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Abstract: This paper is concerned with the filtering problem for both discrete-time 

stochastic linear (DTSL) systems and discrete-time stochastic nonlinear (DTSN) systems. In 

DTSL systems, an linear optimal filter with multiple packet losses is designed based on the 

orthogonal principle analysis approach over unreliable wireless sensor networks (WSNs), 

and the experience result verifies feasibility and effectiveness of the proposed linear filter; 

in DTSN systems, an extended minimum variance filter with multiple packet losses is 

derived, and the filter is extended to the nonlinear case by the first order Taylor series 

approximation, which is successfully applied to unreliable WSNs. An application example 

is given and the corresponding simulation results show that, compared with extended 

Kalman filter (EKF), the proposed extended minimum variance filter is feasible and 

effective in WSNs. 

Keywords: packet losses; optimal estimation; wireless sensor networks; Kalman filter; 

minimum variance filter 

 

1. Introduction  

In wireless networks, data losses, communication delay and constrained bandwidth are general 

problems across communication links because of collision and transmission errors. Especially, in 
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WSNs, due to its limited resources, such as restricted computation, processing and communication 

ability, data/packet losses should be further studied.  

Many researchers are interested in networked control systems with packet losses. The research on 

packet losses can be traced back to Nahi [1] and Hadidi [2]. Recently, the packet loss problem has 

been studied using jump linear systems (JLS), which is a hybrid system with model transitions 

modeled as Markov chains that switches among several discrete models [3-5]. JLS methods restrict 

their formulation to the steady-state case, where Kalman gain is constant. Furthermore, the transition 

probability and state error covariance matrices are required being computed exactly [6].  

Sinopoli et al. [7] consider general case of time varying Kalman gain and discusses how packet 

dropouts can affect state estimation. They illustrate that there exists a certain threshold of the packet 

dropout rate. Under packet dropouts, their filter has a smaller linear minimum mean square error than 

static counterpart. Liu et al. [8] extend the idea to the case where there are multiple sensors and 

packets from different sensors dropping independently. In practice, it is assumed that packets are 

dropped independently, which is certainly not true in case where burst packets are dropped or in 

queuing networks where consecutive packets are not dropped [7,8]. They also use the expected value 

of the error covariance matrix as the measure of performance. This might ignore the fact that events 

with arbitrarily low probability can make the expected value diverge. So Epstein et al. [9] give a more 

complete characterization of the estimator performance instead of considering a probabilistic 

description of the error covariance. The optimal filtering problem is considered for systems where 

multiple packets are dropped in an unreliable network [10-12]. Different from [10-12], where only the 

multiple packet dropouts are considered, reference [13] investigates both the estimation problem for 

systems with bounded random measurement delays and packet dropouts, which are described by some 

binary random variables whose probabilities are only known. Schenato [14] proposes a probabilistic 

framework to design the minimum error covariance estimator in a generic digital communication 

network where sensor’s observation packets are subject to random delays and packet losses.  

Speranzon et al. [15] analyze and design a distributed adaptive algorithm to estimate a time-varying 

signal, measured by WSNs, where measurement noise and packet losses are considered. But they do 

not consider multiple packet losses in WSNs.  

On the other hand, mobile target tracking with multiple sensors measurement is an important 

application of WSNs in recent years. There are great deals of wireless sensor nodes deployed randomly 

in a monitored field. One node or several nodes are scheduled as tasking nodes in target tracking 

application at each time step. Some natural problems are that how to apply filters to WSNs and who 

are scheduled as current task sensor nodes. There are many sensor scheduling strategies, such as the 

nearest distance scheduling, where the nearest sensor node to the target is scheduled as task node, 

minimum trace scheduling [17], where minimum trace sensor node of the error covariance matrix is 

scheduled, adaptive sensor scheduling [18], which selects the next tasking sensor and determines 

sampling interval according to the predicted accuracy and tracking cost. We propose an improved 

dynamic-grouping scheduling strategy (DGSS) which considers not only energy consumption and 

predicted accuracy, but also the real-time property of tracking target. 

In this paper, we discuss minimum variance filters (MVFs) with multiple packet losses for systems 

that are considered not only DTSL systems but also DTSN systems in WSNs. The MVFs with packet 

losses across an unreliable network are designed and packet losses are assumed to be random with a 
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given i.i.d distribution. Unlike [14] and [16], where the estimator is computed depending on whether 

the current measurement is received, our MVFs can be computed only depending on the packet arrival 

rate pk at each time instant and do not need know if a measurement is received at a particular time 

instant. Furthermore, our filters do not require that the measurement is time-stamped. 

Simulation results show that it is feasible and effective that DGSS is adopted to select next sensor 

node as task node, and MVFs with multiple packet losses are used to track mobile target.  

The remainder of the paper is organized as follows. MVFs with multiple packet losses are 

formulated in Section 2. The linear MVF is designed and a numerical example shows that linear MVF 

is effective in Section 3. The nonlinear MVF is derived and a target tracking example is shown in 

WSNs in Section 4. Finally, some conclusions are drawn in Section 5. 

2. Problem Formulation  

In WSNs, mobile target tracking with multiple sensors measurement is an important application in 

recent years. In practice, sensor measurements are probably lost. How to deal with packet losses and 

how to make multiple sensors collaborate to complete common task? We are interested in these 

problems and discuss them in the following part.  

