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Abstract: This paper presents a computational method for detecting vibrations related to 

eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The 

vibration is indirectly measured via a frequency domain analysis of the signal from a 

piezoelectric sensor attached to the stationary component of the rotating device. The 

algorithm searches for particular harmonic sequences associated with the eccentricity of the 

device rotation axis. The detected sequence is quantified and serves as input to a regression 

model that estimates the eccentricity. A case study presents the application of the 

computational algorithm during precision manufacturing processes. 

Keywords: vibration measurement; signal processing algorithm; frequency domain 

analysis; nanotechnology 

 

1. Introduction 

The growth in recent decades of the nanotechnology area has led to the emergence of new 

challenges for researchers and engineers, due to the need for the development of sensors and devices to 

characterize physical phenomena or quantify the properties and characteristics of materials at the nano-

scale [1]. The achievable accuracy of devices and instruments related to this field requires state of the 
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art technology and ground breaking research. Contributions to the field of precision manufacturing 

will have a positive impact on sectors such as medicine, industrial, communications, aviation, 

aerospace and defence, among others. 

Electro-mechanical devices that are usually employed in precision manufacturing processes 

typically have nonlinear behavior for most representative physical variables, low signal-to-noise ratio, 

strong influence of environmental factors, the high presence of uncertainty and a huge volume of data 

generated at high frequencies. Therefore, conventional methods often cannot be applied for the 

characterization of physical phenomena in these devices. However, the use of advanced signal 

processing strategies, and experimental modelling techniques are useful and feasible ways for studying 

physical processes at these devices. 

Recent researches on precision manufacturing are focused on the development of rotary actuators 

for positioning with high accuracy [2,3]. The performance of these devices is enhanced by the 

introduction of control systems to reduce the influence of environmental factors such as  

temperature [4] and employing magnetic actuators to isolate external vibration [5]. The use of multi-

sensory monitoring strategies, such as acoustic emission [6] and vibration sensors [7] is chosen to 

improve device capabilities. Moreover, due to vibration signals with low signal to noise ratio, much 

attention has been focussed on the use of advanced computational algorithms for signal  

processing [8–10]. 

The main contribution of this paper is the development of a method, based on a computational 

algorithm for signal analysis in the frequency domain combined with a regression model, to detect 

nano-scale vibration, and to estimate the eccentricity at the spinning axis of ultra precision rotation 

devices. This knowledge can be applied to reducing systemic errors, thus reducing manufacturing time.  

This paper is organized as follows: Section 2 presents an introduction about the use of ultra 

precision rotation devices in manufacturing operations and a mathematical model of vibrations in 

rotation devices; Section 3 describes an experimental analysis to study the relationship between 

vibrations and shaft eccentricity in an ultra precision rotation device; Section 4 explains the 

implementation of an algorithm to find sequences of harmonics in the frequency spectrum of a 

vibration signal and, as an example, introduces a regression model to estimate the eccentricity of the 

rotation device. Finally, some conclusions about the work results are shown in Section 5. 

2. Ultra Precision Rotation Devices in Manufacturing Processes 

In precision manufacturing processes, the use of rotation devices with ultra precision  

requirements [11] is mandatory. Operations like milling, turning, drilling, etc., to produce components 

with micro or nano scale features, are performed by machine tools with nanometric resolution of their 

positioning axes. The precision in the movements is mainly achieved by employing linear motors and 

spindles with hydrostatic or magnetic bearings. These techniques avoid the stiction and reduce the 

influence of vibrations, friction and thermal deviation. Some technical specifications of an air bearing 

spindle employed for milling, turning and grinding operations are shown in Table 1. 

In spite of the state-of-the-art mechanical and computational technology, inadequate dynamic 

behavior of a positioning system affects the dimensional accuracy of manufactured parts. The 

appearance of vibrations can cause unwanted motion in any axis. The dynamic forces that arise during 
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the rotation of devices, such as the spindle of an air bearing [12], reflect these unwanted movements. 

