.1. 
Step 2: Sort the feature matches in increasing order with respect to the SAD values. 
Step 3: If the remaining time is not enough to carry out a test, go to step 7. Otherwise, generate a 

sample by using PROSAC. 
Step 4: Check whether the generated sample is valid by using the four criterions defined above. If 

the generated sample is valid, turn to the next step. Otherwise, go to step 3. 
Step 5: Compute the candidate pose by using the generated sample and three-point algorithm. 

Reproject all the 3D features into the current frame by using the computed candidate pose. 
Step 6: If the number of inliers is smaller than the predefined threshold, go to step 3. Otherwise, 

optimize the candidate pose by minimizing the reprojection errors and transfer the optimized camera to 
the tracking thread for camera tracking use, then turn to the next step. 

Step 7: Wait for the next recognized scene and repeat the above steps. 

5. Online Mapping and Camera Tracking 

While online mapping and camera tracking are not the focuses of this paper, we still briefly 
introduce the methods we used for the sake of integrality. 

5.1. Online Mapping 

We use the method proposed in our previous work [6] to perform system initialization. The method 
requires users to choose four pairs of corresponding points manually in the two reference images 
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respectively, and then system can calibrate these points automatically to define the position of the 
virtual object. When tracking a map, new keyframes are added to the system conditionally to allow the 
map to grow. Once a new keyframe is added, feature correspondences between this keyframe and its 
closest keyframe are established by using epipolar search. With the matches set obtained, we calculate 
the 3D positions of the newly observed features by using triangulation, and carry out an optimization 
process by using local bundle adjustment [4,7] in which only a subset of cameras and 3D points are 
optimized to improve mapping accuracy. The optimized 3D features can then be added to the system 
for camera tracking use. When local bundle adjustment has been finished and no new keyframes are 
inserted, the global bundle adjustment considering all cameras and points is carried out to further 
improve accuracy. This process can be interrupted when new keyframes is added to the map, so that 
newly observed features can be integrated into the tracking system within shortest possible time. We 
also stipulate that new keyframe can be added only when the time since the last keyframe was added 
exceeds the predefined interval (200 ms in our research). This is to ensure that the system has enough 
time to finish previous local bundle adjustment. 

5.2. Camera Tracking 

Once a successful relocalisation has been done, the next step is to track the natural features in the 
input video sequence to compute camera poses for registration use. To find a single mapped feature in 
the current frame, a fixed-range patch search surrounding the feature’s predicted image location is 
carried out. To perform this search, the corresponding patch is first warped by using affine transform to 
take account of viewpoint changes between the patch’s first observation and the current camera 
position. With the feature matches obtained, we then use the Tukey biweight estimator [30] and 
Levenberg-Marquardt algorithm to eliminate outliers and compute the camera pose simultaneously. 

6. Registration Based On Multithreaded Approach 

This section introduces our multithread based registration method of which the flowchart is shown 
in Figure 5. As can be seen from the figure, camera tracking, scene mapping, scene learning and 
relocalisation are separated into four parallel threads. Tracking thread copes with the tasks of camera 
poses estimation and virtual objects augmentation. Mapping thread receives keyframes to build maps. 
Scene learning thread is used to train and adjust the random trees. Relocalisation thread deals with the 
tasks of scene recognition and camera pose relocalisation. 

We build a randomized ferns based descriptor generator in advance by using the method discussed 
in Section 4.1. This generator will be used in all the experiments described in this paper. When the 
system is started, an initialization stage is carried out to generate the random trees to be used for online 
scene learning and recognizing. We do this by generating ten trees each of which contains only one 
random test and two leaf nodes. The two thresholds Nummax and Depmax are set to 10 and 30 
respectively to enable the trees to expand dynamically in online stage. 
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Figure 5. Multithread based registration method. 
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The tracking thread mainly deals with the problems of camera tracking and virtual objects 
augmentation. It receives input video from the camera and relocalisation results from the relocalisation 
thread. For each input frame, it matches natural features between current frame and all the tracked 
maps. Then, camera pose for each tracked map can be computed individually for augmentation purpose 
by using the method discussed in Section 5.2. In the case where no map is tracked, a delay of 30 ms is 
taken before the input of the next frame. We do this to allow the relocalisation thread has adequate 
time to relocalize the first map. We also stipulate that at most three maps can be tracked 
simultaneously to ensure the real time performance of our system.  