In Figure 1, we assume that measurements from the plant are encapsulated into packets, but are not 

time-stamped, and then transmitted through WSNs, whose goal is to deliver packets from a plant to  

a filter.  

Figure 1. MVFs with Multiple Packet Losses and scheduling in WSNs. 
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In the same time instant, the scheduler selects only one sensor from N sensors to sample 

measurements according to sensor scheduling strategies, where measurements come probably from the 

same sensor, also come probably from different sensor at different time step. At the filter side, if the 

current measurement has one or more delays, or is lost, the filter utilizes the latest measurement in the 

stack to update the state estimation, where the stack retains the latest three measurements. The stack 

has property as follows: last input first output. For example, the order of measurements entering stack 
is 2 1

2 1, ,k k kj j j

k k kz z z 
   from a group in WSNs. While the order of coming out is 1 2

1 2, ,k k kj j j

k k kz z z 
  , respectively. 

Therefore, MVFs can use the latest measurement from the stack in Figure 1. If the current 

measurement is correctly received in time, the filter uses directly measurement received from a group 

in WSNs (About a group, please refer to Subsection 4.2.1 in p.12). In addition, we assume that packet 
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losses are uncorrelated and there is not a retransmission in order to increase performance of real time 

once a packet is lost.  

According to the above framework in Figure 1, we consider a time-varying DTSL system as follows: 

1k k k k kx A x B w          (1a) 

jk
k kj j

k k k kz C x v                                                                    (1b) 

1 2

1 1 1 2(1 ) (1 )(1 )k k kj j j

k k k k k k k k ky z z z     
             (1c) 

where n

kx R is the state vector at time step k; jk is sensor node number at time step k; kj

kz , 1

1
kj

kz 
 , and 

2

2
kj

kz 
 are measurement outputs of sensor node jk, jk-1, and jk-2 at time step k, k-1, and k-2 

respectively; ky is measurement received by the filter at time step k; k=1,2,…,M, where M is total 

sensor number in a group; kA , kB and kj

kC  are time-varying linear matrices with appropriate 

dimensions respectively; kw  is state noises with variance kQ  and kj

kv  is measurement noises of sensor 

node jk with variance kj

kR  at time step k; k is a random variable taking value 0 or 1, where 0 stands for 

packet loss and 1 stands for received packet. The probability is as follows, respectively: 

[ 1]k kPr p                                                                          (2) 

[ 0] 1k kPr p                                                                        (3) 

Taking expectation: 

k kE p         (4) 

,k i k iE p p k i          (5) 

2

k kE p         (6) 

From (1c) we know that kj

kz is lost if k =0 at time step k, and yk depends on 1k  , where yk= 1

1
kj

kz 
 , if 

1k  =1. Otherwise yk= 2

2
kj

kz 
 .  

Given the state vector xk+1 defined by (1a). It is desired to find the estimate of xk+1, denoted by 

1| 1
ˆ

k kx   , which is a linear function of observations y0,…,yk+1 minimizing: 

1 1| 1 1 1| 1
ˆ ˆE [ ] [ ]T

x k k k k k kE x x L x x       
    

(7) 

where L is a symmetric positive definite matrix; yk is given by (1c), Ex is the expectation with respect 
to xk, wk, and vk; and E is the expectation with respect to . 

Since state estimation 1| 1
ˆ

k kx   is a linear function of y0, y1,…, and yk+1, it can be written as:  

1
01| 1

ˆ k
ik k i ix a y
          (8) 

where ia  is an n m  matrix. 

Our objective is to design MVFs 1| 1
ˆ

k kx    based on received measurement sequences y0, y1,…, yk+1. 

According to (1c), we know 0 , 1 1,..., k   are unknown stochastic variable sequences. That is, we desire 

to find 1 1 1 0[ | , , ,..., ]k k k kE x y y y y   .  
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Definition: Error covariance matrix and state variance matrix at the time k respectively are defined  

as follows: 

Error covariance matrix:  

| | |
ˆ ˆ[ ] [ ]T

k k x k k k k k kP E E x x x x  
    

(9) 

and state variance matrix: 

[ ]T
k k kS E x x       (10) 

Assumption 1: For systems (1a) and (1b), wk and vk are uncorrelated white noises with zero means and 

variances Qk and Rk respectively. Furthermore, if k  j, E[wkwj] = 0, otherwise E[wkwj] = Qk, and  

Qk > 0; if k  j E[vkvj] = 0, otherwise E[vkvj] = Rk, and Rk > 0.  

Assumption 2: The initial state x0 is independent of wk and vk with: 

Ex0=m0, 0 0 0 [ ] ,TE x x S 0 0 0 0 0[ ] [ ]TE x m x m P   . 

3. Linear Minimum Variance Filters with Multiple Packet Losses  

In this section we will show our main results on linear minimum variance filters with multiple 

packet losses based on the orthogonal principle analysis approach. In time-varying DTSL systems, a 

linear filter with multiple packet losses is to be designed. Before giving our main results, firstly we 

will present the following Lemma.  