Forces increase due to the dynamic mass imbalance of the spindle, which generates an eccentricity on 

its rotation axis and corresponding vibrations. These vibrations have a direct influence on the precision 

of the manufactured part. 

Table 1. Technical specifications of spindle model SP-150 from Precitech Inc. 

Maximum Speed 7000 r/min 
Axial Stiffness 175 N/µm 
Radial Stiffness 87 N/µm 
Motion accuracy Axial/Radial   25 nm 
C-axis feedback resolution 0.13 arc-sec 
C-axis position accuracy +/−2 arc-sec 

2.1. Eccentricity and Vibrations due to Mass Imbalance in Rotors 

Eccentricity in the shaft of a rotating device occurs when its center of mass differs from its 

geometric center [13]. One of the most common causes is the device mass imbalance, which is 

produced, mainly, by unequal distribution of masses of its components. Eccentricity in the shaft can 

generate dynamic forces that cause vibrations synchronous to the rotation frequency of the device. 

Figure 1. Schematic of a flat rotor and imbalanced mass. 

 
 

Figure 1 shows a diagram of a flat rotor and a point with mass m causing imbalance. The imbalance 

mass is also characterized by an eccentricity e to the rotor axial axis and angle φ. If the rotor has an 

angular velocity ω, the amplitude of the resultant force F and its components, Fx and Fy, due to the 

imbalance are calculated as [13]: 
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These forces constitute a harmonic excitation to the rotating device, causing vibrations in the same 

direction and frequency of the excitation force [14]. In order to mathematically estimate these 

vibrations, the rotating device could be considered as a spring-mass-damper system, with coefficient of 

viscosity c and elasticity k. For simplicity of analysis, initially the excitation only is considered in one 
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direction (see Figure 2). The elasticity and viscosity of others rotor components (e.g., the bearings) are 

not considered directly in this analysis. 

Figure 2. Physical model of a rotary device with an imbalanced mass [14]. 

 
 

If y is the displacement of the non-rotational mass (M − m) from the equilibrium position and the 

displacement ym of the unbalanced mass m is determined as: 

 sin my y e t  (2) 

The general equation of motion is represented by: 
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Equation (3) can be simplified as follows: 
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The excitation input to the system is the unbalance force component in the y direction (Fy). The 

solution of above equation has two parts, the homogeneous and the particular solution. The 

homogeneous solution describe the transient behavior of the system and it is a free vibration that can 

be under damped, over damped or critically damped [14]. At steady state, the response of the system is 

characterized by the particular solution of the equation, which is an oscillatory vibration of the same 

frequency as the excitation Fy with amplitude Y and phase φ [14]: 
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 (5) 

where ζ is the damping factor of the system and ωn its natural frequency. 

From the second derivative of y, the acceleration of motion could be expressed as: 

 2 sin( )  y Y t    (6) 
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The above equations represent the relationship between the eccentricity, caused by the imbalanced 

mass, and vibrations that take place in a rotating device. The amplitude of both vibration and its 

acceleration is proportional to the unbalance mass amount and its eccentricity. 

3. Experimental Analysis 

In order to experimentally study the relationship between vibrations and shaft eccentricity, an 

experimental platform has been installed on a spindle model SP-150 from Precitech Inc, mounted on 

an ultra precision lathe. These types of machines are employed for finishing operations in curved and 

flat surfaces of both brittle and ductile materials, with very low error tolerances. Components (e.g., an 

optical lens) with arithmetic average surface roughness below 10 nm and few hundred nanometers of 

form accuracy can be manufactured. 

Vibration signals are measured with two accelerometer sensors rigidly attached to the spindle 

housing (see Figure 3). The sensor model is 352C15 from PCB Piezotronics, which has a sensitivity of 

10 mV/g and a bandwidth of 12 kHz. The vibration signals of X and Y spindle axes are acquired and 

processed with the high performance processor PXI-8187 from National Instruments, with a sample 

frequency of 50 kHz. 