Mapping thread accepts keyframes from the tracking thread and performs optimization processes to 
reconstruct new features. Once a new keyframe is added, we first triangulate the newly observed 
features and then perform a local bundle adjustment in which only a subset of cameras and 3D points 
are considered. With the local bundle adjustment converged, the tracked map will be expanded directly 
by adding the new 3D features to improve tracking agility. When local bundle adjustment has been 
finished and no new keyframes are inserted, we then perform a global bundle adjustment to further 
improve accuracy. However, the global bundle adjustment can be interrupted by the arrival of new 
keyframes. This is to ensure new 3D features can be used in tracking thread within shortest possible 
time. In case of tracking multiple maps, the mapping thread will continue to expand the map that 
currently being processed until the tracking in this map is cancelled (manually or automatically) or the 
map reaches the predetermined number of keyframes. With the above process completed, the tracking 
thread will turn to expand another tracked map which has the least number of keyframes. The reason 
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why we do this is to give the weakest map the priority to expand to improve the overall performance of 
our system. 

Scene learning thread deals with the tasks of training and adjusting the random trees by using input 
keyframes. When a new keyframe is added into the current map, we firstly get the set of local patches 
surrounding the new observed features. These local patches will be converted into HSV vectors for 
training use. We drop each HSV vector down each tree according to the binary tests that exist in the 
internal nodes. If the total patch number in a reached leaf node exceeds the predefined threshold 
Nummax, we simply use the method discussed in Section 3.2 to split the reached node. With all the HSV 
vectors trained, we make use of Equation (2) to compute the patch numbers which will be stored in the 
reached nodes for online recognition use. 

The relocalisation thread receives input frames from the tracking thread and copes with the 
problems of scene recognition and camera relocalisation. For each input frame, the HSV vectors of the 
detected patches are simply dropped down each tree and the posterior probability of each class in each 
reached node is computed by using Equation (4) and GPU. The scene that has the greatest average 
probabilities (returned by Equation 5) and is not currently being tracked by tracking thread will be 
returned for camera relocalisation use. With a scene recognized, the next step is to compute the initial 
camera pose for tracking use. We firstly generate feature descriptors of the current frame by using the 
built ferns as discussed in Section 4.1. Then, the matches set between the current frame and the 
recognized scene will be established by using GPU accelerated SAD. With the matches set obtained, 
the enhanced PROSAC algorithm discussed in Section 4.2 will be used to compute the initial pose that 
will be passed to tracking thread for camera tracking and augmentation use. All the above 
computations should be accomplished before the arrival of the next frame. A time limit computed from 
the frame rate of tracking thread is set for the enhanced PROSAC algorithm. If the correct pose is not 
found within this time limit then the algorithm gives up: a new frame is taken from the tracking thread 
and the algorithm is run again. We do this to ensure that the camera pose will not be too far out of date 
when found. 

In our system, the tracking thread runs as the main thread, while the other three threads run as 
background processes and provide services to the main thread. Since these threads share some common 
data such as 3D maps and random trees, we must to deal with these data carefully in each thread to 
ensure the accuracies of various calculations. For example, the random trees will be visited by 
relocalisation and learning threads at the same time frequently. The recognition results will be 
unreliable if we allow the learning thread to adjust the random trees when these trees are being used by 
relocalisation thread for scene recognition purpose. We solve this problem by storing the adjusted leaf 
nodes in the learning thread’s local variables which will be used to update the random trees when the 
relocalisation thread performs feature matching and camera pose computation operations. Similarly, 
the new 3D features will be stored in the mapping thread’s local variables, and the map will be updated 
when it is not used by the tracking and relocalisation threads. 

