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Abstract: This study presents the fabrication of a low cost poly-acrylic acid (PAA) based 

emission filter integrated with a low light CMOS contact imager for fluorescence 

detection. The process involves the use of PAA as an adhesive for the emission filter. The  

poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, 

miscibility with polar protic solvents and most importantly its bio-compatibility with a 

biological environment. The emission filter, also known as an absorption filter, involves 

dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to 

uniformly bond the absorbing specimen and harden the filter. The PAA is optically 

transparent in solid form and therefore does not contribute to the absorbance of light in the 

visible spectrum. Many combinations of absorbing specimen and polar protic solvents can 

be derived, yielding different filter characteristics in different parts of the spectrum. We 

report a specific combination as a first example of implementation of our technology. The 

filter reported has excitation in the green spectrum and emission in the red spectrum, 

utilizing the increased quantum efficiency of the photo sensitive sensor array. The 

thickness of the filter (20 μm) was chosen by calculating the desired SNR using  

Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum 

Efficiency of the sensor array. The filters promising characteristics make it suitable for low 

light fluorescence detection. The filter was integrated with a fully functional low noise, 

low light CMOS contact imager and experimental results using fluorescence polystyrene  

micro-spheres are presented. 
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1. Introduction  

Fluorescence spectroscopy will be a key component of future micro-total-analysis-systems 

(μTASs) [1,2], which will integrate the capabilities of entire laboratories onto compact devices 

consisting of microchips and other micro-fabricated elements (Lab-on-a-chip) [3–7]. A key component 

in fluorescence analysis is the optical filter that separates the excitation light from the fluorescence 

emission. Ideally, the optical filter component should be monolithically integrated to the lab-on-a-chip 

device, as well as simple to fabricate at low cost [8,9].  

One simple approach to building a miniaturized imaging system capable of micro scale resolution is 

to directly couple the sensor array with the sample of interest, referred to as Contact Imaging [10]. 

Contact image sensors, compared with conventional imagers, do not require optical elements, such as 

lenses between the sample and the sensor array, providing better collection efficiency without optical 

loss [11]. For objects in close proximity with the sensor surface, the contact imager subtends nearly 2π 

of the total solid angle, so the collection efficiency can be as high as 50% for samples that emit 

light [12]. Salama et al. [13] estimated that the optical efficiency of a contact imaging system is 

improved by 35 dB in comparison with camera-based imaging system [14]. This makes it possible to 

use a low power LED as an illumination source for dark objects because the improvement in collection 

efficiency allows the detection of a weak signal. The distance between the object of interest and the 

sensor array is mainly determined by the thickness of the optical filter and therefore thin filters  

are desired. 

Fluorescence imaging is widely used in areas such as cell analysis, diagnosis bioengineering and 

pharmaceutical and genomic research [15–19]. Therefore the fundamental requirement of the filter is 

that it be bio-compatible with the object of interest. This requires minimizing the impact on cell 

physiology while protecting the sensor array from damage by exposure to the biological environment. 

Many groups have reported results for optical absorption filters using either bandgap semiconductor 

material or organic material [20–22]. We propose an absorption filter using poly-acrylic acid due its 

optical transparent properties, adhesive properties, miscibility with polar protic solvents and most 

importantly its bio-compatibility with a biological environment. Many groups have reported filters in 

the ultraviolet and blue spectrum [3,23,24]; we propose a possible filter in the red spectrum, utilizing 

the increased quantum efficiency of the photo sensitive sensor array. 

We begin in section 2 with a brief overview of fluorescence spectroscopy to lay the groundwork for 

evaluating the various filter approaches. Section 3 will discuss other state of the art filter techniques 

and technologies. Section 4 will propose our method for design and fabrication of the optical filter. 

Section 5 introduces the CMOS image sensor, describes the electrical and optical setup and 

summarizes the figures of merit for the prototype image sensor. Section 6 will discuss the integration 

of the filter with the CMOS imager and show results of the complete system. Lastly, Section 7 will 

conclude the work.  
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2. Fluorescence Spectroscopy 

Fluorescence spectroscopy, or spectrofluorometry, is a type of electromagnetic spectroscopy which 

analyzes fluorescence from a sample, which can be intrinsic to the specimen under study, introduced 

into it, or chemically bound to it. Molecules have various states referred to as energy levels. Generally, 

the species being examined will have a ground state (a low energy state), and an excited state of higher 

energy. Fluorescence, involves using a beam of light that excites a nanostructure such as an atom or a 

molecule to an excited state. As the nanostructure relaxes to its ground state it emits light of a lower 

energy, typically, but not necessarily, visible light [25]. Fluorescence spectroscopy is primarily 

concerned with the vibrational states. 