Lemma 1:  

1 1| 1
ˆ[ ] 0T

x k k k iE E x x y     , 0,1, , 1.i k   (10) 1| 1k kP   1 1| 1 1
ˆ[ ] T

x k k k kE E x x x       (11) 

|
ˆ[ ] [ ]T T

x k k i x k iE E x y E E x y  , 0,1, , 1i k      (12) 

Proof: Define estimation error: 1 1 1| 1
ˆ .k k k kx x x     Because 1kx   and iy  are orthogonal, 0,1, , 1,i k   

we attain easily (10) according to orthogonal principle [12].  
Since 1| 1

ˆ
k kx   is a linear function of observations yi, i=0 , 1,…, k, k+1. From (8) and (10) we  

may know: 

1 1| 1 1| 1
ˆ ˆ[ ] 0T

x k k k k kE E x x x        

From (9) it follows that: 

1| 1 1 1| 1 1 1| 1

1 1| 1 1 1 1| 1 1| 1

1 1| 1 1

ˆ ˆ[ ][ ]

ˆ ˆ ˆ[( ) ( ) ]

ˆ[ ]

T

k k x k k k k k k

T T

x k k k k k k k k k

T

x k k k k

P E E x x x x

E E x x x x x x

E E x x x







       

        

   

  

   

 

 

From (10) it follows that:  

1 1| 1
ˆ[ ] [ ]T T

x k i x k k iE E x y E E x y    , 0,1, , 1i k   

Remark 1: Substituting (8) and (10) into (7), we may know that (7) attains minimum value. That is, 

(10) is the sufficient condition for (7) taking minimum value. 
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3.1. Design of Linear Filter with Multiple Packet Losses 

Utilizing the above background knowledge, we will design a linear minimum variance filter with 

multiple packet losses. 

Theorem 1: For systems (1) satisfying Assumption 1 and 2, the linear minimum variance filter 

(LMVF) is shown as follows: 

1| 1 1 | 1 1
ˆ ˆ

k k k k k k kx F x K y           (13) 

where: 

1 1k k kF A K J         (14) 

1 1 1

1 1

1

1 | 1 1 | 1 1 1

1

1 1 1 1 1 1

1 1 1 1

[ ( ) ] [ ( )

(1 ) ( ) (1 )(1 ) ( )

(1 ) (1 )(1 )

k k k

k k k k

k k

j j jT T T T T T T

k k k k k k k k k k k k k k k k k k

j j j jT T T

k k k k k k k k k k k k

j j

k k k k k k k

K A P J p B Q B C JP J JS J p C A S A C

p p C S C p p C A S A C

p R p p R p p R

  

 



     

 
     

   

    

    

      1

1 1 1 1

1

1 1 1

1 1 1 1 1 1 1 1 1 1 1( ) (1 )(1 ) ( ) ( ) ]

k

k k k k

j

k

j j j jT T T T T

k k k k k k k k k k k k k k kp C B Q B C p p C A B Q B A C



   



  
             

 (15)  

1

1| 1 1 | 1 1 1( )kjT T

k k k k k k n k k k k k kP F P A I p K C B Q B
            (16) 

1 1 1

1 1 1 1 1 1(1 ) (1 )(1 )k k kj j j

k k k k k k k k k kJ p C A p p C p p C A  
               (17) 

1

T T

k k k k k k kS A S A B Q B        (18) 

Initial value 0|0 0x̂ m , 0|0 0P P  and 0 0S P . 

Proof: From the equation (1a) it follows that:  
1 1

1 1 1 1 1k k k k k kx A x A B w 
           (19) 

where it assumes Ak-1 is invertible. 

From (1) we can get: 

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1

1 1 k-1 1 k-1 1 1 1

(1 ) (1 )(1 )

[ ] (1 ) [ ]

(1 )(1 )[ ]

k k k k k

k k k

k k k k k k k k k

j j j j j

k k k k k k k k k k k k k

j j j

k k k k k k k k

y z z z

C A x C B w v C x v

C A x C A B w v

    
  

 

  

  

     

    

 
     

     

     

    

   (20) 

Let us substitute (1a), (13) and (20) into (10) respectively. Making use of (19), it follows that:  

1

1 1 1

1

1 1| 1

1 | 1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 1

ˆ[ ]

ˆ{ [ (1 )

(1 )(1 ) (1 ) (1 )(1 )

(1 )(1

k k

k k k k

k

T

x k k k i

j j

x k k k k k k k k k k k k k k k k

j j j j

k k k k k k k k k k k k k

j

k k k k k k

E E x x y

E E A x B w F x K C A x C x

C A x v v v

C B w



   

      
  



  



  

    


       

  



     

        

    1

1 2

1 2

1

1 1 1 1

1 1 1 1 2 2

1 1 1 2

) ]}

[ (1 ) (1 )(1 )

(1 ) (1 )(1 ) ] 0, 2,3,..., 1; 1, 2,...,

k

i i i i

i i

j

k k k k

j j j j

i i i i i i i i i i i i i

j j T

i i i i i i i

C A B w

C x C x C x v

v v i k j N

     
   



 

 


   

     

   

      

        

                    (21) 

Taking i = 2,3,…k–2, and making use of Assumption 1 and (12) in Lemma 1, the above equation 

follows that: 



Sensors 2010, 10              

 

 

3336

1 1

2 3 4

1

1 1 1 1 1 1 1 1

2 2 2 2 3 3 3 2 3 4 4

{ [ (1 ) (1 )(1 ) ]}

{ [ (1 ) (1 )(1 ) ] } 0

k k k

k k k

j j j

k k k k k k k k k k k k k

j j j T

x k k k k k k k k k k k k

E A F K C A C C A

E x C x C x C x

     

