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Abstract: Wind field analysis from synthetic aperture radar images allows the estimation of
wind direction and speed based on image descriptors. In this paper, we propose a framework
to automate wind direction retrieval based on wavelet decomposition associated with spectral
processing. We extend existing undecimated wavelet transform approaches, by including
à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and
Mexican-hat. The purpose is to extract more reliable directional information, when wind
speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the
estimated directional information, we calculate local wind speed values and compare our
results with QuikSCAT scatterometer data. The proposed approach has potential application
in the evaluation of oil spills and wind farms.
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1. Introduction

Oceanic images acquired by Synthetic Aperture Radar (SAR) systems enclose information of
geophysical parameters of the marine environment. In particular, microwave sensitivity to surface
roughness enables exploitation of SAR imagery for accurate surface wind estimation (direction and
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speed). SAR image analysis is a powerful tool to investigate atmospheric and marine processes at spatial
scales, not attained by other space borne sensors [1]. In addition to SAR systems, radar scatterometers
allow ocean surface measurements and can be especially useful in cases where the wind vector retrievals
by SAR are inaccurate. Satellite-based wind mapping is a helpful tool for quick estimates of the wind
conditions. This combination has proven to be more efficient than the wind climatology method, based
on at least one year of accurate wind measurements. There are different approaches and applications of
SAR images, we discuss some of them in this section and emphasize that the range definition of wind
speed is quite controversial in the literature. Next, we will show how our method fills in the gaps of
current available approaches.

Portabella et al. [2] proposed to retrieve wind vectors by means of combining SAR data and numerical
weather prediction models as an optimal inversion method to improve SAR wind vectors estimation.
In [2], the authors adopted that low winds are under 7 ms−1 when deriving wind fields from ERS-2
SAR images. Cameron et al. [3] combined SAR and scatterometer data to characterize wind farms and
their potential energy output around coastal areas. Their investigation included the method in [2] as an
alternative inversion scheme for wind vectors retrieval from SAR backscatter, using a Bayesian approach
to combine trial wind vectors and weather predicted data. The method has proven to be adequate for
both moderate and high winds. The range of strong (high) wind speeds according to [4], is higher
than 11 ms−1.

Oil spill monitoring often uses SAR images from the ocean to extract wind vectors from streaks on
the sea surface. From the wind vectors, it is possible to calculate the wind speed, which influences the
visibility of slicks on the sea surface [5]. Natural films are indistinguishable from oil spills if the range
of wind speeds is out of the interval 3 to 10 ms−1. However, Solberg et al. [6] noticed a high probability
of false slicks for wind speeds less than 5 ms−1; this analysis also reported fewer dark spots from local
low-wind areas when in the range between 5 and 10 ms−1. Pavlakis et al. reported in [7] that under low
wind speed conditions, such as 3 to 7ms−1, oil spills could yield detectable radar backscattering contrast
signals. These authors assumed that medium winds are within the interval of 7 ms−1 to 13 ms−1 and
high winds are above 13 ms−1.

Fichaux and Ranchin [8] calculated the orientation of wind streaks from SAR images by using
a spectral domain method which consists in applying a windowed Fourier transform to the wavelet
coefficients obtained from a radar image to recover the wind direction. This spectral approach used the
fast Fourier transform algorithm (FFT) to search for the dominant direction of wind streaks. These
directions are based on the position of the two maximal of the Fourier spectrum computed on a
second-level wavelet coefficient image [9].

Instead of retrieving wind parameters using spectral methods, it is possible to run spatial domain
algorithms [10,11], as the decimated wavelet transform [7], which allows feature extraction from local
histograms of the image gradient direction. Among several spatial domain methods, a widely-used
method is the local gradient (LG) [12], capable of retrieving wind direction using local gradients derived
from smoothed amplitude images. According to [11] the LG algorithm is less efficient and tends to
fail in areas characterized by a low-speed wind field where the estimates tend to be significantly non
homogeneous. The main limitation of spatial algorithms is the dependence on wind rows associated
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with atmospheric boundary layer roll vortices in the SAR image, an approach that often requires
human intervention.

Ceccarelli et al. [11] proposed a texture based approach for wind detection in the ocean and showed
results that are more robust to noise than standard and optimized LG algorithms. This method explored
the advantages of both the spectral method and the local gradient, by using a localized filtering-based
approach, combining both the spatial and the frequency domains. It consisted in extracting the preferred
orientation of textural patterns in the SAR image rather than from its respective energy variation.

Du et al. [7] introduced a method in the wavelet domain for wind direction retrieval, which could
quantitatively describe the image streaks through texture information detected from the vertical wavelet
coefficients within a Haar wavelet decomposition. Moreover, they have suggested that different wavelet
basis functions may lead to slightly different results.

These previous algorithms consider wind speed estimation from SAR images, including scatterometer
wind retrieval models such as the C-band model (CMOD) series for vertical polarization radars in
transmit and receive (VV) mode, which require a well-calibrated image. The wind direction is an
important input parameter for these models and it is used in [7,13–15] for wind speed estimation from
SAR images. Our paper assesses these algorithms by using wind speed results from three CMOD-based
models available in the literature and presents comparison among them with the QuikSCAT measures.

We extend the method introduced by Fichaux and Ranchin in [8], by improving the algorithm to detect
wind direction on coastal region with wind speed within the range of 5 to 10 ms−1. Our algorithm takes
a SAR image as input, decomposes it by using wavelet functions, transforms the wavelet coefficients into
their spectral version and finally detects peaks in the spectrum domain to recover the orientation of the
streaks. The motivation for choosing undecimated wavelets is: Mexican-hat presents suitable selectivity
in position and the Gabor wavelet can be tuned to detect directional features. Our algorithm estimates the
wind direction using the Fourier spectrum, although the wavelet transform provides good localization
in both spatial and spectral domains. Our method takes the wavelet coefficients of the decomposed
SAR image as input to peak detection using spectral energy, while it attenuates the undesirable
high frequencies and maintains the main spectral energy, located perpendicular to the orientation of
streaks [16]. The image decomposition by wavelets enables detection of wind streaks at a certain spatial
scale and later identification of wind orientation and wind speed estimation.