Figure 3. (a) A workpiece attached to the spindle and machine axes. (b) Ultra precision 

spindle model SP-150. (c) Piezoelectric accelerometer sensors model 352C15. 

 
 

The ultra precision lathe, model Nanoform 200 from Precitech Inc, is located within an industrial 

environment and part of a functioning production line, necessitating that the experimental platform 

does not interfere with the manufacturing process. 

The eccentricity reference’s value is obtained from a measurement system embedded into the 

lathe’s computer numerical control (CNC). Amplitude and phase of this value correspond to the 

maximum eccentricity position of spindle shaft, which are depicted on the graphical user interface of 

the CNC. These values can only be obtained prior to each manufacturing operation. For the 

experimental analysis only the amplitude of eccentricity is used as reference value. 

In order to analyze the relationship between vibration level and shaft eccentricity, different 

operation conditions of the spindle have been considered: not rotating, rotating at different speeds and 

(a) (b)

(c) 
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different eccentricity values. Some of the operating conditions for the experiments are shown in 

Table 2. The eccentricity has been caused by manually adding imbalanced masses on the spindle. 

Table 2. Operating conditions of the experiments for the study of spindle vibrations. 

Spindle speed 
[r/min] 

Eccentricity 
[nm] 

1000 14, 192, 205, 309 
2000 17, 635 
3000 17, 39, 98, 162, 1358 
5000 56, 2874 

 

From expert operator criteria, the acceptable tolerance for spindle shaft eccentricity is 50 nm, and 

values lower than this number, are insignificant. 

Figure 4. Magnitude spectra of the X-axis vibration signal. (a) Spindle not rotating.  

(b) Spindle rotating at 1000 r/min, eccentricity of 39 nm. (c) Spindle rotating at 1000 

r/min, eccentricity of 205 nm. 

(a) (b) 

 
(c) 

 

Only the X-axis spindle vibration signal is analyzed in this study. The fast Fourier transform (FFT) 

is applied to this signal, generating a frequency spectrum. A sample size of 50,000 samples is used for 

each transform, thus the frequency step in the spectrum is equal to 1 Hz. Figure 4 shows the magnitude 
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spectrum in logarithmic scale for three situations: a non-rotating spindle and a spindle rotating at 

1000 r/min (16.7 Hz) but with two different values of eccentricity (39 and 205 nm). 

The spectra are quite similar at first glance, except in a region around 5 kHz where there are 

harmonics related to the rotation. New harmonics also appear near the frequency of the main 

harmonics. Figure 5 depicts the three analyzed cases and the spectrum expanded in four frequency 

regions. The first region corresponds to the harmonics close to 5 kHz and the other regions are related 

to the frequencies around the main harmonics of the spectrum, with the largest harmonic within the 

third region. As it is shown in regions 2, 3 and 4, there are two new sideband harmonic components for 

the signal collected with 205 nm in eccentricity that are not present in the other two spectra. In the case 

of the third region, these new harmonics and the main harmonic have a frequency of 9678.7, 9695.4 

and 9712.1 Hz. The difference between them is just 16.7 Hz, which corresponds exactly to the spindle 

rotation frequency. In the regions 2 and 4, also appear new sideband harmonic components. Moreover, 

within the first expanded region, this event does not occur. 

The above analysis in the frequency domain is the basis for formulating the following hypothesis: if 

a harmonics sequence separated by the rotation frequency of the device exists in a frequency range 

around one of the main harmonics of the spectrum, then the device shaft has an eccentricity due to its 

mass imbalance. 

Figure 5. Frequency spectrum expanded around the main harmonic components. 