    

 

  


       

          

      

      
 

Because: 
1 2 3

1 1 1 1 2 2 2 1 2 3 3{ [ (1 ) (1 )(1 ) ] } 0k k kj j j T

x k k k k k k k k k k k kE x C x C x C x      
                 

we can obtain:  
1 1 1

1 1 1 1 1 1 1 1{ [ (1 ) (1 )(1 ) ]} 0k k kj j j

k k k k k k k k k k k k kE A F K C A C C A       
                

and know easily that: 
1 1 1

1 1 1 1 1 1 1 1

1

[ (1 ) (1 )(1 ) ]k k kj j j

k k k k k k k k k k k k k

k k

F A K p C A p p C p p C A

A K J

  
       



      
 

                   (22) 

where (4)-(6) is used. Obviously, (14) and (17) can be attained by (22). 

From Lemma 1 we take i=k+1 and then it follows that:  

1 1

1 1

1 1| 1 1

| 1 | 1

1

1 1 1 1 1 1 1

1 1 1 1 1 1

ˆ[ ]

ˆ ˆ{ [ ] [ ]

[[ (1 ) (1 )(1 ) ]

[ (1 ) (1 )(1 ) ] [

k k k

k k k

T

x k k k k

x k k k k k k k k k k k k

j j j

k k k k k k k k k k k k

j j j

k k k k k k k k k

E E x x y

E E A x x K J x x K Jx B w

K C A C C A x

v v v C





    
     

 

 

   

 


      

     



     

     

       1 1

1 1

1 1 1

1

1 1 1 1 1 1

1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

(1 )(1 ) ]}

{[ (1 ) (1 )(1 ) ]

[ (1 ) (1 )(1 ) ] [ (1 )(1 )

k k

k k k

k k k k

j j

k k k k k k k k k

j j j

k k k k k k k k k k k

j j j j

k k k k k k k k k k k k k k

B w C A B w

C A C C A x

v v v C B w

 
    
       

 

 

  


     


     

       

  

     

          1

1 1

1 1

1

1

1 1 1 1

| 1 | 1 1 1 1 1

1

1 1 1 1 1 1

1 1 1 1

]}

[ ( )

(1 ) ( ) (1 )(1 ) ( ) ]

( ) [

k

k k

k k k k

k

j T

k k k k

j jT T T T T

k k k k k k k k k k k k k k k

j j j jT T T

k k k k k k k k k k k k

jT T

k k k k k k k k

C A B w

A P J K JP J K JS J K p C A S A C

p p C S C p p C A S A C

p B Q B C K p R



 

 




   

     

 
     

   

   

    

  1 1

1 1 1 1

1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1

(1 ) (1 )(1 )

( ) (1 )(1 ) ( ) ]

0

k k k

k k k k

j j j

k k k k k k

j j j jT T T T T

k k k k k k k k k k k k k k k

p p R p p R

p C B Q B C p p C A B Q B A C

 

   

   

 
          

    

   


 

From the above equation it may derive (15). 

According to (11) in Lemma 1, it follows that: 

1 1

1| 1

1 1| 1 1

| 1 | 1

1

1 1 1 1 1 1 1

ˆ[ ]

ˆ ˆ{ ( ) ( )

[[ (1 ) (1 )(1 ) ]k k k

k k

T

x k k k k

x k k k k k k k k k k k k

j j j

k k k k k k k k k k k k

P

E E x x x

E E A x x K J x x K Jx B w

K C A C C A x





     

 

   

 


      

 

     

     

 

1 1

1 1 1 1 1(1 ) (1 )(1 )k k kj j j

k k k k k k k kv v v     
           

    
1 1

1

1

1 1 1 1 1 1 1

1 | 1 1 1

(1 )(1 ) ]} { }

( ) ( )

k k

k

j j T

k k k k k k k k k k k k k k

jT T

k k k k k n k k k k k k

C B w C A B w A x B w

A K J P A I p K C B Q B

   




      

   

     

   
 

where Assumption 1 is used and nI  is n n  identity matrix. 

From Definition, the next equation is derived:  

1 1 1[ ]T T T

k k k k k k k k kS E x x A S A B Q B      

Remark 2:  

In special case 1, when packet arrival rate pk+1 = 0 and pk = 0: 
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1 1

1 1 1 1
kj

k k k k kF A K C A 
          (23a) 

1 1 1 1 11 1 1 1

1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1( ) [ ( ) ( ) ]k k k k kj j j j jT T T T T T

k k k k k k k k k k k k k k k k k k k kK A P A C C A P A C R C A B Q B A C         
                 (23b)  

From (23) we know that the information at the current step and the information at the latest previous 
step are consecutively lost. In this situation, the filter (13) uses the ( 1)thk   step measurement to 

update the information of the ( 1)thk  step. 

In special case 2, when packet arrival rate pk+1 = 0 and pk = 1: 

1 1
kj

k k k kF A K C         (24a) 

1

1 | |( ) [ ( ) ]k k k kj j j jT T

k k k k k k k k k kK A P C C P C R 
       (24b) 

It means that the information at the current step is lost. In this situation, the filter (13) uses the thk  
step measurement to update information of the ( 1)thk  step. 