 

Figure 1. Typical peaks in the excitation (left) and emission (right) spectra, in arbitrary 

units. The wavelength filter (dashed line) must reject the excitation light and transmit the 

emitted fluorescent light. Excitation with off-peak (λoff) lowers the emission intensity. 

 

 
 

The absorption spectrum illustrated for a generic fluorophore in Figure 1 has a peak at λex, and the 

emission spectrum has a peak at λem. The distance between λex and λem is called the Stokes Shift. Stokes 

shift can be as small 10 nm or as large as 150 nm, depending on the fluorophore [26].  

If the fluorophore is excited at an off-peak wavelength off , the resulting fluorescence spectrum will 

be unchanged but will have lower amplitude then if it is excited at ex . The number of photons emitted 

is typically much smaller than the number absorbed, reflecting the existence of non-radiative pathway 

for the decay of the fluorophore from its excited state. The ratio of the emitted to absorbed photons is 

the quantum yield of the fluorophore. The emission light is in the order of 10−4 to 10−6 [27] of the 

excitation light and therefore it’s important to have high attenuation at λex and low attenuation at λem. 

Fluorescence can be detected visually, for example using a fluorescence microscope, or it can be 

converted to an electrical signal and detected in such devices as CMOS imagers. There have been 

many advances in CMOS imaging in the last decade but the basic operating principle has not changed. 
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CMOS imagers comprise of an excitation source, a wavelength filter and a detector. There are many 

types of excitation sources that can be used. We present our results using a Newport monochromator, 

which is suitable for use in laboratory conditions. The wavelength filter is of importance because it 

discriminates between excitation light and emission photons by significantly reducing the excitation 

light intensity reaching the detector while allowing through as much of the weak fluorescence signal as 

possible. The detector in our case is the CMOS contact imager that was designed in the Integrated 

Sensors, Intelligent Systems (ISIS) Lab at the University of Calgary. 

Four parameters that characterize optical filters are rejection levels, transmission levels, absorption 

edge width or roll-off and absorbance. The rejection level is the wavelength at which wavelengths are 

blocked in the stop band and transmission level is the wavelength at which wavelengths are 

transmitted in the pass band. The absorption edge, or roll-off, is the sharpness of the transition between 

the stop band and the pass band. Ideally, the absorption edge should be vertical and located to the right 

of λex and to the left of the entire emission spectrum. The absorbance (A = −log(T) = log(I0/Ii)) is 

defined as minus the base 10 logarithm of the transmittance (T = I0/Ii), which is the ratio of the output 

light intensity to the incident light intensity. Ideally, the filter should transmit 0% of the excitation 

light and 100% of the fluorescence emitted light. The absorbance includes losses due to absorption, 

reflection and scattering. Intensity is defined as power per unit area.  

3. State of the Art Filters. 

The first types of filters used at the micro-scale were interference filters or dichroic filters. An 

interference filter consists of multiple thin layers of dielectric material having different refractive 

indices and there also may be metallic layers. Interference filters are wavelength-selective by virtue of 

the interference effects that take place between the incident and reflected waves at the thin-film 

boundaries. The advantages with interference filters are; compatibility with integrated circuitry which 

can be readily integrated into larger micro scale systems, arbitrary spectral profiles can be obtained 

using different layer arrangements and they can be fabricated using standard, low-temperature 

processes. A disadvantage of interference filters is that the spectral response depend on the angle of 

incidence and the polarization of the incoming light, which is a major drawback in contact imaging 

due to the close proximity of the object of interest with the sensor array (<100 μm). A variation of a 

few nanometers in the thickness of the layers can cause large errors in the cutoff wavelength which can 

reach  50 nm. Another disadvantage is that it’s difficult to fabricate multiple filters of this type for 

different colors on one surface [26] because this would require a special process where each pixel 

would be covered with a different thickness of dielectric material. 