7. Experiments 

The experiments are performed on a computer with a 4-core Xeon 2.66 GHz CPU and 4G RAM, 
using a Logitech Quick-Cam Pro 9000 video camera with 640 × 480 resolution. Intrinsic camera 



Sensors 2010, 10                            
 

 

6032

parameters are calibrated in a one-time offline step using a 6 × 8 checkerboard pattern and the OpenCV 
implementation in [31]. 

7.1. Mapping and Tracking Results 

We build a system using our algorithm to prove the usability of the proposed method for wide area 
AR applications. The built system contains seven indoor maps and five outdoor maps. The seven 
indoor maps are built around our laboratory, the area of which is about 80 square meters. The five 
outdoor maps are built around our campus. Each map contains 21 to 92 keyframes and 1,392 to 4,215 
map points, which added up to a total of 725 keyframes and 25,251 3D points.  

Figures 6a,b,c show the results of camera tracking and map building processes of the first indoor 
map. Figures 6c–Figure 6l show the augmentation results when tracking some of the built maps. The 
virtual objects are the 3D words indicating the map number. Figure 6m and Figure 6n are augmentation 
results of view angles and volume changes when tracking the 7th and 10th maps respectively. 
Figure 6o gives the augmentation results in case of occlusion while tracking the 9th map. Figure 6p is 
the augmentation result of illumination changes when tracking the 3rd map. The above results 
convincingly demonstrate the validity of the proposed online scene reconstructing and camera  
tracking method. 

The robustness of the proposed scene recognition and camera relocalisation methods to occlusion 
and illumination changes is illustrated in Figure 7. Figure 7a and Figure 7b give the relocalisation 
results of the 2nd and 3rd maps respectively with illumination changes. Figure 7c and Figure 7d give 
the relocalisation results of the 1st and 12th maps respectively in case of occlusions. The above results 
soundly prove the robustness of the proposed scene recognition and camera relocalisation methods to 
occlusion and illumination changes. 

Figure 6. Mapping and augmentation results. 

    
(a)                    (b)                     (c)                    (d) 

    
(e)                    (f)                     (g)                    (h) 
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Figure 6. Cont. 

    
(i)                    (j)                     (k)                    (l) 

    
(m)                    (n)                     (o)                    (p) 

Figure 7. Relocalisation results with occlusions and illumination changes. 

   
(a)                              (b) 

  
(c)                              (d) 

Figure 8. Multiple maps tracking results. 

   
(a)                        (b)                       (c) 
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Figure 8. Cont. 

   
(d)                       (e)                      (f) 

 
The capability of tracking multiple maps simultaneously is illustrated in Figure 8. Figure 8a gives 

the tracked features of the 4th (red points), 5th (yellow points) and 6th (green points) maps. Figure 8b 
and Figure 8c give the augmentation results when tracking two and three indoor maps respectively. 
Figure 8d gives the tracked features of the 11th (red points) and 12th (green points) maps. Figure 8e 
and Figure 8f give the augmentation results when tracking these two outdoor maps. The above results 
effectively prove the validity of the proposed method to deal with multiple maps tracking problem.  

7.2. Computation Time for Each Thread 

Each thread’s computation time of the experiment discussed in Section 7.1 is also recorded. Table 1a 
gives the computation time of tracking thread when only one map is tracked. The total time is  
about 60 ms, in which a delay of 10 ms is taken to give relocalisation thread enough time to relocalize 
another map. Thus the frame rate is 16.7 fps when tracking a single map. The time for tracking two 
maps is about 65 ms and the corresponding frame rate is 15.3 fps. The time for tracking three maps is 
about 81 ms and the corresponding frame rate is 12.3 fps. 