This paper is organized as follows: Section 2 describes the SAR data, Section 3 presents the basic
concepts of wavelet transforms to retrieve wind directions from satellite SAR data. It also describes
models for wind speed estimation from SAR images with HH polarization. In Section 4, we compare
the results from processing SAR images using different methods to extract wind vectors with satellite
scatterometer data. Discussions about the contribution of proposed framework are in Section 5

2. SAR Images and QuikSCAT Data

We address SAR data from the RADARSAT-1, ENVISAT and ALOS PALSAR satellites, which
images were acquired over the coast of Rio Grande do Norte (RN), Brazil. The Canadian satellite
RADARSAT-1 acquires SAR images over the oceans on a continuous basis to support measures of
geophysical parameters such as ocean surface winds. The SAR system aboard the RADARSAT-1
satellite [17] is a right looking radar, which acquires images at C-band (5.3 GHz) and at horizontal
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(HH) polarization in transmit and receive modes. It operates at moderate incidence angle between 10◦

and 59◦, a swath width of up to 500 km and with a range of 8 to 100 m in resolution. RADARSAT-1
images were acquired in the standard mode, beam mode: SAR Standard 2, 100 km swath width. The
SAR image displayed in Figure 1a was captured on September 29, 2006, at 8 : 07 a.m, with a radar
incidence angle of 27.291◦ and with pixel size of 12.5 m by 12.5 m, corresponding to a region of the
coast of Rio Grande do Norte (RN), Brazil. Figure 1b presents the region of interest (ROI) extracted
from the RADARSAT-1 SAR image displayed in Figure 1a.

The advanced SAR (ASAR) aboard the European satellite ENVISAT operates in the
C-band (5.34 GHz) and, in contrast to the RADARSAT-1 satellite, at both vertical (VV) and horizontal
(HH) polarization in transmitting and receiving. For the following study ASAR data were acquired at
HH polarization in transmitting and receiving modes. Figure 1c shows the ENVISAT ASAR image
which covers the same area. This SAR image was captured on February 01, 2005 with HH polarization.

In January 24, 2006, the Japan Aerospace Exploration Agency launched the Advanced Land
Observing Satellite (ALOS), which carries the Phased-Array L-Band Synthetic Aperture Radar
(PALSAR). PALSAR is an active microwave sensor, which is not affected by weather conditions and
operable both daytime and nighttime [18]. PALSAR is a full polarimetric (multi-polarization) system
which acquires images in HH, HV, VV and VH polarization. The ALOS images (e.g., Figure 1d)
were acquired in the PALSAR Fine Single, which cover areas of 40-70 km with pixel size of 12.5 m
by 12.5m and HH polarization.

Table 1 summarizes the SAR images information, regarding six RADARSAT-1 images, four
ENVISAT images and four ALOS PALSAR images, used to validate the new wind-retrieval algorithm
throughout this paper.

A different source of information came from the satellite QuikSCAT, launched on June 19, 1999. It
contains the instrument SeaWinds, which measures near-surface wind speed and wind direction at 25 km
resolution. The wind accuracy from QuikSCAT is stated to be 2.0 ms−1 in wind speed and 20◦ in wind
direction. This accuracy depends on the distance from the shore, wind speed range and atmospheric
conditions [19].

The QuikSCAT daily data is a matrix of dimensions 1,440 × 720 × 4 × 2, where the first index
represents longitude (from 0o to 360o), second index is latitude (from −90o to 90o), third index is
UTC time, wind speed (ms−1), wind direction (degrees) and rain flag, respectively, and fourth index is
ascending or descending orbit. Figure 2a shows QuikSCAT wind vectors over Atlantic, Tropical, South
extracted on September 29, 2006. The first cell of the matrix is at longitude 0.125o E and in latitude
−89.875o, in the 0.25o × 0.25o space resolution. The QuikSCAT wind speed is relative to a height of
10 m above sea level and to a neutral atmospheric stability [20]. The wind direction data follows the
oceanographic convention, indicating the direction the wind blows, and are used as input variables in
C-band models for calculating the wind speed.

Figure 1b and Figure 2b show our SAR and QuikSCAT data, used to retrieve the direction and
speed variables over the RN coast in different dates. According to the scatterometer measurements,
the wind speed values in these areas ranged from 4 to 11 ms−1 (see Table 1). From the available data
set (about 14 SAR images), 5 images were selected with time difference between 7 and 12 hours, 4 with
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Figure 1. SAR images over the coast of Rio Grande do Norte, Northeast Brazil. (a)
RADARSAT-1 SAR, acquired on September 29, 2006 with HH polarization. (b) Extract of
the SAR image (4096 × 4096 pixels) referenced in latitude and longitude (decimal degrees)
representing 51.2 × 51.2 km. (c) ENVISAT ASAR, acquired on February 01, 2005 with HH
polarization. (d) ALOS PALSAR, acquired on July 20, 2007 with HH polarization.

(a) RADARSAT-1 image. (b) The region of interest (ROI).

(c) ENVISAT ASAR image. (d) ALOS PALSAR image.

approximately 4 hours, and 3 with less than 1 hour. The interpretation of QuikSCAT region of interest
relies on geographic coordinate transformation, according to Equations 2 and 3.

longitude = 360− longitude (1)

column =
longitude+ 0.125

0.25
(2)

row =
latitude+ 90.125

0.25
(3)
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Table 1. The set of SAR images using a 12.5 m pixel size.

Satellite Mode Beam Orbit Image Time UTC
Wind

Conditions 1

RADARSAT-1 Standard 7 39713 2003/06/14 07:56 M/9.1
RADARSAT-1 Standard 2 39756 2003/06/17 08:09 M/6.3
RADARSAT-1 Standard 7 56863 2006/09/26 07:55 H/11.2
RADARSAT-1 Standard 2 56906 2006/09/29 08:07 M/9.8
RADARSAT-1 Standard 3 56906 2001/02/03 20:42 M/6.1
RADARSAT-1 Standard 6 56906 2001/02/07 07:53 L/4.0

ENVISAT IMG 11779 2004/06/01 00:39 M/9.4
ENVISAT IMG 15286 2005/02/01 00:38 M/9.8
ENVISAT IMP 19566 2005/11/29 00:41 H/11.0
ENVISAT IMP 25342 2007/01/04 12:13 M/6.9

ALOS FBS8 7905 2007/07/20 01:16 M/10
ALOS FBS8 12602 2008/06/06 01:13 M/8.2
ALOS FBS8 18641 2009/07/25 01:18 H/10.5
ALOS FBS8 19064 2009/08/23 01:16 M/9.7

1L, low wind (< 5 ms−1); M, moderate wind (5 ms−1 < v < 10 ms−1);

H, high wind (> 10 ms−1). Mean value of speed wind provided by QuikSCAT.

