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Abstract: The purpose of this study is to develop a motion sensor (delivering optical flow 
estimations) using a platform that includes the sensor itself, focal plane processing 
resources, and co-processing resources on a general purpose embedded processor. All this is 
implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D 
projection into the camera plane of the 3-D motion information presented at the world 
scenario. This motion representation is widespread well-known and applied in the science 
community to solve a wide variety of problems. Most applications based on motion 
estimation require work in real-time; hence, this restriction must be taken into account. In 
this paper, we show an efficient approach to estimate the motion velocity vectors with an 
architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II 
processor. Our approach relies on the simplification of the original optical flow model and 
its efficient implementation in a platform that combines an analog (focal-plane) and digital 
(NIOS II) processor. The system is fully functional and is organized in different stages 
where the early processing (focal plane) stage is mainly focus to pre-process the input image 
stream to reduce the computational cost in the post-processing (NIOS II) stage. We present 
the employed co-design techniques and analyze this novel architecture. We evaluate the 
system’s performance and accuracy with respect to the different proposed approaches 
described in the literature. We also discuss the advantages of the proposed approach as well 
as the degree of efficiency which can be obtained from the focal plane processing 
capabilities of the system. The final outcome is a low cost smart sensor for optical flow 
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computation with real-time performance and reduced power consumption that can be used 
for very diverse application domains. 

Keywords: machine vision; intelligent sensors; optical flow; focal plane; motion 
 

1. Introduction 

The term Optical Flow refers to the visual phenomenon due to the apparent movement perceived 
when we move through a scene and/or regarding the objects moving within it. It represents the 
projection of the 3-D motion presented in the scene to the 2-D plane of the image sensor or the retina. 
Note that as a consequence of this protection, depth information is partially lost and the estimation of 
the 3-D scene structure and motion from the available 2-D field is a very complex task. Optical flow 
has been extensively studied in the computer vision community (see for instance [1]).  

Different approaches have been proposed, in the scientific framework, to estimate the optical flow 
field. The most widely used ones are the gradient based methods. These methods are based on the 
constant-brightness assumption. An extended model is the well-known local method proposed by 
Lucas and Kanade [2]. Another classical model is the one proposed by Horn and Schunck [3], which 
introduces a global constraint of smoothness to solve the aperture problem. An actual modification 
suggested by Brox and Bruhn [4] formulates a new approach to solve the Horn and Schunck model’s 
Achilles heel, the linear smoothness constraint to satisfy the spatial coherence; Brox et al. propose a 
non-lineal constraint of smoothness which preserves the optical flow boundaries. Another group of 
methods are based on local phase correlations. Those methods rely on how the effects of displacement 
in the spatial domain result in the frequency domain. The use of phase information for optical flow was 
developed by Fleet and Jepson [5,6]. Correlation techniques are also used in the motion component 
vector estimation, where block matching methods and similar schemes as the one proposed by  
Camus [7] are valid alternatives. 

In addition to the model choice used to compute the optical flow, its performance and computing 
resource demands are key elements to develop an embedded system for real-world applications. In the 
framework of real-time computing approaches, Díaz et al. in [8], making use of the Lucas and  
Kanade [2] approach, developed an embedded system for lane-change decision aid in driving 
scenarios. Other authors as Mota et al. [9] and Köhler [10] propose bio-inspired models based on 
Reichardt correlators [11] for the design of low cost approaches. In the framework of analog 
approaches, authors such as Stocker et al. [12] present a focal-plane aVLSI sensor to obtain the optical 
flow components based on the Horn and Schunck model [3] while Mehta and Etienne-Cummings 
describe a solution based on a normal flow method [13]. Matching techniques are present in the FPGA 
world where Niitsuma and Maruyama [14] introduce a high performance system able to estimate 
displacement vectors by means of SAD (Sum of Absolute Differences) matching algorithm. 

Following the results of [8,15,16], we focus on Lucas and Kanade’s optical flow method [2], which 
has been highlighted by the mentioned contributions as a good trade-off between accuracy and 
performance. In this paper we will focus to obtain a high computational performance (with low 
accuracy penalty), taking advantage of the analog and digital processors in Eye-RIS™ system to 
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compute optical flow. It is important to remark that this system is a multipurpose machine vision 
architecture, hence it is not an ad-hoc embedded system to compute optical flow such [10,12-14] 
which are designed exclusively for this task.  