Table 1. Computational timings. 

 
 
 
 
 
 
 

(a) 

Relocalisation thread 
Feature detecting and scene recognition 4 ms 
Descriptors generating and matching 10 ms 
Modified RANSAC 30 ms 
Iterative pose optimization 5 ms 

Total 49 ms 

(b) 
 
 

Tracking thread 
Video capture 33 ms 
Feature projection and match 12 ms 
Iterative pose optimization 5 ms 
Sleep 10 ms 

Total 60 ms 
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Table 1. Cont. 

Mapping thread 
Feature detecting and epipolar searching 10 ms 
Local bundle adjustment 150 ms 

Total 160 ms 

(c) 

Scene learning thread 
Keyframe preparation 1 ms 
Learning 121 ms 

Total 122 ms 

(d) 
 

Table 1b gives the computation time of relocalisation thread when no or only one map is tracked. 
The time for scene recognition and feature matching is about 14 ms. Iterative pose optimization takes 
about 5 ms. We give 30 ms to the enhanced PROSAC algorithm to perform outliers removing 
processes. Thus, it takes about 49 ms to relocalize a new camera when no or only one map is tracked 
(as discussed in Section 7.5, we left 11 ms to scene recognition process to deal with scene number 
increase). Since the time for tracking two maps is about 65 ms, we can then alot more time (35 ms) to 
the enhanced PROSAC algorithm, thus it takes about 54 ms to relocalize the third camera in case of 
tracking two maps. 

Table 1c gives the computation time of the mapping thread. The maximum time to map the new 
features by using local bundle adjustment is about 160 ms. Since we stipulate that new keyframe can be 
added only when the time since the last keyframe was added exceeds the predefined interval 200 ms, 
thus new 3D features can always be added to our tracking system before the input of the next keyframe. 
The time for global bundle adjustment varies with map size obviously. It takes about 1.7 s for our 
largest map which contains 92 keyframes and 4,215 3D features to converge. A practical limit to insure 
good usability for our system is about 100 keyframes for each single map. 

Table 1d gives the computation time of the scene learning thread. The maximum time recorded for 
learning a keyframe is about 122 ms, which is fast enough to allow a reasonable rate of  
map exploration. 

7.3. Performance of the Enhanced PROSAC Algorithm 

In this section, we carry out two experiments to compare the enhanced PROSAC algorithm with 
other methods [27-28,32-36]. To perform the first experiment, we first build a map  
containing 35 keyframes and 2,102 3D features. As shown in Figure 9a, the green points are the 
mapped 3D features and the yellow line segment is the camera trajectory. We then capture a video 
sequence containing 500 frames by moving the camera along the trajectory shown by the red line 
segment. This video sequence will be used to test the performances of different outliers removing 
methods. For each frame we give 30 ms to each method to perform outliers removing operation. The 
numbers of successful relocalisation times in these 500 frames of different methods will be compared. 
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The map used in the second experiment is shown in Figure 9b. It contains 41 keyframes and 3,751 3D 
features. The second test video also contains 500 frames. 

Figure 9. Maps and trajectories used to test the performance of the enhanced  
PROSAC algorithm. 

   
(a)                                       (b) 

 
The recorded numbers of successful relocalisation times of different methods in these two 

experiments are given in Table 2. We can see that the number of successful relocalisation times of our 
method is far more than other methods’. These results prove that the enhanced PROSAC algorithm can 
get significant improvements in speed over existing methods, thus is more suitable for use in real-time 
applications with a limited time budget. 

Table 2. Comparison of successful relocalisation times.  