Figure 2. (a) QuikSCAT wind direction and wind speed estimation on September 29, 2006.
(b) QuikSCAT over ROI.

(a) QuikSCAT wind vectors. (www.remss.com) (b) QuikSCAT wind vectors.

where the longitude and latitude variables are in degrees. The acquired matrices of QuikSCAT, with
wind direction and speed, are used to evaluate our direction results.
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3. Methods

Wind field retrieval from SAR images depends upon both wind direction and speed calculation. Such
information can be acquired from one or more sources as: (a) measurements of other instruments
(scatterometer, buoys, etc.), (b) meteorological models, (c) wind-induced streaks if evident in the
SAR images or from intelligent image processing remote systems. We review standard methods to
be compared with the proposed approach: we summarize two methods to estimate wind direction
(Subsections 3.1 and 3.2), both using wind-induced streaks from SAR images. Subsection 3.3
summarizes C-band models to estimate wind speed. Finally in Subsection 3.4, we present undecimated
methods, describing the foundations of the proposed approach and our contributions to previous work.

3.1. The WDWaT Method for Wind Direction Estimation

Wind direction retrieval is based on the measurement of texture features from SAR images of the
ocean. Each texture feature is a scalar value, computed from a whole image or a sub-scene, which
characterizes the grey-level variation within the immediate area. The wind direction estimation from
wavelet transform (WDWaT) is based on decimated wavelet transforms [21]. Du et al. in [7] introduced
this approach for estimating the relative strength of the streaks in SAR images, by deriving the maximum
of the standard deviations of the mean cross section (MStdM ) as a detection criterion.

The WDWaT algorithm provides a multiscale texture analysis and identifies subscenes of weak
directional features. It can quantitatively describe image streaks through the standard deviation of the
mean cross section (StdM ) of vertical details within a wavelet decomposition [7]. The cross-section
mean of the area of interest is obtained by computing the mean value of each column in a vertical
direction. When the image is rotated through 180◦ with a given rotation interval, the mean value of
the cross section at different angles are obtained (rotation angle 180

n
). The choice of n depends on the

accuracy of the required estimation.
TheMStdM and the average of the standard deviations of the mean cross section (AvStdM ) of these

curves are calculated as follows:

MStdM=max[StdM(1), StdM(2), · · · , StdM(n)]

AvStdM=average[StdM(1), StdM(2),· · ·, StdM(n)]

where StdM(i) is the standard deviation of the mean cross section for the i-th rotation angle. The factor
K to describe the strength of the directional features [7] is given by:

K =
MStdM

AvStdM
> 1. (4)

The factor K is fundamental to determine the optimal spatial scale for the directional estimation of
texture features. Also, K can be used to make quality-control decisions [7]. The higher the value of K,
the stronger the directional features in the image.

3.2. The LG-method for Wind Direction Estimation

Koch proposed in [12] the local gradient method (LG) which divides an image into sub-images,
depending on the space grid over which the wind characterization is requested; then image operators
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are applied to the images to produce a map of valid points, on which the local gradient directions are
computed. The LG method consists of three steps to derive wind direction. In the first step, the SAR
image is smoothed and reduced to pixel size of 100, 200, and 400 m. From each of these images,
local directions, defined by the normal to the local gradient, are computed leaving a 180◦ ambiguity. In
the second step, all the pixels that are effected by non-wind-induced features are masked and excluded
from further analysis. Finally, only the most frequent directions in a predefined grid cell are selected
from all of the resulting directions [22]. The wind direction, assumed to be parallel to the wind streaks,
is thus perpendicular to the direction of the gradient. The direction of the gradient is the direction of
highest increase of a streak [13]. The LG method has in principle the advantage of being more localized,
allowing the wind direction estimation at higher resolution. However, the presence of noise requires
large windows for the local histogram in order to obtain reliable estimate [11]. The algorithm may
extract features unrelated to the wind and ignore these points while working in the spatial domain by
evaluating the local gradients.

3.3. Wind Speed Retrieval Models for Assessment and Comparison Purposes

We estimate the wind speed from RADARSAT-1 data using three C-band models: CMOD4 [23],
CMOD-IFR2 [24] and CMOD5 [25,26]. The QuikSCAT scatterometer is well collocated in time with
RADARSAT-1 orbit, and ERS-2 is close to the ENVISAT orbit [19]. This paper deals with CMOD
models, therefore wind speeds are estimated from RADARSAT-1 images. As the ALOS satellite operates
in L-Band, wind speed estimation is not performed for the ALOS PALSAR images.

The algorithm based on the CMOD4 model was originally developed with three types of Earth
observation data: the scatterometer data (ERS-1), the wind vectors from the European Centre for
Medium Range Weather Forecasts (ECMWF) for surface wind analysis, and the wind and wave
information from the National Oceanic and Atmospheric Administration (NOAA) wind and wave buoys,
respectively [27]. The CMOD-IFR2 is very similar to the CMOD4 model, and most algorithms for
C-band SAR wind retrieval are based on them [16].

The precise wind direction information is necessary to estimate accurate wind speed when using
CMOD models and Equation (5). Under certain circumstances, it is possible to extract wind direction
directly from SAR images. In this paper we provide a set of experiments to assess the effect of wind
direction in the wind speed estimation by using CMOD models.

Wind speed retrieval relies on an empirical model function, which relates the normalized radar cross
section (NRCS) of the ocean surface σo to the local near-surface wind speed v, wind direction versus
antenna look direction Φ, and incidence angle θ. The general form of the function is given by

σo = B0(1 +B1cos(Φ) +B2cos(2Φ))p (5)

where B0, B1 and B2 are coefficients that depend on the incidence angle, wind speed, radar frequency
and polarization and p ∈ R. For the C-band, these coefficients were determined empirically by evaluating
ERS-1 data, which operates at the C-band with VV polarization, and wind fields from the ECMWF [13].
These functions are applicable for wind-speed retrieval from VV-polarized SAR images. The CMOD4
and CMOD-IFR2 have been applied successfully to ERS-1 and ERS-2 images [16].
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Particularly RADARSAT-1, the SAR system operates at C-band but with HH polarization, then the
CMOD models cannot be directly used as they are acquired. This happens due to σo decrease as the
incidence angle increases and the increasing wind speed sensitivity to the error from the wind direction.

