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Abstract: Poly(D,L-lactide) synthesis using tin(II) 2-ethylhexanoate initiated ring-opening 

polymerization (ROP) takes over 30 hours in bulk at 120 °C. The use of microwave makes 

the same bulk polymerization process with the same initiator much faster and energy 

saving, with a reaction time of about 30 minutes at 100 °C. Here, the poly(lactide) 

synthesis was done in a microwave reactor, using frequency of 2.45 GHz and maximal 

power of 150 W. The reaction temperature was controlled via infra-red system for in-bulk-

measuring, and was maintained at 100 °C. Different molar ratios of monomer and initiator, 

[M]/[I], of 1,000, 5,000 and 10,000 were used. The achieved average molar masses for the 

obtained polymers (determined by gel permeation chromatography) were in the interval 

from 26,700 to 112,500 g/mol. The polydispersion index was from 2.436 to 3.425. For 

applicative purposes, the obtained material was purified during the procedure of 

microsphere preparation. Microspheres were obtained by spraying a fine fog of polymer 

(D,L-lactide) solution in tetrahydrofuran into the water solution of poly(vinyl alcohol) with 

intensive stirring.  

 

OPEN ACCESS 



Sensors 2010, 10                            

 

 

5064 

Keywords: poly(D,L-lactide); novel microwave synthesis; ring-opening polymerization (ROP)  

 

1. Introduction  

Polymers based on lactic acid deserve great attention because they decompose by hydrolysis in the 

human body into nontoxic metabolites. Among the many applications found for these polymers in 

medicine, it is worth mentioning: a fracture fixer [1,2], surgical cord for the inner lesions suture [2–6], 

various implants [7,8] and material for target therapy or controlled release of medications [9–20]. The 

traditional method of poly(lactide) (PLA) synthesis required rigorous conditions: a high vacuum, long 

polymerization times and the consumption of great quantities of energy, using  metal or metal oxide as 

a catalyst to speed up the reaction and minimize the pyrolysis by reducing the temperature [21–29].  

Polymerization of lactide has the same basic approach: 

 Re-crystallization of lactide monomer in order to eliminate possible impurities; 

 Drying of the monomer and ampoules for polymerization, because lactide hydrolyzes in the 

presence of even traces of moisture; 

 Filling of ampoules with the monomer mixture and the initiator, and sealing under extreme 

vacuum; 

 Polymerization process at high temperature, usually from 100 to 130 °C, sometimes even up to 

280 °C, for a duration of 20 to 30 hours, sometimes over 50 hours; 

 Precipitation of the obtained polymer from the solution by means of a non-solvent to eliminate 

the residual monomer and initiator; 

 Drying under vacuum.  

The poly(lactide) synthesis is carried out by ring-opening polymerization according to the scheme 

given in the Figure 1. 

Figure 1. Scheme of poly(lactide) synthesis. 

 

  

The difficulties of poly(lactide) synthesis can be successfully overcome by microwave heating. 

Microwave radiation has numerous advantages compared to conventional heating: homogeneous 

heating of the whole volume of the reaction mixture, high transfer energy per unit of time, improved 

yield, the possibility of the process acceleration and synthesis without using great quantity of the 

solvent. Polymerization assisted by microwave provides a new approach for enhancing polymer 

properties as well as economic advantages through energy saving and accelerated product 

development. Animated by numerous successes in the organic synthesis field, the use of microwaves 
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enables a drastic reduction of polymerization time, to only 5–30 minutes, while obtaining polymers of 

high molar mass at the same time. For example, super absorbing resin was synthesized by using 

microwaves in only six minutes [30].  

The power of microwaves of 150 W has been used in the synthesis of poly(D,L-lactide), which is 

several times lower than the power used in other polymer synthesis processes, using up to 800 W [31].  

The homogeneous nature of microwave heating eliminates local overheating at the reaction walls, 

which can lead to side products. Therefore, microwave-irradiated reactions are not only faster, but 

proceed with higher purity and, consequently, higher yields. In an industry where time is money, the 

dramatic rate acceleration and increased purity and yields of microwave assisted reactions make them 

attractive for high-produced polymers. 

To develop a technique of microwave-assisted polymerization of D,L-lactide, to efficiently and 

easily prepare poly(D,L-lactide) with high molecular weight, the ring opening polymerization of  

D,L-lactide by microwave irradiation under atmosphere was investigated. Both lactic acid and its 

oligomer are polar molecules, so they can absorb microwave energy to increase the temperature. 