In special case 3, when packet arrival rate pk+1 = 1:  

1

1 1 1
kj

k k k k kF A K C A
          (25a) 

1

1 1 1 1 1

1 | 1

1

1 | 1 1 1 1

( )( )

[ ( ) ( ) ]

k

k k k k k

jT T T

k k k k k k k k k

j j j j jT T T T

k k k k k k k k k k k k

K A P A B Q B C

C A P A C R C B Q B C



    

 


    

 

  
  (25b) 

In this situation, the LMVF reduces the standard KF. An example for DTSL system is given in the 

following part. 

3.2. An example for LMVF 

We give a numerical example to verify the validity of Theorem 1. It is assumed kj

kC  is a constant in 

the following equation at each time step and: 

1k k k k kx A x B w          (26a) 

jk
k kj j

k k k kz C x v                                                                    (26b) 

1 2

1 1 1 2(1 ) (1 )(1 )k k kj j j

k k k k k k k k ky z z z     
             (26c) 

where 
0.6 0 0.6

,
0.8 0.5 0.5k kA B
   

    
   

, [1 1]kj

kC   and 1 2[ ]T

k k kx x x . 

Define estimation error i

kEr at time step k and total estimation error Er respectively: 

1 1 1

|
ˆ

k k k kEr x x  , 2 2 2

|
ˆ

k k k kEr x x       (27) 

1 1
1

N
k kEr Er  , 2 2

1
N
k kEr Er       (28) 

where ( 1 2

| |
ˆ ˆ( , )T

k k k kx x is the estimate of xk; N denotes total time step. 

In simulation, T

0|0
ˆ [0 0] ,x  0|0 ([0.1 0.1]),P diag 0 0|0S P , n = 1,000, kj

kR  1 and 0.36 0.30

0.30 0.25kQ
 

  
 

.  

1 2

| |
ˆ ˆ( , )T

k k k kx x  at each time step be calculated making use of Theorem 1. Estimation error kEr  at each time 

step and total estimation error Er  are computed by (27) and (28) respectively. 100 Monte Carlo 

simulations are tested and corresponding simulation results are shown in Figure 2, where the red line 
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with symbol ‘*’ denotes total error 1Er  and the blue line with symbol ‘o’ denotes total error 2Er . From 

Figure 2 we see the estimation error decreases as packet arrival rate p increases from 0.1 to 1. When  

p = 0.1, 1Er  = 0.5527 and 2Er  = 0.7445; When p=1, 1Er  = 0.3231 and 2Er  = 0.3557.  

Figure 2. Estimation error of LMVFs under different packet arrival rate 0.1  p  1 based 

on 100 Monte Carlo simulations. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Packet arrival rate p

E
st

im
at

ed
 e

rr
or

 E
r

 

 

x1

x2

 

The experience results show estimation error is very small. The simulation verifies feasibility and 

effectiveness of the proposed LMVF. 

4. Extended Minimum Variance Filter with Multiple Packet Losses 

In this section we will show our augmented results on extended minimum variance filters with 

multiple packet losses. In time-varying DTSN systems, an extended minimum variance filter is to be 

derived and it is extended to nonlinear case by Taylor series approximation in the following section. 

4.1. Design of Extended Minimum Variance Filter with Multiple Packet Losses 

In mobile target tracking of WSNs, the state models of the plant and measurement models are 

usually nonlinear, so we require making linearization for models.  

Rewriting (1), let it become DTSN system: 

1 ( )k k k kx x B w         (29a) 

 ( )k k kj j j

k k kz h x v        (29b) 

1 2

1 1 1 2(1 ) (1 )(1 )k k kj j j

k k k k k k k k ky z z z     
             (29c) 

where ( )kx and ( )kh x are nonlinear functions with respective to the state xk and the time step k. The 

other conditions are similar to (1a) and (1b) in Section 2. 
To obtain the estimated state 1| 1

ˆ
k kx   , the nonlinear function in (29a) is expanded in Taylor series 

around the latest estimate |
ˆ

k kx with the first order to yield an extended minimum variance filter. Taylor 

series expansion of (29a) to the first order is approximately:  
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1 | |
ˆ ˆ( ) ( )k k k k k k k k kx x x x B w          (30) 

where
|ˆ

( )

k k k

k
k

x xk

x

x





 


is the Jacobian matrix of the function ( )kx . 

Similarly, we make linearization of the nonlinear measurement function (29c) by Taylor series: 

1 1

2 2

| 1 | 1

1 1| 2 1 1 1 1| 2 1 1

1 2| 3 1 2 2 2| 3

ˆ ˆ( ) ( )

ˆ ˆ(1 ) ( ) (1 ) ( ) (1 )

ˆ ˆ(1 )(1 ) ( ) (1 )(1 ) ( ) (1 )(

k k k

k k k

k k

j j j

k k k k k k k k k k k

j j j

k k k k k k k k k k k k k

j j

k k k k k k k k k k k

y h x H x x v

h x H x x v

h x H x x

  

     

    

 

 

 

         

       

   

      

         2

1 21 ) kj

k kv 
 

 (31) 

where 
| 1ˆ

( )k

k

k k k

j
j k

k
x xk

h x
H

x 





is the Jacobian matrix of the function ( )kjh  . Based on (30) and (31), 

Theorem 2 is shown as follows: 