Thompson, Elfouhaily, and Chapron [28] derived an empirical expression for the polarization ratio
to obtain an approximate form for the HH polarization backscatter from RADARSAT-1. This hybrid
expression is given by:

PR =
σHH
o

σV V
o

(6)

where σHH
o and σV V

o are the HH and VV-polarized NRCS, respectively. Different PR functions have
been suggested in the literature [13,24,28]. We obtained the wind directions from SAR images with
the spectral algorithm and the values are used as inputs to the CMOD models. Next, we compare these
results with those computed from QuikSCAT.

3.4. Undecimated Wavelets

Undecimated wavelet transforms (UWT) or stationary wavelet transform is a shift invariant
transformation, relevant to detect wind direction in SAR images. We use the UWT to decompose a
SAR image into wavelet coefficients to emphasize details in different scales of the image. The wavelet
coefficients are the input to the spectral method, followed by the identification of the maximum values in
the Fourier spectrum. The next sections present different versions of the UWT algorithm, using different
basis functions.

In UWT decomposition, the number of the wavelet coefficients does not decrease among the
scales. This additional information can be very useful for better analysis and understanding of the
signal. The translation-invariant property of the undecimated wavelet transforms is relevant to the
feature-extraction [29], particularly in the detection of streaks.

(A) The à Trous Wavelet Transform

The à trous (with holes) algorithm decomposes a signal without subsampling, i.e., no decimation step
is undertaken and in each projection only the filters are dilated [29–33]. This transform was successfully
used by Fichaux and Ranchin [8] over a triangular function. Our paper includes the Mexican-hat and
Gabor undecimated wavelet transforms and the B3-spline basis.

The à trous algorithm allows the separation of low-frequency information (approximation) from
high-frequency information (wavelet coefficients or detail coefficients). This UWT can be interpreted
as a frequency decomposition with each set presenting a different spatial orientation. According to
Bijaoui et al. [33], two scaling functions lead to a piecewise linear interpolation: the triangular function
and the B3-spline.

The main reason to choose the à trous algorithm for this application is the information redundancy
between decomposition scales observed in the inherent gradual blurring effect. This algorithm consists
in convolving the original signal, s(k), with a filter h which is interpolated by 2j−1 zeros at each
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decomposition scale j. The reconstruction of the original signal s(k) is obtained by adding the
last smoothed signal sN(k) with the set of wavelet coefficients [34],

s(k) = sN(k) +
N∑
j=1

wj(k) (7)

where N is the number of all wavelet scales.

(B) The Gabor Wavelet Transform

The Gabor wavelet is a complex-valued wavelet which obtains the optimal localization in spatial and
frequency domains, simultaneously. Furthermore, the Gabor wavelet is directional and capable of tuning
to specific frequencies, thus allowing it to be adjusted for streak enhancement and orientation detection.
The 2-D Gabor function g(x, y) is defined as [35]:

g(x, y)=

(
1

2πσxσy

)
e
−
[
π

(
(x−x0)

2

σ2
x

+
(y−y0)

2

σ2
y

)]
e[i(ξ0x+ν0y)] (8)

where (x0, y0) is the center of the spatial domain and (ξ0, ν0) is the optimal spatial frequency of the filter
in the frequency domain. Here, σx and σy are the standard deviations of the modulated Gaussian along
x and y axes.

(C) The Mexican-hat Wavelet Transform

The 2-D Mexican-hat wavelet function is widely used for zero-crossing multiresolution edge
detection [36] and defined as it follows [37]:

ψ(a−→x ) = (2− |a−→x |2) exp
(
−a

−→x 2

2

)
(9)

where −→x gives the two-dimensional coordinate of a pixel and a is a scale parameter which also works as
the sample period of the Mexican-hat function. In spatial-frequency domain, it is written as:

ψ̂H(
−→
k ) = (

−→
k .

−→
k )e

(
− 1

2
−→
k ·

−→
k

)
(10)

where
−→
k represents the 2-D spatial-frequency variable and · is the inner product.

The 2-D Mexican-hat transform tends to be an effective band-pass filter, often used to separate
different scales in the image to show their relative phase/location information. These characteristics
make the 2-D Mexican-hat wavelet transform a strong candidate method in the detection of wind streaks
from SAR images.

3.5. Proposed Spectral Algorithm for Wind Direction Estimation

Our method encompasses the undecimated wavelet transforms with à trous (B3-spline), Gabor and
Mexican-hat, as illustrated in Figure 3. We extend the algorithm in [8] by using other wavelet transforms,
which have the potential to improve the streak detection results.
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Figure 3. Algorithms under investigation for wind direction detection: proposed algorithms
(top and center) and the Fichaux and Ranchin’s algorithm [8] (bottom).

The spectral method extracts the wind direction from SAR images, by applying a windowed FFT to
the wavelet coefficient image to model the wind waves. The spectral algorithm considers successive
sub-images of the second level coefficient image. The first level of wavelet coefficients is inadequate in
our analysis because it focuses on the spatial scale ranging from 100 to 200m [8], besides being more
subjected to noise. In a precision image with 100 m pixel size (200 m resolution), the image of the
wavelet coefficients represents spatial scales in 200-400 m. In many cases the wind-induced waves are
clearly visible in SAR images as almost linear patterns, called wind streaks, representing scales between
200 and 1,600 m, where wind-induced phenomena aligned with the wind direction are most likely to
occur [38]. The position of the maximum Fourier spectrum calculated from the wavelet coefficients
(second level) indicates the wind directions.

We apply a local FFT to a SAR image to extract the wind direction with a grid size of 250 × 250

pixels, equals to a 25 × 25 km grid cell. This grid cell corresponds to the QuikSCAT resolution. For
assessment purpose, we compare the wind direction information estimated by the FFT algorithm with
two algorithms available in the literature and described in the next section and also with QuikSCAT data.