Absorption filters are an alternative to interference filters; they are single layer filters that have high 

absorption at the excitation wavelength and low absorption at the emission wavelength. They are 

governed by Beer Lambert Law for liquids; I = I0*10-εlc, where I is the intensity of the light after the 

filter, I0 is the intensity of the incident light, ε is the molar absorptivity of the absorber, l is the 

thickness of the filter and c the concentration of the absorbing species in the material. 

For polymeric absorption filters there have been many demonstrated devices. Dandin et al. [28] 

demonstrated a UV-absorbing chromophore and were able to achieve –45 dB rejection of excitation 

wavelengths and –1.5 dB transmission of emission wavelengths on only 1.5 μm thick film. 
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Beiderman et al. [29] reported a PDMS and Sudan II blue filter with –26 dB rejection of the excitation 

light at 340 nm and –3 dB transmission of the emission light at 450 nm for a 98 μm thick filter. 

Hofmann et al. [23] also reported a dye doped PDMS filter which resulted in 0.01% transmittance 

below 500 nm and >80% above 570 nm with 1 mm thick filter. Richard et al. [30] reported an 

integrated hybrid filter that incorporates both an interference and absorption filter in such a way that 

the advantage of each technology is used to offset the disadvantages of the other. The interference 

component minimizes the thickness required of the absorbing component and sharpens its roll-off 

characteristics while the absorbing component renders the performance of the overall filter, 

independent of the incidence angle. The total rejection of the hybrid filter is –43 dB at 530 nm and 

~2 dB at 650 nm with a total thickness of 2.8 μm and a roll-off of ~100 nm.  

There are many demonstrated devices that are excited in the UV-spectrum with emission in the blue 

spectrum, but not many are reported with excitation in the green spectrum and emission in the red 

spectrum. A state of the art filter should have rejection around –60 dB and transmittance close to 0 dB, 

with a roll-off of 20 nm or less and not thicker than a few micro-meters. A possible filter that we are 

reporting is excited in the green spectrum with emission in the red spectrum, taking advantage of the 

increased Quantum efficiency of photo detectors. We report rejection of –66 dB and transmittance  

of –1.6 dB with a roll-off of 20 nm using a 20 μm thick filter. The thickness can easily be improved by 

changing the absorbing specimen (Atrazon Orange G dye in this case) to one with a higher molar 

absorptivity. Due to the miscibility of poly-acrylic acid with all the polar protic solvents; water, 

Formic Acid, Methanol, Ethanol, Propanol, Isopropanol, Butanol and Acetic Acid; the dye can be 

changed and a thinner filter can be fabricated. 

4. Emission Filters Design and fabrication 

The absorption filter is based on three parts. A polar protic solvent (in this example ethyl-alcohol), 

an absorbing specimen (in this example Astrozan Orange G dye) and an adhesive to conform the 

solution into a solid filter. For an adhesive we report the poly-acrylic acid (PAA). We chose the PAA 

solution due its optically transparent properties when cured, it conforms to a strong non-elastic solid, 

its miscibility with polar protic solvents and most importantly its bio-compatibility with a biological 

environment [31]. It’s important that the PAA be optically transparent so we can base our analysis of 

the filters spectra solely on the absorbing dye particles. 

The PAA is miscible with the polar protic solvents (i.e., a solvent that has a hydrogen atom bound 

to an oxygen atom); therefore we can use solvents such as water, Formic Acid, Methanol, Ethanol, 

Propanol, Isopropanol, Butanol and Acetic Acid to dissolve the absorbing specimen, Astrazon Orange 

G dye for this specific example. We chose ethyl-alcohol, due to its high solubility with the dye;  

50 mg/mL. After the solvent is mixed with the dye, 1ml of solution is added to 1ml of PAA and the 

filter is left to cure until the ethyl-alcohol fully evaporates.  

According to Beer Lambert’s Law for liquids absorbance becomes a linear equation: 

* *A l c  

Where A is the absorbance, l is the thickness of the filter and c is the concentration of absorbing 

species in the material. Therefore once a dye is chosen, the two parameters left in the filter design are 
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the concentration and the thickness. The molar absorptivity of the Astrazon Orange G dye as a 

function of wavelength is displayed in Figure 2.  