2. Experimental Section  

2.1. Materials 

D,L-Lactide (3,6-dimethyl-1,4-dioxane-2,5-dione), (98% purity) was from Sigma-Aldrich 

Wisconsin. Tin(II) 2-ethylhexanoate (Stannous octoate), (95% purity), density 1,251 g/mL at 25 °C 

was from Sigma-Aldrich Wisconsin. Chloroform and methanol were high-performance liquid 

chromatography grade. Other solvents, toluene, tetrahydrophurane (THF), and water were of reagent 

grade. All solvents were purchased from Merck Chemical Co. Poly(vinyl alcohol) (PVA, 88 mol% 

hydrolyzed, Mw 25,000) was purchased from Polysciences, Inc. (Warrington, PA, USA). 

Three mol ratios of monomer and initiator were used for the synthesis: [M]/[I] = 1,000, 5,000 and 

10,000. Composition of reaction mixtures for the synthesis in microwave reactor are shown in Table 1. 

Table 1. Composition of reaction mixtures for the synthesis in microwave reactor (molar 

concentration of monomer [M] and [I] initiator).  

Sample [M]/[I] mM, g mC, mg 

MWS-1 MWS-2 MWS-3 1/1,000 5 14.05 

MWS-4 MWS-5 MWS-6 1/5,000 5 2.81 

MWS-7 MWS-8 MWS-9 1/10,000 5 1.41 

   mM - the mass of the monomer 

   mC - the mass of the initiator 

2.2. Microwave-Assisted Synthesis of PLLA 

Dry D,L-lactide (5 g, 34.7 mmol), pre-crystallized from methanol, was placed in evaporating bowls, 

14.05, 2.81 or 1.41 mg tin(II) 2-ethylhexanoate (34.7, 6.9 and 3.47 mol) was added with 1 cm
3
 dry, 

fresh distilled toluene. The mixture was homogenized, and then toluene was evaporated at 60 °C in 

vacuum for 12 h. The reaction mixture was then removed into glass ampoule and closed under reduced 

pressure. Polymerization was performed in a ―Discover‖ focus microwave reactor, CEM Corporation, 
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Matthews, NC, USA. The frequency and the power applied were 2.45 GHz and 150 W, respectively. The 

temperature regulation was carried out by infrared mass measuring system and maintained at 100 °C. 

2.3. Poly(D,L-lactide) Microsphere Preparation 

After polymerization, the polymer was precipitated by methanol from the chloroform solution to 

purify it from residual monomer and initiator. Poly(D,L-lactide) were dissolved in 10 mL 

tetrahydrofuran to provide concentration of 2 to 4% wt/vol. The solution was then sprinkled into a  

200 mL aqueous solution containing 0.5% wt/vol poly(vinyl alcohol) (PVA). The mixture was stirred 

on a hot plate magnetic stirrer to form a stable emulsion system at room temperature (25 ± 2 °C). 

Stirring was continued for 3 hour at 65 °C to allow the evaporation of tetrahydrofuran and the 

formation of solid micro-spheres. Microspheres were filtered, washed with distilled water, and dried 

until no weight loss was observed. 

2.4. Characterization of Obtained Polymers and Microspheres 

Fourier transform infrared spectrum, FTIR, was recorded by Bomem Hartmann & Braun MB-series. 

Samples were milled with KBr (0.5 mg of the sample with 150 mg of KBr) and formed tablets under 

vacuum press. Recording was performed in the wave band range from 400 to 4,000 cm
−1

. 

The molecular weight of obtained polymers was determined by gel permeation chromatography, 

GPC, using Agilent 1100 Series system with refractive index, RID 1200, and diode array, DAD, 1200 

(recording at 212 nm) detectors. Used column ZORBAX PSM 300, 250 × 6.2 mm, 5 m, covered 

molecular mass range 3 × 10
3
–3 × 10

5
 g/mol and operated at temperature 25 °C. Tetrahydrofuran used 

as eluent (flow 1 cm
3
/min). Sample injection volume was 10 μl. The average molar masses, Mn, Mw 

and poly(D,L-lactide) polydispersivity index Q were determined by software Agilent ChemStation for 

LC and GPC. Poly(styrene) standards were used to make calibration curve: 10.000 g/mol  

(Mw = 10.640, Mn = 9.940, Mp = 10.860, Q = 1.07, FLUKA), 100.000 g/mol (Mw = 94.900,  

Mn = 89.300, Mp = 89.400, Q = 1.06, FLUKA), 300.000 g/mol (Mw = 319.000, Mn = 305.000,  

Mp = 321.000, Q = 1.05, FLUKA).  