We estimate direction with Gabor wavelets by rotating the Gabor function (Equation (8) at steps
of 10◦. There are a total of M different frequencies and N different orientations, resulting in M × N

coefficients for each image pixel (x, y). Equations (11) and (12) refer to the rotation property, as follows:

gmn(x, y) = g(x′, y′) (11)

where m ∈ [1,M ], n ∈ [1, N ] and g(x, y) refers to Equation 8. The rotation matrix is given by[
x′

y′

]
=

[
cos θn sin θn

− sin θn cos θn

][
x

y

]
, θn =

nπ

N
. (12)

By convolving an image I(x, y) with Gabor wavelets, the Gabor transformed image can be defined
as:

Î(x, y,m, n) =

∫
I(x′, y′)gmn(x− x′, y − y′)dx′dy′. (13)

In this paper we are interested in the response with the maximum magnitude over all possible
orientations, namely:

T = max
θ

| Î(x, y,m, n) | (14)

After calculating the T image with the maximum magnitude response in all directions, we obtain the
coefficient image C by subtracting T from I , as illustrated in Figure 4b. Finally, the wind direction
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estimation is calculated by applying the FFT to the image C, resulting in a new representation of the
imagette, with streak contrast enhancement.

Figure 4. (a) Original SAR image I . (b) Image of the dominant directions of the induced
streaks in the ocean detected by the Gabor wavelet.

(a) Original Image. (b) C image.

Our approach of the Mexican-hat wavelets for wind direction retrieval consists in convolving the
function in Equation (9) with the SAR image, followed by the difference between the SAR image and
the convolution results. Then, the spectral algorithm computes the wind direction from the imagettes of
the coefficient images.

4. Results

This section presents the outcomes of 7 different techniques for wind direction calculation. We
compare 3 standard methods with our 3 proposed approaches, by using QuikSCAT direction values
as the gold standard. Next, we calculate wind speeds, using only the wind directions obtained from
FFT-based methods, yet checking the agreement with QuikSCAT speed values.

We test the algorithms with a set of fourteen SAR images, which refer to the same area, laying
out between 4◦30pS and 5◦40pS in latitude and 35◦50pW and 37◦00pW in longitude, in different dates
and weather conditions. Each image is split into imagettes before the calculation of respective wind
direction vectors. In Figure 5(a), one imagette corresponds to approximately one quadrant of the image,
from which a direction vector is calculated for each method. Imagettes are 250 × 250 pixel subimages
from the SAR images and we use a total of 41 imagettes.
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Figure 5. Wind direction vectors from 3 different SAR images: (a-c) RADARSAT-1
SAR image, on September 29, 2006, (d-f) ALOS PALSAR image, on July 20, 2007 and
(g-i) ENVISAT ASAR image, acquired on February 01, 2005. White arrows indicate the
ground-truth value, from QuikSCAT in all images; color-method associations appear on the
label of each image.

(a) G:1,B:2,W:7 (b) B:2,Y:3,M:4,W:7 (c) B:2,Y:5,M:6,W:7

(d) G:1,B:2,W:7 (e) B:2,Y:3,M:4,W:7 (f) B:2,Y:5,M:6,W:7

(g) G:1,B:2,W:7 (h) B:2,Y:3,M:4,W:7 (i) B:2,Y:5,M:6,W:7

For an easier reading of Figure 5, we label the methods numerically such as: (1) UWT with triangular
base, (2) UWT with B3-spline, (3) UWT with Gabor, (4) UWT with Mexican-hat, (5) WDWaT,
(6) LG and (7) QuikSCAT. This figure illustrates the wind direction using each of the 7 methods for
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3 SAR images; each of these images contains a different number of valid imagettes. The color code
for the direction vectors can be blue (B), green (G), yellow (Y), magenta (M) and white (W), and
they correspond to one method, in conjunction to a numerical identifier as pointed out above. As
an example, the code G:1, indicates green arrows, which represent the wind directions calculated by
method (1). Notice that each row of Figure 5 shows the same SAR image, but with arrows representing
the wind direction result of different methods over each imagette. Table 2 presents the mean and standard
deviation of wind direction for the different methods, with bold numbers indicating high similarity to the
QuikSCAT values.

Table 2. Wind direction results to be compared with QuikSCAT measures.

FFT WDWaT LG

SAR images Measures à trous Gabor Hat Haar Gradient QuikSCAT
Triangular B3-spline

Mean (◦) 352.6 306.2 270 287.66 355.0 294 314.2
2003/06/14 Std. dev. (◦) 0.3 2.1 0 20.4 5.8 4.8 2.6

Mean (◦) 334.3 328.5 270.0 180.84 335.0 264.3 277.5
2006/09/26 Std. dev. (◦) 22.2 1.9 0 169.1 5.8 10.4 10.4

Mean (◦) 322.6 316.3 279.0 311.61 295.0 279.4 316.5
2006/09/29 Std. dev. (◦) 11.1 0.07 10.6 2.3 5.7 4.7 0.0

Mean (◦) 275.76 246.33 272.33 225.12 303.33 270.46 259.5
2001/02/03 Std. dev. (◦) 58.26 15.84 76.96 7.42 56.86 0.09 2.59

Mean (◦) 328.57 327.99 327.53 321.67 190 270.35 292.5
2001/02/07 Std. dev. (◦) 0 0 0 0 0 0 0

Mean (◦) 270 275.53 360 270 360 241.89 283.5
2005/11/29 Std. dev. (◦) 0 0 0 0 0 0 0

Mean (◦) 252.66 290.39 317.03 217.28 280 254.84 235.5
2007/01/04 Std. dev. (◦) 152.9 6.13 46.03 13.94 58.06 11.33 5.01

Mean (◦) 284.51 284.83 237.83 325.74 287.5 309.49 282
2005/02/01 Std. dev. (◦) 1.18 1.22 64.8 1.77 39.55 40.95 7.94

Mean (◦) 316.58 286.04 270 326.54 240 241.81 268.5
2007/07/20 Std. dev. (◦) 47.25 9.30 0 1.30 42.43 21.73 6.36

Mean (◦) 294.44 335.56 270 264.92 230 209.79 328.5
2008/06/06 Std. dev. (◦) 16.57 16.57 0 73.59 0 8.59 0

Mean (◦) 342.17 340.34 315 321.89 320 224.99 330
2009/07/25 Std. dev. (◦) 4.37 4.19 63.64 1.4 28.28 15.34 0