 

Figure 2. Molar Absorptivity of Astrazon Orange G dye as a function of wavelength. 
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The Astrazon Orange G dye dissolves best in the Ethyl-Alcohol solvent; we can achieve a 

concentration of 50 mg/ml. Any larger concentrations produce dye aggregation which will cause  

non-uniformity to the filter. To calculate the desired thickness of our filter we define SNR as the ratio 

of number of electrons produced from the fluorophore to the number of electrons produced due to 

excitation light in our CMOS sensor array for one pixel. To simplify calculation we assume the 

excitation light has a Gaussian profile (i.e., the transverse electric field and intensity distributions are 

described by Gaussian functions), the fluorophore is a point source with isotropic emission light and 

we neglect any optical path losses after the filter to the sensor array. Under these assumptions we can 

calculate the minimum filter’s thickness to give us the desired SNR. 

To determine the light power density in W / m2: 

2

1.24
( ) * ( )

( )

W hc
I J q

m um 
     

With the photon flux is defined as: 

2

#of photons

sec*m
   

From Beer Lambert’s law we can derive that transmittance T is: 

0

10 lciI
T

I
   



Sensors 2010, 10                            

 

 

5020

The fluorescence quantum yield is defined as the ratio of the number of photons emitted to the 

number of photons absorbed. The quantum yield for most flourophores is between 10−4 to 10−6, to 

calculate our SNR we’ll take the worst case of 10-6.  

The quantum efficiency: 

EN
QE

N


   

Where Ne = number of electrons produced, Nν = number of photons absorbed. The filter is integrated 

on a CMOS contact imager explained in the next section and therefore we will be using the measured 

QE to calculate the filters SNR. The measured quantum efficiency as a function of wavelength is 

shown in Figure 3. We can notice in Figure 3 that the QE is highest in the red spectrum. Many filters 

have been reported in the UV and blue spectrum for excitation and emission, respectively, but few 

have reported absorption filters in the red spectrum. Our specific example of the combination of 

Astrazon Orange G and Ethyl alcohol used with PAA produces a red filter and therefore utilizes the 

increased QE of the sensor array.  

 

Figure 3. Quantum Efficiency of an n-well over p-substrate photodiode in the prototype 

CMOS imager. 
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Using this information, we can see in Figure 4 that a minimum filter thickness of 20 μm is needed 

to achieve a positive SNR. For contact imaging, the maximum distance that the object under test can 

be from the sensor array is 100 μm. If the object is farther than 100 μm, contrast degradation becomes 

a major issue [12]. Therefore, our design of a 20 μm thick filter will satisfy the required maximum 

distance for contact imaging.  
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Figure 4. Calculated SNR as a function of the filters thickness. 
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Using the calculations from above and Beer Lamberts law, the filters absorbance spectra can be 

derived as shown in Figure 5. The filter has max attenuation of –66 dB at 570 nm and minimum 

attenuation of –1.6 dB at 650 nm. With a roll-off of 20 nm the filter allows good contrast imaging and 

is suitable for low light fluorescence detection. 

 

Figure 5. Absorbance of a 20 μm thick filter with a concentration of 50 mg/mL of 

Astrazon Orange G dye dissolved in Ethyl-Alcohol. The filter is hardened using the Poly-

Acrylic Acid as a bio-compatible and optically transparent adhesive. 
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5. Measurements of the Image Sensor 

A prototype 128 × 128 image sensor chip was fabricated in a six-metal, single-poly, mixed signal 

CMOS TSMC 0.18 μm process and operates with a 1.8 V supply. The sensor array is designed with a 

pixel pitch of 7 μm. The pixel utilizes an n-well over p substrate photodiode and achieves a fill factor 

of 30%. As described in [29], the chip design employs Active Reset (AR) and Active Column Sensor 

(ACS) readout techniques for low noise operation allowing low light imaging. This makes the 

prototype design suitable for fluorescent applications in which the signal is usually very weak. The 

main difference is that this version of the chip employs the best pixel from [29], in terms of dark 

current, and is used for the whole sensor array. Furthermore this version has a new package allowing 

compatibility with the versatile board. The fast versatile board for mixed signal applications shown in 

Figure 6 includes a cyclone II FPGA for control of digital signals and data, 12 bit ADC to convert the 

analog pixel voltage to a digital signals, SRAM to store the frames, analog biasing for the CMOS 

imager and many other functions to sufficiently test the prototype image sensor. There are many 

advantages of using the versatile board for testing the imager, but one of the most important benefits is 

that less noise is introduced to the system then the previous setup reported in [29].  