The morphologies of the microspheres were observed using a scanning electron microscope (SEM, 

JEOL JSM–5300, Japan). The microspheres were vacuum dried at room temperature, mounted onto 

brass stubs and sputter-coated with gold in an argon atmosphere using JEOL JFC–1100 ion sputter. 

3. Results and Discussion  

This work concerned the tin(II) 2-ethylhexanoate initiated synthesis of poly(D,L-lactide). Figure 2 

shows the temperature and the applied power of the reaction mixture as dependent on the reaction time. 

D,L-Lactide readily absorbs the microwaves, having as a result a fast temperature increase in the first 

80 seconds. After the start of the reaction, heat is released due to the exothermic effect of the 

polymerization reaction (since almost all of the initiator is included in the reaction). The temperature 

(140 °C) rises above the appointed value (100 °C) although the microwave radiation is automatically 

switched off, as the program of the microwave reactor is set at maintaining the temperature at 100 °C. 

The applied power of 150 W at the beginning of the reaction becomes zero after reaching the appointed 
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temperature (in about 1.5 minutes). In the sequel of the polymerization reaction, power of only about 

20 W is applied to maintain the temperature, in pulses of several tens of seconds with intermittent 

pauses of similar duration. The graph shows that the beginning of the polymerization occurs at 70 °C, 

that the absorption of microwaves decreases with the increase of the polymer content in the reaction 

mixture and that the highest absorption is that of pure monomer. 

The change of reaction mixture temperature from the period of 3–20 minutes shows that the 

microwave absorption is still present and that there is still some monomer in the reaction mixture to be 

polymerized, hence the temperature leaps from the polymerization reaction exothermicity. Namely, 

every intermittent temperature leap follows the automatic turning off of microwave radiation. After  

20 minutes the temperature change becomes insignificant and it is maintained constant only through 

the microwaves absorption, but there are no more temperature leaps or exothermal processes in the 

reaction mixture, indicating that the monomer conversion into polymer is complete. 

Figure 2. Temperature and microwave radiation power dependence on reaction time 

(sample MWS-6) for (poly(D,L-lactide) synthesis in bulk. 

 

 

The molecular structures of synthesized polymers were confirmed by FTIR methods. FTIR spectrum 

of the monomer D,L-lactide (Figure 3) shows bands at 2,915.32 and 2,950.57 cm
−1

 from symmetric and 

asymmetric valence vibrations of C-H, respectively. Bands at 2,925.22 and 3,004.12 cm
−1

 originate from 

symmetric and asymmetric valence vibrations of C-H from CH3, respectively. In the FTIR spectrum of 

the monomer D,L-lactide, bands also appear at 1,267.27 cm
−1

 (asymmetric valence vibrations of  

C-O-C in the lactonic ring), 1,099.83 cm
−1

 (symmetric valence vibrations of C-O-C in the lactonic 

ring), 1,770.43 cm
−1

 (cyclic dilactone C = O valence vibration), 1,445.11 and 1,386.96 cm
−1

 

(asymmetric and symmetric bending vibration of C-H from CH3, respectively) and 930.9 cm
−1

 (COO 

ring breathing mode). 

In the FTIR spectrum of poly(D,L-lactide), with the monomer/initiator ratio of 1/5,000, obtained for 

15 minutes, bands were present at 2,831.82 and 2,945.82 cm
−1

 from symmetric and asymmetric 

valence vibrations of C-H, respectively (Figure 4). At 2,881.28 and 2,996.37 cm
−1

, bands were from 

symmetric and asymmetric valence vibrations of C-H from CH3. Asymmetrical valence vibrations of 
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C-O-C of the aliphatic chain were shifted at 1,187.45 cm
−1

, and symmetrical valence vibrations of  

C-O-C of the aliphatic chain 1,090.16 cm
−1

, compared with bands at 1,276 and 1,099 cm
−1

, which 

appeared in monomer D,L-lactide, Figure 5. Accompanying bands at 1,757.33 cm
−1

 (valence vibration 

of C=O of aliphatic ester), 1,455.41 and 1,383.37 cm
−1

 (asymmetric and symmetric bending vibration 

of C-H from CH3, respectively), 1,271.15 cm
−1

 (the overlap C-H bending vibration and C-O-C 

stretching vibration) were also detected. 