Mean (◦) 344.64 285.99 270 243.2 340 263.75 282.75
2009/08/23 Std. dev. (◦) 0.4 1.31 0 37.89 28.28 6.05 1.06

In order to evaluate the results of the spectral algorithm over the detail images obtained from
the wavelet decompositions, we adopt the following empirical parameters: the Gabor wavelet uses:
σx=σy=6.95, ξ0=3.14 and ν0=0, tuned according to the dimension of the streaks (200 to 1,600m) in
our dataset. The Mexican-hat wavelet uses parameter a set to 0.3π, which resulted in noise suppression
and streak recovery.
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Figure 6. Comparison between QuikSCAT (abscissa) and SAR-based methods (ordinate)
for two data sets: (a, c, e, g) after removing the low-confidence (rain cells) from QuikSCAT
data and (b, d, f, h) regions with wind speeds less than 10ms−1; the FFT methods differ
from their wavelet decompositions: à trous, triangular base (a, b), à trous B3-spline (c, d),
Mexican-hat (e, f) and Gabor (g, h).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Before comparing the wind fields between the scatterometer and the SAR-derived results, we filter
the input data following the criteria: (a) removal of rain-contaminated areas due to scatterometer
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data to be less accurate in such circumstances and (b) total overlay of the scatterometer resolution
cell (25 km) within the given SAR scene [19]. Although SAR images are independent of weather,
rainy areas in scatterometer data can result in erroneous cross track vectors and/or incorrect high speed
values [20]. Furthermore, we separate the imagettes in two groups, according to the speed values from
QuikSCAT: (a) data set consisting of all 41 imagettes (b) data set consisting of only imagettes with wind
speeds < 10 ms−1 (32 imagettes).

After calculating the wind direction over each imagette, we illustrate the direction from each imagette
against its correspondent QuikSCAT value in Figure 6. In this figure, imagettes wind vectors appear
in blue crosses and QuikSCAT-rain flagged regions in black boxes as neglected data. The main range
of wind direction variation is highlighted by dashed lines. Our results (see Table 2) are consistent with
wind directions in the northern coastline of Rio Grande do Norte, Northeastern Brazil (around 36◦W
and 5◦S), where the wind blows from East during August to April, and from Northeast during May to
July [39]. Indeed, the predominant wind direction in this area is from East and according to the
geographic convention it is expected to be between 202.5◦ and 292.5◦. In addition, Oliveira et al. [39]
also reported that from March to June, the mean wind speed is expected to be 4.8 ms−1 while between
August and December, the winds are expected to be stronger (around 9.0 ms−1).

We use statistical descriptors as the bias, root mean square error (RMSE), correlation, standard
deviation, mean and maximum values in Table 3, to interpret the goodness-of-fit among the spectral
methods, showed in Figure 6. Bold numbers indicate high correlation and low RMSE occurrence,
simultaneously, an indicator of agreement between the spectral method and the QuikSCAT output.
Based on such analysis, we notice that the spectral methods presented best performance, particularly
for imagettes with wind speeds up to 10 ms−1.

Certainly, the 2-D Mexican-hat wavelet characteristics as continuity and axis symmetry have played
an important role in extracting structures as streaks. This method detects the highest and lowest
backscatter structures in the SAR images, providing the best results in our experiments. Also, we observe
that the à trous wavelet transform decomposition with B3-spline base function achieves comparable
results to the 2-D Mexican-hat results. Table 3 shows that it outperforms the other methods regarding

Table 3. Statistical parameters of the comparison of the scatter plot shown in Figure 6.

Total data set (41 imagettes) Only imagettes with wind speed values < 10 ms−1

Measures Triangular B3-spline Gabor Hat Triangular B3-spline Gabor Hat

bias (◦) 19.75 17.01 -0.13 -12.24 19.90 16.39 -1.82 -10.25
RMSE (◦) 72.13 31.15 60.68 63.66 82.60 31.24 69.00 38.82
correlation 0.35 0.57 -0.11 0.47 0.35 0.61 -0.22 0.62
std. dev. (◦) 73.92 24.57 49.24 70.61 85.50 23.31 53.22 47.44
mean (◦) 301.39 298.65 281.50 269.39 298.23 294.71 276.51 268.07
maximum (◦) 353.54 347.28 360 328.28 353.39 347.28 360 327.46

QuikSCAT parameters

mean (◦) 281.63 278.33
std. dev. (◦) 30.54 33.50
maximum (◦) 330 328.5
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the RMSE and correlation measures, particularly for data set with wind speeds up to 10 ms−1. Wind
directions estimated by this method are highly correlated (0.61) with QuikSCAT data and thus present
the lowest RMSE (31.15◦) and standard deviation (23.31◦).

The Gabor wavelet transform combined with the spectral method performs poorly in comparison
with other methods if we look at the bias, RMSE and correlation, as shown in Table 3. Notice that
the estimated directions are low correlated (−0.11 and −0.22) with QuikSCAT and the RMSE values
(60.68◦ and 69◦) indicate that the Gabor function misses most of the streak patterns from SAR images.

In accordance to the results reported by Fichaux and Ranchin [8], the à trous wavelet transform
decomposition with a triangular base function, performs well in areas of high wind speeds
(above 9−10 ms−1) and it is less accurate when performed in areas of low to moderate wind speeds
(4−9 ms−1).

Henceforth, our investigation focuses on the two best spectral methods: à trous with B3-spline and
Mexican-hat. We use wind direction results of these two methods as the inputs to CMOD models for
wind speed estimation. Thus, for each imagette we compare the CMOD results with the corresponding
QuikSCAT speed data.

Table 4. Statistical parameters of the comparison of the scatter plot shown in Figure 7.