 
 

For a better understanding of the formulated hypothesis, Figure 6 illustrates six more cases of the 

vibration signal magnitude spectrum, three different rotation frequencies and two values of 

eccentricities: 33.33 Hz (2,000 r/min), eccentricities of 17 and 635 nm (Figure 6a); 50 Hz  

(3,000 r/min), 39 and 162 nm (Figure 6b) and a rotation frequency equals to 83.33 Hz (5,000 r/min), 

eccentricities values of 56 and 2874 nm (Figure 6c). For each rotation frequency, the figure depicts the 

spectrum at a frequencies range with the more relevant information and the spectrum expanded within 

a frequencies interval close to the main harmonics, showing in the case of the biggest eccentricity 

value, the harmonics sequences and the frequency of each component. According the figure, it can be 
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verified that on each harmonics sequence the frequency difference between two consecutive harmonics 

is equal to the rotation frequency. 

Figure 6. Frequency spectrum for six cases and harmonics sequences. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

4. Harmonics Sequences Detection (HSD) Algorithm 

An algorithm to find sequences in the spectrum of the vibration signal is designed from the previous 

study and hypothesis. The main parameters of the algorithm are the rotation frequency of the device 

and the desired frequency search range. Figure 7 shows the block diagram of the developed algorithm. 
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The main steps of the algorithm depicted in Figure 7 are: 

1. The DC component of the measured signal is removed by subtracting the mean value and then 
transformed into the frequency domain by applying an FFT, ( )  ( ( ) -  )X f FFT X t X . Also a 

Hann or Hamming window can be applied to the measured signal. 

2. Find the amplitude of the main harmonic component, Pmax, and its corresponding frequency, fmax. 

3. Set the desired frequency range around fmax to perform the search, taking into account the 

sampling frequency of the signal (SF) and avoiding signal aliasing, this range could be defined 

as: 

 max max
max

(1 ) (1 ) ; 0 1
4

SF
range f f range f range

f
        (7) 

4. To detect the harmonics within the frequency range, any peak detector function can be applied. 

5. Calculate the distance in frequency between the harmonics up to a maximum window given by 

the spindle rotation frequency. 

6. Harmonics separated to the spindle rotation frequency, are counted and grouped into the 

corresponding sequence. 

Figure 7. Block diagram of the harmonic sequences detection algorithm. 

 
 

In order to calculate the Fourier transform, the algorithm uses a number of samples (N_fft) from the 

signal X(t), proportional to the ratio between the sampling frequency of the signal (SF) and the spindle 

rotation frequency (RF): 

 _



NxRPM SF

N fft
RF

 (8) 

where NxRPM defines the resolution of the spectrum and must be an integer. Increasing NxRPM can 

improve the harmonic detection, but also increases the noise when calculating the FFT. 
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For each harmonic sequence found, the total number (PA), the largest magnitude (BPG) and the 

sum of all magnitudes (HSPG) are recorded. The number of harmonic components and their 

amplitudes are then quantified. 

Furthermore, on each sequence, the relationship between the main harmonic and the rest is 

calculated, obtaining a measure of the relative power between the harmonics: 

 
  

  1 - 
 





BPG BP

PRA
HSPG BP

 (9) 

where PRA is the power ratio and BP is the magnitude of the main harmonic at the spectrum range. 

The eccentricity in the spindle shaft can be estimated on the basis of the information obtained from 

the frequency analysis of the vibration signal. The next subsection proposes a simple model based on 

regression techniques to estimate the eccentricity in the spindle shaft. 

4.1. Experimental Regression Model 

A direct model that is represented by a hyperbolic tangent function with a correlation coefficient 

(R2) equal to 0.98 is adjusted from an experimental set of data by applying regression techniques and 

the HSD algorithm. The model [see Equation (10)] relates the eccentricity (UL) in the spindle shaft 

with the power ratio of the detected sequence around the main harmonic of the spectrum. Inverting the 

direct function, it is obtained a model that estimates the eccentricity and uses the power ratio as input 

[see Equation (11)]. Figure 8 shows the power ratio of harmonic sequences and its corresponding 

eccentricity value from the experimental data and the adjusted models. 