Figure 3. FTIR spectrum of monomer D,L-lactide. 

 

Figure 4. FTIR spectrum of poly(D,L-lactide). 
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Figure 5. FTIR spectrum of monomer D,L-lactide and obtained poly(D,L-lactide) in the 

wave band range from 400 to 2,000 cm
−1

. 

 

 

The GPC curves of synthesized polymer are shown in Figures 6 and 7. Unreacted monomer was 

found in the profile for poly(D,L-lactide) synthesized by microwaves, but with increasing reaction time 

a decreased quantity of unreacted monomers was observed (retention time 5.33 minutes), Figure 6. 

Figure 7 shows GPC curves for poly(D,L-lactide)s polymerized at the same time with different 

monomer/initiator ratios. As expected, it can be concluded that with decreasing initiator content, the 

molecular mass of obtained polymers increases. Peaks from unreacted monomers decreased with 

decreasing initiator content. 

Figure 6. The signal at RID detector in function of eluation volume for samples with the 

same monomer/initiator ratio, 1/5,000, obtained for different reaction times.  
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Figure 7. The signal at RID detector in function of eluation volume for samples with 

different monomer to initiator, [M]/[I], ratio. 

 

 

Table 2 shows the values of mean molar masses Mn, Mw and polydispersivity index Q, for  

poly(D,L-lactide) synthesized using microwaves as the function of polymerization time and 

monomer/initiator mol ratio [M]/[I]. The values of mean molar mass and the polydispersivity index 

were observed to increase with the increase of reaction duration. These values were also increased with 

the increase of monomer/initiator ratio. 

Table 2. Mean molar masses Mn, Mw and polydispersivity index Q for  

poly(D,L-lactide) synthesized using microwaves, as the function of the polymerization time 

and monomer/initiator [M]/[I] mol ratio. 

Sample Reaction time, min [M]/[I] Mn, g/mol Mw, g/mol Q Yield (%) 

MWS-1 10 1/1,000 35,820 108,033 3.016 68 

MWS-2 20 1/1,000 40,982 127,126 3.102 81 

MWS-3 30 1/1,000 59,483 203,729 3.425 89 

MWS-4 10 1/5,000 26,724 78,461 2.936 81 

MWS-5 20 1/5,000 42,470 131,359 3.093 83 

MWS-6 30 1/5,000 102,321 287,111 2.806 83 

MWS-7 10 1/10,000 32,627 79,479 2.436 87 

MWS-8 20 1/10,000 62,075 164,498 2.650 89 

MWS-9 30 1/10,000 112,542 309,940 2.754 95 

 

Figure 8 shows the SEM image of poly(D,L-lactide) spheres obtained by spraying a fine fog of 

poly(D,L-lactide) solution in tetrahydrofuran into the water solution of poly(vinyl alcohol) with 

intensive stirring.  
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Figure 8. SEM micrograph of poly(D,L-lactide) microspheres; magnified 500 X, bar = 50 m. 

 

 

 

Such microspheres can be used as polymer matrices for the production of devices for controlled 

release of medicinal substances, since the diameter of the microspheres is appropriate for phagocytosis 

by macrophages. 

4. Conclusions  

The reduction of poly(D,L-lactide) synthesis duration and energy consumption by using microwaves 

enables a more economical production. The microwave synthesis requires more energy during the first 

few seconds only to obtain uniform and intensive initiation. The polymerization reaction course is 

readily supervised by monitoring the temperature of the reaction mixture by infra-red sensors and the 

applied power of microwave radiation. poly(D,L-lactide) could be synthesized effectively by 

microwave-assisted ring opening polymerization using tin(II)2-ethylhexanoate as a initiator. This 

microwave assisted polymerization was much faster than the literature data for polymerization heated 

by a conventional oil bath under similar reaction conditions. The monomer/initiator ratios had a strong 

influence on the molecular masses and polydispersity of obtained polymers. A higher 

monomer/initiator ratio resulted in polymers with higher molar masses and lower polydispersity, Q. At 

a reaction temperature of 100 °C, the prolonged microwave irradiation time showed a significant effect 

on the increasing polymer molar mass.  

From SEM imagine of microspheres it was concluded that the technique provides uniform sized 

spheres. The size of the obtained microspheres was about 50 μm.  
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