 
RANSAC[27] Td,d Test[32] Preemptive[33] Bail-out[34] Wald [35] PROSAC[28] 

Enhanced 

PROSAC 

Video 1 54 112 153 185 225 302 417 

Video 2 76 151 167 201 247 363 448 

7.4. Performance of the Ferns Based Features Describing Method 

We also carry out an experiment to compare the match rates of U-SURF descriptors and ferns based 
descriptors by using the vidoe sequence from the first scene of the experiment given in Section 7.1. We 
generate the ferns based descriptor by using N = 50 binary randomized ferns of depth 10 and then use 
these descriptors to establish matches between the modeled scene and the input sequence images. In 
parallel, we compute U-SURF descriptors for the keypoints extracted from the modeled scene and 
match each of them against the keypoints in the sequence images by selecting the one which has the 
nearest U-SURF descriptor. We retain the 1,437 strongest keypoints in the modeled scene  
and 400 keypoints in the sequence images for the two methods. Then in both cases we use our 
modified PROSAC estimation to compute the camera pose, which is then refined using a non-linear 
estimation method using all matches that are compatible with it. All matches are checked against this 
pose and those whose reprojection using this pose is within 10 pixels are retained as inliers. The graph 
of Figure 10 depicts the number of correct matches obtained by both methods for all frames in the 
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sequence. Despite their simplicity, ferns based descriptors match at least as many points as U-SURF 
descriptors and often even more.  

Figure 10. Comparing of matching performance between U-SURF and ferns descriptors. 

 

7.5. Comparison with Other Methods 

This section compares the results obtained using the proposed method with other methods. The 
comparisons made are (1) comparison with the authors’ previous method [6] and (2) comparison with 
the PTAM (Parallel Tracking and Mapping) [4]. 

Firstly, we compare our multiple keyframes based tracking method with the method based on two 
keyframes reported previously by the authors [6]. Figures 11 and 12 give the registration results of the 
above two methods when moving camera along two different trajectories. Figures 11a,b,c and  
Figures 12a,b,c show the results using the two keyframes based method. Figures 11d,e,f and 
Figures 12d,e,f are the results using our multiple keyframes based method. The recorded RMS errors of 
these two experiments are shown in Figure 13. We can see that tracking accuracy is improved 
obviously by adding new keyframes and mapped features to tracking system dynamically. These results 
convincingly prove the effectiveness of using online mapping to improve tracking accuracy. 

Figure 11. Results of the first experiment used to compare the multiple keyframes based 
method with two keyframes based method. 

   
(a)                            (b)                            (c) 
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Figure 11. Cont. 

   
(d)                             (e)                            (f) 

Figure 12. Results of the second experiment used to compare the multiple keyframes based 
method with two keyframes based method. 

   
(a)                            (b)                           (c) 

   
(d)                            (e)                           (f) 

Figure 13. Comparison of RMS errors. 

 
(a)                                         (b) 

 
We also carried out an experiment to compare our method with the PTAM [4] by using the video 

sequence recorded from the experiment discussed in Section 7.1. We test this sequence using the 
publicly accessible code PTAM (http://www.robots.ox.ac.uk/~gk/PTAM/). The input frame rate is set 
to 8 fps to give enough time to the local bundle adjustment thread, and the sequence is repeated for the 
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global bundle adjustment to converge. Even so, we find PTAM can only succeeded in mapping and 
tracking about half part of the indoor scenes, and failed when the keyframes number exceeds 195. In 
contrast, as discussed in Section 7.1, our multiple maps based method can provide a satisfying tracking 
and mapping experience. These results prove that our method is more flexible than PTAM especially 
with large scale scenes because to build a single map for such a workspace requires computationally 
expensive global bundle adjustment which cannot be done online. 

7.6. Scalability 

There are mainly two factors that limit the scalability of our method. The first factor is the maximum 
keyframe number that each map can accommodate, while allowing a reasonable rate of exploration. 
The second factor is the maximum scene number the method can deal with while maintaining the 
speed of the camera relocalisation. 