Theorem 2: For nonlinear systems (30) and (31) satisfying Assumption 1 and 2, extended minimum 

variance filter (EMVF) is shown as follows: 

1

1

1| 1 1| 1 1 1 1|

1 | 1 1 1| 2

ˆ ˆ ˆ[ ( )

ˆ ˆ(1 ) ( ) (1 )(1 ) ( )]

k

k k

j

k k k k k k k k k

j j

k k k k k k k k

x x K y p h x

p p h x p p h x





      

    

  

    
   (32) 

where: 

1| |
ˆ ˆ( , )k k k kx x k        (33) 

1 1 1

1 1

1

1 | 1 1 | 1 1 1

1

1 1 1 1 1 1

1 1 1 1

[ ( ) ] { ( )

(1 ) ( ) (1 )(1 ) ( )

(1 ) (1 )(1 )

k k k

k k k k

k k

j j jT T T T T T T

k k k k k k k k k k k k k k k k k k

j j j jT T T

k k k k k k k k k k k k

j j

k k k k k k k

K P J p B Q B H JP J JS J p H S H

p p H S H p p H S H

p R p p R p p R

  

 



     

 
     

   

       

      

      1

1 1 1 1

1

1 1

1 1 1 1 1 1 1 1 1 1 1(1 )(1 ) ( ) ( ) }

k

k k k k

j

k

j j j jT T T T T

k k k k k k k k k k k k k k kp p H B Q B H p H B Q B H



   



  
               

 (34) 

1

1| 1 1 | 1 1 1( ) ( )kjT T

k k k k k k k n k k k k k kP K J P I p K H B Q B
              (35) 

1 1 1

1 1 1 1 1 1(1 ) (1 )(1 )k k kj j j

k k k k k k k k k kJ p H p p H p p H  
               (36) 

1

T T

k k k k k k kS S B Q B          (37) 

with:  

0| 1 0x̂ m  , 0|0 0P P  and 0 0S P     (38) 

The proof of Theorem 2 is similar to Theorem 1, so it is omitted here. Theorem 2 can be applied 

to nonlinear cases of the measurement model and state model. An application example for EMVF is 

given in the following subsection.  

4.2. Application of EMVF in WSNs 

In the above subsection a kind of EMVF is designed. In the following we apply the EMVF to track 

mobile target in WSNs. Usually multiple sensors are scheduled cooperatively to complete a common 

task. Firstly we give a practice state model and measurement model, and then provide a sensor 

scheduling strategy. At last, simulation results illustrate our EMVF is feasible and effective in WSNs. 
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4.2.1 Nonlinear state model 

We use the nonlinear state model of reference [20]. The idea is to augment the state vector with a 

turning rate parameter , which is to be estimated along with the other system parameters, which in 
this example are the position ( , )t t

k kx y  and the velocity ( , )t t

k kx y  of the target. Thus, the state vector can 

be expressed as:  

[ ]t t t t t T

k k k k k kx x y x y         (39) 

and the dynamic model for the coordinated turns is: 

1k k k k kx A x B w  


     (40) 

where: 

sin( ) cos( ) 1
1 0 0

cos( ) 1 sin( )
0 1 0

0 0 cos( ) sin( ) 0

0 0 sin( ) cos( ) 0

0 0 0 0 1

t t

k k k k

t t

k k

t t

k k k k

t t

k k k

t t

k k k k

t t

k k k k

t t

t t

A

t t

t t

 
 
 

 
 
 

   
 
 
   
   
   
 

  
  


 

[0 0 0 0 1]T

kB   

and kw is white Gaussian process noise with zero mean and variance Qk. The Jacobian matrix of kA


 is 

computed as: 

1

1

1

1
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1 0
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0 0 0 0 1
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where: 

1

2 2

cos( ) sin( ) 1 sin( ) cos( )

( ) ( )

t t t t t t t

k k k k k k k k k k k k k
k kk t t

t k k

x t t t t t t
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1 cos( ) sin( )
t

t tk
k k k k k k k kt

k

y
t t x t t y 



    


    

4.2.2. Nonlinear measurement model 

Sonic sensors are used to measurement target and the measurement model for sensor kj at time step k 

is defined as follows:  

2 2

( )

( ) ( )

k k k

k k k

j j j

k k k

j j jt t

k k k

z h x v

x x y y v

 

    
    (41) 

where 1, 2, ,kj N  , and N is the total number of sensor nodes; ( , )t t

k kx y  is the dynamic location of the 

mobile target and ( , )k kj jx y  is the known position of sensor kj ; kj

kv  is the zero-mean Gaussian 

measurement noise with variance kj

kR  for sensor kj  at the time step k; k is a random variable 

with k kE p  . 

Since measurement model is nonlinear function, it has to be linearized and Jacobian matrix kj

kH of kj

kh  

is computed as follows: 

2 2 2 2
0 0

( ) ( ) ( ) ( )

k k

k

j j j jk k k k

j jt t
j k k

k
t t t t

k k k k

x x y y
H

x x y y x x y y

   
       

 

4.2.3. Distributed wireless sensor scheduling 

In target tracking application of distributed WSNs, there are a number of wireless sensor nodes 

deployed randomly in a monitored field. One node or several nodes are scheduled as task nodes in 

target tracking application at each time step k.  