Figure 6. Versatile board for mixed signal applications. 

 

The figures of merit for the prototype image sensor are summarized below in Table 1. 

 

Table 1. Image Sensor Performance Figures of Merit. 

Parameter Measurement

Array Size 128 × 128 

Pixel Size 7 μm · 7 μm 

Supply Voltage 1.8 V 

Fill Factor 30% 

Conversion Gain 29 μV/e− 

 

u m



Sensors 2010, 10                            

 

 

5023

Table 1. Cont. 

Dark Current Density (worst case)  31 nA/cm2  

Pixel FPN (reset frame)  0.16% 

Column FPN (reset frame)  0.04% 

Peak QE  29% 

QE (at 610 nm) 29% 

Readout Non-Linearity  0.6% 

Reset Noise  9.2 e− 

Operation rate 30 fps 

Partitioned Amplifier Gain 66 dB 

6. Filter Integration and Results 

Using a room temperature vulcanizing (RTV) silicon sealant by Vishay® (M-Coat C), all the 

exposed parts of the CMOS imager can be covered apart from the sensor array. This material was 

selected mainly due to its higher viscosity and rapid curing properties, in addition to its chemical 

resistance to many solvents, see Figure 6.  

 

Figure 7. CMOS Contact Imager coated with RTV silicon Sealant, apart from the sensor array. 

 

 
 

Figure 7 depicts the cross section of the system, in which the CMOS Imager is wire bonded with a 

PGA108M package so that it can be tested with the versatile board. The RTV sealant is applied with a 

fine brush to the exposed parts covering the wire bonds and overlapping part of the CMOS Imager 

chip, but it does not cover any part of the sensor array. The PAA filter is poured on top of the sensor 

array and is encapsulated by the RTV sealant. The filter is spun in a 1000 clean room and left to cure 

until all the solvent evaporates. Once the filter hardens the bio-material under test can be placed on  

the surface. 

Fluorescent polystyrene micro-spheres approximately 40 μm in diameter and non-fluorescent 

micro-spheres approximately the same size where placed on the image sensor with the integrated filter 

using a 10-μL micropipette. The fluorescent micro-spheres are excited with green light (~542 nm) and 

emit red light (~610 nm.). For these wavelengths the filter absorbs –63 dB of the excitation light and  

–6 dB of the emission light. Figure 8a shows an image of the fluorescence and non-fluorescence 
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micro-spheres seen under a conventional microscope (top view of sensor array, using incoherent light 

source without employing florescence imaging). The fluorescence micro-spheres can be identified as 

they are brighter under the incoherent light source while the non-fluorescence micro-spheres are 

darker. Figure 8b depicts the same scene, as captured by the sensor array after picture enlargement and 

contrast adjustments. The fluorescence micro-spheres emit red light and therefore color was added to 

Figure 8b for illustration purposes. 

 

Figure 8. Cross section of the CMOS imager with the integrated PAA absorption filter. 

 

 
 

Figure 9. Fluorescence micro-spheres (Brighter beads in (a)) and non-fluorescence micro-

spheres (Darker beads in (a)) were placed on the emission filter and excited with green 

light (~500 nm–560 nm). Image of the micro-spheres (a) the chip micrograph (b) the 

sensor array after picture enlargement and contrast adjustments. Color was added for 

illustration purposes. 

 

 
(a)   (b) 
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7. Conclusion 

This paper provides a description of a fully functional low-light 128 × 128 prototype CMOS contact 

imager with a newly developed process for an integrated emission filter using poly-acrylic acid for 

fluorescence detection. Various fluorescence applications can be employed using the present process, 

while we showed a specific combination that produced a red filter, the absorbing specimen and solvent 

can be changed and filters in different parts of the spectrum can easily be produced using the same 

process. The filter described in section 4 produced promising results with a 20 nm roll-off, high 

transmission in the pass-band and high absorbance in the stop-band, and therefore is suitable for low 

light fluorescence detection. The hardened filter is poly-acrylic acid based, and due to its  

bio- compatibility the process is suitable for bio-sensing applications. 
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