Figure 8. Experimental data and fitted curves, (a) direct model, PRA versus Eccentricity,  

(b) inverse model, Eccentricity versus PRA. 

 

 
(a) 

 

(b) 
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In order to adjust both model equations, several values of spindle rotation frequency and its 

corresponding shaft eccentricity, are taken into account. The experimental dataset is detailed in Table 3, 

where the second column refers to the power ratio between harmonics of the detected sequence. 

  1
tanh( ) 1

2
   PRA m UL n  (10) 

 

,

1 1
ln ,

2 1

min min

min
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m PRA
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           
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tanh( ) 1

2min minPRA m UL n     (11) 

In the above equations m and n are linear fit coefficients, adjusted initially to 2.220126 and 

−1.59696 respectively. Moreover, the equation parameters ULmin and PRmin are defined as minima 

specifications for the eccentricity and the power ratio, respectively. The minimum value ULmin is set to 

0.010 µm according to the range of the experimental dataset. These parameters are introduced to take 

into account the sensitivity of the piezoelectric sensor and the vibration attenuation because of the 

spindle mechanical properties. From the physical model of the spindle vibration [see Equation (5)], it 

can be see that the damping factor ζ can attenuate the amplitude of the vibration due to the 

eccentricity, then, the sensor will not detect a vibration signal change lowest than its sensitivity. 

In order to evaluate the model performance, the absolute error between the model estimation and 

the measured eccentricity is calculated by the following equation: 

 100%


 E M

M

UL UL
ERA

UL
 (12) 

Table 3. Experimental data, eccentricity estimation and error of regression model. 

Spindle rotation 
frequency (Hz) 

PRA 
ULM

(1) 
(m) 

ULE
(2)

 

(m) 
ERA 
(%) 

16.67 
0.031 0.013 0.010 23.08 
0.032 0.016 0.010 37.50 
0.013 0.021 0.010 52.38 

33.33 
0.053 0.049 0.071 45.20 
0.078 0.149 0.162 8.87 

50.00 
0.039 0.018 0.010 44.44 
0.055 0.077 0.078 1.69 
0.116 0.304 0.263 13.53 

66.67 
0.013 0.017 0.010 41.18 
0.084 0.155 0.182 17.30 
0.266 0.478 0.491 2.66 

83.33 

0.021 0.019 0.010 47.37 
0.053 0.114 0.069 39.65 
0.074 0.215 0.152 29.47 
0.446 0.665 0.670 0.78 

Mean Error 27.01 

(1) Measured eccentricity. 
(2) Estimated eccentricity. 
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The last column of Table 3 shows the error for each test, given an average error of 27%, which 

could be considered an acceptable performance of the fitted model. Indeed, this error is relatively high 

for the accuracy requirements because the uncertainty of estimation at the lower ranges affects the full 

range model performance. The main cause of this uncertainty is either, the low magnitude of vibrations 

due to the rotation device stiffness or the low sensitivity of the piezoelectric sensor employed for 

vibration measurement. Furthermore, this level of error is considered acceptable from an industrial 

precision manufacturing standpoint [15]. 

5. Conclusions 

In this work a computational method that incorporates a signal processing strategy is proposed to 

estimate the eccentricity in ultra precision rotation devices, due to its inertial mass imbalance. The 

eccentricity is estimated from steady state vibrations caused on the device structure, during the rotary 

movement. These vibrations are measured employing piezoelectric accelerometer sensors. The use of 

piezoelectric accelerometer sensors instead of displacement sensors, such as capacitive and inductive 

sensors is justified due to the versatility of this sensor type under several working  

environment conditions. 

The harmonic components related with these vibrations are identified by applying advanced 

spectral analysis algorithms to the vibration signals. The quantification of the harmonics power, serves 

to estimate the eccentricity of the rotating device. This procedure enables the design of new control 

systems in order to compensate for nano-scale vibrations, and thus improving accuracy and precision 

of rotation devices. 
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