The rest of the paper is organized as follows: Section 2 provides a brief overview of the Eye-RIS™ 
system which will be the target device to implement the optical flow sensor. Section 3 presents an 
introduction to the optical flow constraint equation of the Lucas and Kanade method used in this paper. 
In Section 4, we suggest a number of approaches to enhance the performance of the algorithm 
implemented in the Eye-RIS™ platform as well as the co-design strategy used to carry out the 
implementation in this system. The evaluation of the different approaches is described in Section 5. 
Finally, our experimental results are presented in Section 6 while our conclusions and directions for 
future research are summarized in Section 7. 

2. Eye-RIS 

In this paper, we make use of a commercial smart camera designed by AnaFocus, named the  
Eye-RIS™ v1.2 [17] with image resolution of 176 × 144 pixels and capable to operate above 10,000 
fps. This Vision System is a compact one which includes all the elements needed for capturing 
(sensing) images, enhancing sensor operation, and processing the image stream in real-time (as 
described in this paper), interpreting the information contained in such image flow, and supporting 
decision-making based on the outcome of such interpretation. Eye-RIS™ system is a multipurpose 
platform designed to cover the main low-level machine vision primitives with a competitive price in 
relation with the offered solutions in the market. The present commercial smart cameras provide a 
reduced collection of machine vision primitives in relation with the Eye-RIS system. On the other 
hand, we can reuse the same architecture to develop other sort of application much faster that an  
ad-hoc FPGA solution. Other advantages obtained making use of the focal plane are the GOPS (Giga 
Operations per Second) and power consumption, where the focal plane [17] (250 GOPS) consume 
4mW per GOPS while in a DSP [18] (4.3 GOPS) the obtained consumption is 231 mW per GOPS. 
Eye-RIS™ system employs an innovative and proven architecture in which image-processing is 
accomplished following a hierarchical approach with two main levels:  

Early-processing: This level comes right after signal acquisition. The basic tasks at this level are 
meant to extract useful information from the input image stream. Outputs of this level are reduced sets 
of data comprising image features such as object locations, shapes, edges, etc.  

Post-processing: Here, the amount of data is significantly smaller. Inputs are abstract entities in 
many cases, and tasks are meant to output complex decisions and to support action-taking. These tasks 
may involve complex algorithms within long computational flows and may require greater accuracy 
than early processing.  

One unique characteristic of the Eye-RIS™ vision systems compared to other commercial solutions 
is that image acquisition and early-processing take place at the sensor, which is actually a Smart Image 
Sensor (SIS). In this device, image acquisition and pre-processing is performed simultaneously in all 
pixels of the SIS. Consequently, images do not need to be downloaded from the sensor for the initial 
stages of the processing. This concept of concurrent sensing-processing extends the Image Sensor 
concept to the Smart Image Sensor one. The Smart Camera integrates a SIS called Q-Eye, which is a 
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quarter CIF (aka QCIF, 176 × 144) resolution fully-programmable SIS. It consists of an array  
of 176 × 144 cells plus a surrounding global circuitry. Each cell comprises multi-mode optical sensors, 
pixel memories, and linear and non-linear analog processors and binary processors. Each cell is 
interconnected in several ways with its 8 neighboring cells, allowing for highly flexible, 
programmable, efficient, real-time image acquisition and spatial processing operations. In Smart Image 
Sensors, each local processor is merged with an optical sensor. This means that each pixel can both 
sense the corresponding spatial sample of the image and process this data in close interaction and 
cooperation with other pixels. 

Eye-RIS™ v1.2 allows ultra-high processing speed beyond 1,000 frames per second (fps) thanks to 
the incorporation of mixed-signal processing at the pixel level (enough light is assumed so that 
exposure time does not become a bottleneck). Processing speed is also application-dependent. 
Applications with intensive post-processing algorithms might present slower frame rates, since the 
performance may be constrained by the processing power of the embedded processor (NIOS II).  

On the other hand, the Eye-RIS™ Vision System is not conceived for implementing intensive, 
iterative gray-level processing tasks. This kind of models can be implemented using the embedded 
micro-processor but its limited computational power highly limits the complexity of the vision models 
that can be processed in real time. For this reason, it is necessary to take advantage of the resources 
available in the architecture to develop the proposed approaches in this paper, to estimate optical flow. 

The Q-Eye must be seen as a powerful resource for a further processing, i.e., early processing; for 
this reason, a digital post-processing is needed. Altera NIOS II is a 32-bit RISC digital processor 
working at 70 MHz clock frequency, integrated in the smart camera, which allows the controlling 
execution and post-processing image stream provided by the Q-Eye.  

The presented architecture has several advantages compared to conventional smart cameras, but 
imposes some restrictions in programming, due to the analog nature of the SIS Q-Eye, that shall be 
understood and taken into consideration by application developers.  