B3-spline Mexican-hat
Measures CMOD-IFR2 CMOD4 CMOD5 CMOD-IFR2 CMOD4 CMOD5
bias (ms−1) 0.79 0.12 0.64 0.63 0.06 0.68
RMSE (ms−1) 1.75 1.34 1.71 1.34 0.99 1.26
correlation 0.72 0.79 0.69 0.85 0.90 0.87
std. dev. (ms−1) 2.06 2.05 1.91 2.17 2.29 2.09
mean (ms−1) 9.71 9.05 9.57 9.56 8.98 9.60
maximum (ms−1) 11.33 10.87 10.97 11.61 11.07 11.48

QuikSCAT parameters
mean (ms−1) 8.92
std. dev. (ms−1) 2.11
maximum (ms−1) 11.2

Figure 7 and Table 4 provide data to compare RADARSAT-1 and QuikSCAT wind speeds. Under
low wind speeds, secondary factors can affect the backscatter from the ocean such as meteorological
phenomena and oceanic phenomena, causing backscattering variations for the same wind intensity [19].
The largest differences between the 3 C-band models occur at wind speeds above 10 ms−1. At moderate
wind speeds they agree fairly well. The CMOD-IFR2 and CMOD5 models are very similar to each
other. The main difference occurs at very high wind speeds >20 ms−1, where CMOD5 tends to output
higher winds [13].

We perform the experiments by using the best wind direction results as inputs to C-band models to
reduce estimate errors. In areas of low to moderate wind speeds the approximation of estimated speeds
and QuikSCAT data was better for CMOD4 with the lowest RMSE values (1.34 ms−1 and 0.99 ms−1).
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Figure 7. Comparison of wind speed retrieval results and QuikSCAT scatterometer winds.
(a, c, e) Wind direction estimated by the FFT method using B3-spline function. (b, d, f)
Wind direction estimated by the FFT method using Mexican-hat function.

(a) (b)

(c) (d)

(e) (f)

Table 4 displays the estimated speeds with CMOD4 for the RADARSAT-1 SAR standard images. They
are highly correlated (0.79 and 0.9) with QuikSCAT data.

The comparison with respect to the different CMOD models is performed using the wind directions
resulting from the FFT algorithm with à trous wavelet (B3-spline) and FFT algorithm with Mexican-hat
wavelet. In this paper, we apply the PR model called Elfouhaily scattering to estimate the NRCS for
SAR images with the HH polarization, as suggested in [27]. Such a model allows estimation of wind
speed in fairly agreement with wind speed values at several meteorological observation stations. Table 4
displays that CMOD4 outperformed the other C-band based models concerning RMSE and correlation
values. It implies that the estimated speed values are close to the QuikSCAT values. At low to moderate
wind speed values, CMOD4 is the best choice to retrieve SAR wind speed in high resolution SAR
images acquired at C-band [26]. However, especially at high wind speed, CMOD4 underestimates the
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wind speeds significantly. Also CMOD-IFR2 and CMOD5 output better estimations at high wind speed
values, but still underestimate the wind speed [13].

5. Conclusions

We proposed a framework to retrieve wind direction from RADARSAT-1 and ENVISAT ASAR
images acquired with HH polarization in transmitting and receiving at C-band and from ALOS PALSAR
images collected at L-band and with HH polarization. Wind speeds were retrieved from RADARSAT-1
images using an empirical model that gives the dependency of the NRCS on wind speed, wind direction
and incidence angle. The model was developed for the ERS-1 SCAT operating at C-band with
VV polarization, and was extended to HH polarization by considering an incidence-angle-dependent
polarization ratio.

Our algorithm decomposed images by applying undecimated wavelets and Fourier transforms to
estimate direction of the prevailing winds in SAR images. The novel steps encompassed the Gabor and
Mexican-hat undecimated wavelet transforms to derive detail images. The performance of the algorithms
was compared with the LG and WDWaT methods. Furthermore, we also implemented a standard and
widely-used spectral method in the literature, with a different scaling function, the B3-spline, obtaining
better results, given the wind speed range under inspection.

The main difference between the Mexican-hat wavelet and the à trous algorithm with B3-spline relies
on the fact that the former enhances the streak patterns, as well as the latter, but it also enhances
undesirable noise and small-scale fluctuations when deriving wind fields from SAR images. It is a
particular characteristic of the Mexican-hat wavelet. Both methods performed similarly when discarding
imagettes containing wind speed values >10 ms−1. In this case, the algorithms achieved the lowest
RMSE and the highest correlation values. Our investigations suggested that it was accomplished by
the multiscale blurring effect, provided by the B3-spline and Mexican-hat wavelet bases, which reduced
undesirable noise, and small-scale surface roughness, in the range of low to moderate wind speeds. In
addition, this blurring effect preserved relevant information (e.g. streaks) for direction estimation for
several scales. Our results also suggested that the wavelet coefficients, obtained with the B3-spline
base function, were more suitable to characterize wind-induced streaks oriented in the wind direction
in scales higher than 200 m. It means that the à trous decomposition with triangular function in low to
moderate wind speed areas is more sensitive to small-scale roughness than B3-spline base function, as
we expected.

We noticed that speckle noise caused small-scale fluctuations in the backscatter of the SAR images.
This motivated our tuning of the B3-spline and Mexican-hat functions to extract wind-induced streaks
and ignore surface small-scale intensity variations. It is noteworthy that the proposed method also
smoothed speckle when applied to our dataset of multi-look SAR images. The combination of smoothing
effect and multi-look processing, with streak pattern enhancement for wind fields estimation, improved
the algorithm accuracy. Due to the ability of these masks to smooth variations of intensity at small-scales,
the performance of the algorithm was superior in areas of low to moderate wind speeds in comparison
with areas of high wind speeds. On the other hand, we observed that the energy of the Gabor wavelet
function could have been tuned differently, probably improving wind direction estimates if considering
a more extensive exploration of the parameters for better alignment with the streak patterns.
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Further developments will include a larger data set to evaluate the performance of the proposed
method for wind field estimation for different terrains. Preliminary tests show that SAR images of
hurricanes in the Pacific Ocean could be detected using the proposed algorithm. We might extend the
algorithms for application to images from storms, hurricanes, typhoons and oil spill detection.
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We acknowledge Venerando Eustáquio Amaro from the Geology Department and Geoprocessing
Laboratory at Federal University of Rio Grande do Norte, Brazil, for providing SAR images and climate
descriptions of the area. We are grateful to the Brazilian agencies FUNCAP and CNPq for the financial
support. This work was partially supported by the Applied Mathematical Science subprogram of the
Office of Energy Research, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098 and
by the Director, Office of Science, Advanced Scientific Computing Research, U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

References

1. Adamo, M.; De Carolis, G.; Morelli, S.; Parmiggiani, F. Synergic use of SAR imagery and
high-resolution atmospheric model to estimate wind vector over the Mediterranean Sea. Proc.
SPIE 2004, 5574, 470–481.

2. Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic
aperture radar wind retrieval. J. Geophys. Res. 2002, 107, 1–13.

3. Cameron, I.; Lumsdon, P.; Walker, N.; Woodhouse, I. Synthetic aperture radar for offshore
wind resource assessment and wind farm development in the UK. In Proceedings of SEASAR
2006: Advances in SAR Oceanography from ENVISAT and ERS Missions, Frascati, Italy, 2006;
Volume 613, pp. 1–6.

4. Girard-Ardhuin, F.; Mercier, G.; Collard, F.; Garello, R. Operational oil-slick characterization by
SAR imagery and synergistic data. IEEE J. Oceanic Eng. 2005, 30, 487–495.

5. Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ.
2005, 95, 1–13.

6. Solberg, A.H.S.; Brekke, C.; Husøy, P.O. Oil spill detection in RADARSAT and ENVISAT SAR
images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 746–755.

7. Du, Y.; Vachon, P.W.; Wolfe, J. Wind direction estimation from SAR images of the ocean using
wavelet analysis. Canadian J. Remote Sens. 2002, 28, 498–509.

8. Fichaux, N.; Ranchin, T. Combined extraction of high spatial resolution wind speed and wind
direction from SAR images: A new approach using wavelet transform. Canadian J. Remote Sens.
2002, 28, 510–516.

9. Wackerman, C.C.; Rufenach, C.L.; Shuchman, R.A.; Johannessen, J.A.; Davidson, K.L. Wind
vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens.
1996, 34, 1343–1352.

10. Zecchetto, S.; De Biasio, F. On shape, orientation, and structure of atmospheric cells inside wind
rolls in two SAR images. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2257–2262.



Sensors 2010, 10 6014

11. Ceccarelli, M.; De Filippo, M.; Di Bisceglie, M.; Galdi, C. A texture based approach for ocean
surface wind detection in SAR images. In Proceedings of IEEE International Workshop on Imaging
Systems and Techniques, IST 2008, Chania, Greece, 2008; pp. 193–197.

12. Koch, W. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 702–710.

13. Horstmann, J.; Koch, W. Measurement of ocean surface winds using synthetic aperture radars.
IEEE J. Oceanic Eng. 2005, 30, 14–23.

14. Monaldo, F.M.; Thompson, D.R.; Beal, R.C.; Pichel, W.G.; Clemente-Colon, P. Comparison of
SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans.
Geosci. Remote Sens. 2001, 39, 2587–2600.

15. Zecchetto, S.; De Biasio, F. A wavelet-based technique for sea wind extraction from SAR images.
IEEE Trans. Geosci. Remote Sens. 2008, 46, 2983–2989.

16. Horstmann, J.; Koch, W.; Lehner, S.; Tonboe, R. Wind retrieval over the ocean using synthetic
aperture radar with C-band HH polarization. IEEE Trans. Geosci. Remote Sens. 2000,
38, 2122–2131.

17. Agency, C.S. Satellite RADARSAT-1, Canadian Space Agency. Available online:
http://www.asc-csa.gc.ca/eng/satellites/radarsat1 (accessed on 12 August 2005).

18. Isoguchi, O.; Shimada, M. An L-band ocean geophysical model function from PALSAR. IEEE
Trans. Geosci. Remote Sens. 2009, 47, 1925–1936.

19. Choisnard, J.; Power, D.; Davidson, F.; Stone, B.; Howell, C.; Randell, C. Comparison of C-band
SAR algorithms to derive surface wind vectors and initial findings in their use marine search and
rescue. Canadian J. Remote Sens. 2007, 33, 1–11.

20. QuikSCAT data are produced by Remote Sensing Systems and sponsored by the NASA Ocean
Vector Winds Science Team. Available online: www.remss.com/ (accessed on 5 June 2010).

21. Daubechies, I. Orthonormal bases of wavelets with finite support–connection with discrete filters.
In Wavelets. In Proceedings of the International Conference on Time-Frequency Methods and Phase
Space, Marseille, France, December, 1989. Combes, J.M., Grossmann, A., Tchamitchian, P., Eds.;
Springer-Verlag, Berlin, Germany, 1989; pp. 38–39.

22. Koch, W.; Feser, F. Relationship between SAR-derived wind vectors and wind at 10-m height
represented by a meososcale model. Amer. Meteor. Soc. 2006, 26, 1505–1517.

23. Stoffelen, A.; Anderson, D. Scatterometer data interpretation: measurement space and inversion. J.
Atmos. Oceanic Tech. 1997, 14, 1298–1313.

24. Guiting, S.; Yijun, H.; Yijun, H. Comparison of two wind algorithms of ENVISAT ASAR at high
wind. Chin. J. Oceanol. Limnol. 2006, 24, 92–96.



Sensors 2010, 10 6015

25. Hersbach, H.; Stoffelen, A.; de Haan, S. The improved C-band geophysical model function
CMOD5. In Proceedings of the 2004 ENVISAT & ERS Symposium, Salzburg, Austria, September,
2004; pp. 1–8.

26. Horstmann, J.; Koch, W.; Lehner, S. Ocean wind fields retrieval from the advanced synthetic
aperture radar aboard ENVISAT. IEEE Trans. Geosci. Remote Sens. 2004, 42, 702–710.

27. Kim, D.; Moon, W.M. Estimation of sea surface wind vector using RADARSAT data. 2002,
80, 55–64.

28. Thompson, D.R.; Elfouhaily, T.M.; Chapron, B. Polarization ratio for microwave backscattering
from the ocean surface at low to moderate incidence angles. In Proceedings of IEEE International
Geoscience and Remote Sensing Symposium, IGARSS ’98, Seattle, WA, USA, 1998; Volume 3,
pp. 1671–1673.

29. Mallat, S.G. A Wavelet Tour of Signal Processing, 2nd ed.; Academic Press: Orlando, FL, USA,
1998.

30. Holschneider, M.; Kronland-Martinet, R.; Morlet, J.; Tchamitchian, P. A real-time algorithm for
signal analysis with the help of the wavelet transform. In Wavelets, Time-Frequency Methods
and Phase Space; Combes, J.M., Grossmann, A., Tchamitchian, P., Eds.; Springer-Verlag, Berlin,
Germany, 1989; pp. 286–297.

31. Shensa, M. The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE
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