We improve dynamic-group scheduling strategy (DGSS) [19]. The improved DGSS (IDGSS) is 

regarded as the scheduler to select next task sensor node during mobile target tracking, where 

predicted accuracy, predicted energy and real time are considered. We define cost function:  

1( , )
( , ) (1 )kj k k

k k k

k

E j j
J j t w w

t
    


    (42) 

where kj

k  is the predicted accuracy, 1( , )k kE j j  is the predicted energy, kt  is sample interval and 

(0,1)w  is weight parameter used to balance the tracking accuracy and energy consumption. 

The task sensor node is scheduled in the following two situations: 

After prediction, if none of the sensors can achieve the satisfactory tracking accuracy using any 
sampling interval between maxT  and minT , in this case, kt is set to the minimal sampling interval minT , 

and the sensor is selected by:  

minarg min{ ( , )}
kk j G kj J j T      (43) 

where G is the set of candidate sensors in the group which can be selected by sensor kj . The purpose of 

this mode is to drive the tracking accuracy to be satisfactory as soon as possible with consideration of 

the energy consumption. 
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After prediction, if at least one sensor can achieve the satisfactory tracking accuracy. In this case, the 
optimal ( , )k kj t  are selected by: 

1 0

1
*, ( , )

( , )
( , ) arg min{ }

k k k

k k
k k j G j j

k

E j j
J j t

t 


  


   (44) 

where *G is the set of sensors that can achieve the satisfactory tracking accuracy, and 0  is the 

threshold of tracking accuracy. Equation (44) above utilizes the objective function (42) with w=0. The 

basic idea of this mode is that when the predicted tracking accuracy is satisfactory, the sensors and the 

sampling interval are selected according to the energy efficiency. 

The sample interval significantly affects tracking accuracy and energy efficiency of the whole 

network. For example, with a short sampling interval, the target can be tracked more accurately but 

lead to much energy consumption. While long sampling interval maybe load tracking accuracy to 

decrease or the target to be lost. In this paper we suppose the sampling interval is selected from a 
predefined N values 1{ }N

tT , where T1=Tmin, T2=Tmax, and 1 2t tT T  if 1 2t t .  

The operations of each task sensor node mainly include the following steps: 
(1) Measuring the distance kj

kz  between the motion target and the current sensor node jk at the 

current time k, where (41) is used; 

(2) Performing extended minimum variance filtering algorithm with packet losses by Theorem 2 in 
WSNs, and calculating the prediction accuracy according to |[1 1 0 0 0] [1 1 0 0 0]kj T

k k kP  ; 

(3) Transmitting the predicted accuracy kj

k  and sample interval kt  according to (43) and (44) at 

time step k to the scheduler. 

We suppose that all sensor nodes are usually in the sleeping mode and are awaked to perform 

sensing tasks by using an ultralow power channel when they are scheduled to perform the  

sensing tasks.  

The scheduler of IDGSS is shown as follows: 

(a)  First, the nearest node to the target (such as bold small circle in the group G1 in Figure 3) is 

awaked from sleep state and regarded as the task node at current time step k in the neighbor 

region;  

(b) The nearest sensor node is considered as the center node in a local neighbor area, total M 

nearest nodes to the target are awaked to form a group. When the target lies in the group, 

we consider both estimation accuracy and energy. If estimation accuracy is satisfactory, the 

sensor node, whose consumption energy is least, is selected to track the target by (44) at the 
next time step k+1, and changed sample interval kt  is used in order to save energy; If 

estimation accuracy is not satisfactory, (43) is used to select next task node jk and Tmin is 

used as sample interval; 

(c) When the target moves out of the group, the sensor nodes in the group return sleep state, 

and a new task node is awaked from the sleep state in a new local neighbor region. 

Similarly, a new dynamic group is formed again, as seen from Figure 3, such as G2, G3, 

G4,… 
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Figure 3. The framework of IDGSS. 

 

Remark 3: we use dynamic grouping idea and firstly awake M sensor nodes in order to increase real-

time performance of target tracking, and adopt the changed sampling intervals during target tracking in 

order to save energy consumption under the satisfactory estimation accuracy.  

4.2.4. Simulation results 

Nonlinear state model and measurement model in Section 4.2.1 and 4.2.2 are adopted to track the 

mobile target in WSNs.  

Define two measurements received as follows respectively. 

Model 1: 

11

1 1(1 )k kj j

k k k k k ky z z   
         (45a) 

Model 2: 

1 22

1 1 1 2(1 ) (1 )(1 )k k kj j j

k k k k k k k k ky z z z     
            (45b) 

where 1

ky  denotes that the filter uses the previous measurement 1

1
kj

kz 
  to update if the current 

measurement kj

kz is lost, and the filter uses only zero to update if both the current measurement and the 

previous measurement are lost at time step k; Different from 1

ky , 2

ky  denotes that the filter can use 2

2
kj

kz 
  

to update when both the current measurement kj

kz and the previous measurement 1

1
kj

kz 
 are lost at time 

step k. 

The monitored field is 100 m×100 m and covered by 20 sensors randomly deployed in Figures 4, 5, 

6 and 7, where the IDGSS is adopted in the target tracking, and the red circles represent random sensor 

nodes deployed in the monitored WSNs area, and the red circles with symbol ‘*’ represent sensor 

nodes scheduled in the process of the target tracking, and the associated tasking sensor of each 

estimated target position is indicated by a blue line between them. 