As discussed in Section 7.2, since the global bundle adjustment is very time-consuming with large 
numbers of keyframes, we stipulate that each map contains at most 100 keyframes to ensure that the 
global bundle adjustment can be completed within a limited time. This enables the tracking thread to 
obtain 3D features timely and accurately to insure good tracking performance. 

The maximum scene number that our system can deal with depends on the time left to the adaptive 
random trees based scene recognition process. As discussed in Section 7.2, in order to accomplish the 
camera relocalisation before the arrival of the next frame, we stipulate that the feature detecting and 
scene recognition time should not exceed 14 ms. Removing the time for feature detecting and HSV 
vectors preparation (3 ms), the times left to scene recognition is about 11 ms. According to the 
computation time of GPU accelerated scene recognition algorithm given in Figure 2, our system can 
manage about 3,800 maps for wide area AR use and the scalability is significantly better than our 
previous method which can only deals with about 650 maps. 

8. Discussion 

In this paper, we implement a flexible multithread based registration method for wide area AR 
systems by using online scene mapping and learning techniques. The proposed method can work in any 
environment without the need to prepare the scene in advance. Moreover, multiple maps can be tracked 
simultaneously in real time which really enhances the usability of the proposed method.  

Real-time implementation is an important issue for wide area AR systems. The proposed method can 
meet real-time performance requirements because time-consuming steps such as mapping and learning 
are separated as background processes to reduce the computation complexity of tracking thread. 
Moreover, we also separate camera relocalisation task from tracking thread to further improve tracking 
performance. While leaving more time for tracking thread to deal with multiple maps tracking 
problem, our method also gives relocalisation thread enough time to perform outliers removing 
processes to recover the lost camera even when the recognized map contains thousands  
natural features. 

In case of tracking multiple maps, our current method can only expand a single map at the same 
time. Tracking failures in other tracked maps which are currently not being expanded cannot be 
avoided especially when camera moves out of the scopes covered by these maps. The above problem 
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weakens the usability of the proposed registration method to some degree. Merging all the tracked 
maps into a single larger map may be an effective method to solve this problem. Developing an online 
merging algorithm that can integrate all the tracked maps into a single map to further improve the 
tracking performance of current system is left for our future work. 

Modern mobile phones have become a compelling platform for mobile Augmented Reality [36-37]. 
They contain all the equipment typically required for video based AR. A lot of researches have been 
carried out to implement natural features matching [38], online mapping [39] and hardware based 
localization [40,41] to realize real time pose estimation on mobile devices. By contrast, little attention 
has been paid to realize online scene learning and recognition on mobile phones for wide area mobile 
AR use. We think that adaptive random trees will provide a good solution to solve the above problem. 
However, the main obstacle is that they use very large amounts of memory (For example, the classifier 
in the system described in Section 7.1 will take about 96 M), which makes them impractical for 
implementation on low-memory mobile devices (These devices do usually not allow more than  
about 5–10 MB per application). In our future work, we will design a flexible compressing algorithm 
to reduce the memory usage, by which to facilitate the implementation of adaptive random trees on 
low-memory mobile devices. 

9. Conclusions 

This paper deals with on online scene learning and fast camera relocalisation problems that 
currently limit the usability of multi-maps based wide area registration systems. Firstly, we use 
adaptive method to adjust random trees dynamically and use GPU to accelerate the recognition 
process. The result is a system whose scalability is significantly better than traditional methods, while 
still providing reasonable recognition rates. Secondly, we design a scalable camera relocalisation 
method by using the enhanced PROSAC algorithm that can reduce the computation complexity 
significantly. The result system has the ability to recover from tracking failures rapidly even when the 
recognized map contains thousands of natural features. Thirdly, we implement our algorithms in a 
multithreaded manner by using a parallel-computing scheme. While providing real-time tracking 
performance, the result system also possesses the ability to track multiple maps simultaneously. In 
future work, we will design a flexible compressing algorithm to facilitate the implementation of 
adaptive random trees on low-memory mobile devices. 
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