In the monitored field the target moves along the circle trajectory, whose start position is  
(30, 70). For Theorem 2, initial state vector T

0| 1
ˆ =[30 70 20 20 -1]x  , initial covariance matrix  

0|0P =2diag([0.1 0.1 0.1 0.1 0.1]) and initial variance 0 0|0S P in (38). Total time step N = 67, number 
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of sensor in a group M = 5, q = 0.2 0.001kR   and T

k k kQ B q B   , where [0 0 0 0 0.1]T

kB  . 

Minimum (maximum) time sampling interval Tmin = 0.1 (Tmax = 0.5). Weight parameter w = 0.7. 
Threshold of accuracy 0  = 8. The estimation errors of the EMVF under different packet arrival rate 

are shown in Figures 8, 9, 10 and 11, where estimation error is defined as the distance between the 
estimated target positions and the true position of the target, and k  (Gamma) is a random variable 

taking value 0 or 1.  
For simplicity, in this simulation packet arrival rate kp .p  In Figure 4 when packet arrival rate  

p = 1, standard EKF, Model 1 and Model 2 have the approximately same tracking trajectory. 

Estimation error is approximate in Figure 8. Because packet arrival rate p = 1, we can verify that 

corresponding EMVF of Model 1 and Model 2 reduce standard EKF [20]. When packet loss rate  

p = 0.98, standard EKF starts to diverge once packet loss happens, while Model 1 and Model 2 still can 

track the mobile target in Figure 5. When the time step k = 8, packet loss happens, and then EKF has 

much higher estimation error than Model 1 and Model 2 in Figure 9. When packet arrival rate p is 0.95 

in Figure 6, compared with Model 1, Model 2 has superior tracking trajectory. Moreover, Model 2 

shows smaller estimation error than Model 1 in Figure 10. Model 2 has better performance than  

Model 1, because Model 1 can’t deal with consecutive two measurements dropped, while Model 2 still 

can work well. It is similar in Figure 7 and Figure 11. Moreover, From Figure 8 to Figure 11, we know 

that estimation error becomes more and more small when packet arrival rate p increases.  

It is illustrated that sample interval becomes small and total time steps increase when packet arrival 

rate p decreases, such as the total 42, 44, 52 and 58 time steps in Figure 12, 13, 14, and 15 respectively, 

where it is also resulted in that consumed energy increases when packet arrival rate p decreases  

in WSNs.  

Figure 4. Real trajectory and estimation with IDGSS under packet arrival rate p = 1. 
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Figure 5. Real trajectory and estimation with IDGSS under packet arrival rate p = 0.98. 
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Figure 6. Real trajectory and estimation with IDGSS under packet arrival rate p = 0.95. 
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Figure 7. Real trajectory and estimation with IDGSS under packet arrival rate p = 0.90. 
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Figure 8. Estimation error with IDGSS under packet arrival rate p = 1. 
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Figure 9. Different Filters with IDGSS under packet arrival rate p = 0.98. 
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Figure 10. Estimation error of different filters with IDGSS under packet arrival rate p = 0.95. 
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Figure 11. Estimation error of different filters with IDGSS under packet arrival rate p = 0.90. 
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Figure 12. Changed sampling interval under packet arrival rate p = 1. 
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Figure 13. Changed sampling interval under packet arrival rate p = 0.98. 
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Figure 14. Changed sampling interval under packet arrival rate p = 0.95. 
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Figure 15. Changed sampling interval under packet arrival rate p = 0.90. 
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The simulation results verify that derived EMVF is feasible and available in WSNs. Compared with 

EKF, EMVF has superior performance in tracking mobile target.  

In order to illustrate further the effect of consumption energy and estimation accuracy to sampling 
intervals, we assume that packet arrival rate p=1 and estimation accuracy threshold 0  = 0.5.  

Consumed energy (Ce) and estimation accuracy (Ec) are defined as follows respectively:  

11 0

1
( , )

m n

k ki k
Ce E j j

mn  
    

1 1

1 1
( )kjm n

t k kEc
m n

     

Table 1 demonstrates that consumption energy is quite small and estimation accuracy is not also 

high when IDGSS is adopted. The experience shows that IDGSS make tradeoffs between consumed 

energy and estimation accuracy during target tracking in WSNs.  
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Table 1. Consumed energy and estimation accuracy under different sampling intervals 

with IDGSS based on 100 Monte Carlo simulations.  

Sampling interval (s) 0.1 0.2 0.3 0.4 0.5 IDGSS 

Consumed energy (mJ) 14.8564 9.1176 7.0780 6.1009 5.6857 6.0649 

Estimation 

accuracy(m) 

0.3161 0.4407 0.4973 0.6450 0.7114 0.6729 

5. Conclusions  

For DTSL systems and DTSN systems, a linear optimal filter and an extended minimum variance 

filter with packet losses are designed in this paper, respectively. Especially, the proposed EMVF is 

applied to WSNs for target tracking. A first application example is given and the corresponding 

simulation result verifies the effectiveness and advantages of the proposed LMVF. The second 

application example illustrates that the EMVF with multiple packet losses is feasible and available for 

target tracking in WSNs. In the future, we will further study filters with both multiple time delays and 

finite consecutive packet losses and in WSNs.  
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