3. Lucas and Kanade Model for Optical Flow Estimation 

This section introduces the basics to understand the concept of optical flow and the method used in 
this paper. An ordered sequence of images allows the apparent motion estimation. The optical flow 
vector can be defined as a temporal variation in the image coordinates across the time, usually denoted 
as ݒറ ൌ ሺݑ, ሻݒ , and is computed based on the spatio-temporal derivatives of the pixel luminance.  
To estimate optical flow, a constraint equation is needed. Hence, it typically formulates the  
constant-brightness hypothesis. The basis of this assumption is that the pixel brightness remains 
constant over the movement. Thus, we can model this hypothesis with the following expression:  

ቀௗ௙ሺ௫ሺ௧ሻ,௬ሺ௧ሻ,௧ሻ
ௗ௧

ቁ ൌ 0     (1) 

where f represents the luminance values of each pixel in the image. Once the hypothesis is defined 
since (1), is expressed as a derivate of a function with respect to time. Appling the first order Taylor 
expansion we will obtain the optical flow constraint equation: 

ݑ ௫݂ ൅ ݒ ௬݂ ൅ ௧݂ ൌ 0  (2) 
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where u and v are the optical flow components and the spatio-temporal derivates are represented by fx  
fy ft respectively. On the basis of the optical flow constraint equation, Lucas and Kanade [2] proposed 
the minimization of the error Equation (2) using the sum of the least squares: 

,ݑሺܧ ሻݒ ൌ  ෍ሺ ௫݂ሺ݅ሻݑ ൅ ௬݂ሺ݅ሻݒ ൅ ௧݂ሺ݅ሻሻଶ

௜א஻

 (3) 

The objective of minimize the error Equation (3) is to find the displacement components vector ݑ 
and ݒ, that minimize the differential error between the previous image warped (making use of the 
components vector ݑ and ݒ) and the actual image. Hence the Equation (3) is minimized by partial 
derivations respect the optical flow vector ݒറ ൌ ሺݑ,  :ሻ . The result is presented at Equation (4)ݒ

 ቂ ݒݑ ቃ ൌ ቈ 
∑ ௫݂

ଶሺ݅ሻ௜א஻ ∑ ௫݂ሺ݅ሻ ௬݂ሺ݅ሻ௜א஻

∑ ௫݂ሺ݅ሻ ௬݂ሺ݅ሻ௜א஻ ∑ ௬݂
ଶሺ݅ሻ௜א஻

቉
ିଵ

൤
െ ∑ ௫݂ ௧݂௜א஻
െ ∑ ௬݂ ௧݂௜א஻

 ൨ (4) 

where ݑ and ݒ are the optical flow components, the spatio-temporal derivates are represented by ௫݂ ௬݂ 

௧݂  respectively, and the subscript ݅ is the i-th element of the integration block B. Through (4), we 
estimate the optical flow component vectors from a pair of images of a sequence.  

The Lucas and Kanade method has been chosen for two main reasons. At first, this method has been 
ranked with a very good accuracy vs. efficiency trade-off in other literature works [15,16]. As second 
reason, it is due to the digital processing restrictions in Eye-RIS™ system as explained in section 2 that 
requires a low complexity model in order to achieve real-time operation. 

The next section describes how this model is simplified and optimized (in terms of processing speed) 
for its implementation in a NIOS II soft-core processor with the focal plane co-processing capability. 

4. Implementation 

One important problem in optical flow methods is the amount of memory accesses and massive 
multiplications computed by the model. For this reason, a high optimization becomes necessary to 
obtain a reasonable system performance.  

Figure 1. 5 × 5 Sparse Integration Block (SIB) representation. 

 

In order to speed up the computation of the Lucas and Kanade model a Sparse Integration Block 
(SIB) approach is used in (4), as show in Figure 1. Note that each element of the matrix is composed 
by two image derivatives multiplication (for instance ௬݂  multiply by ௧݂  It) and then sparsely added 
according the mask values. Each 0 represents missing data and therefore multiplications that are not 
performed. This translates in high efficiency at reasonable accuracy requiring affordable 
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computational resources. In our model, 9 × 9 and 5 × 5 SIBs are used. In the 9 × 9 SIB case, allows to 
reduce the computational load from 410 multiplications per pixel to 130 multiplications. This 
represents an optimization of 68.29% in terms of computational operations and 69.13% in terms of 
memory accesses with regard to the original one.  

We apply the principle of vicinity, which assumes that any point in the image will have a similar 
value to those in its neighborhood. This principle will be used for the optical flow estimation for 
computation of only a quarter part of the pixel by 4:1 subsampling. Hence, a calculated optical flow 
vector will be propagated to the neighborhood as shown in Figure 2 based on the spatial information 
coherence that says that close pixels tend to have similar optical flow values. This scheme is more 
accurate than a 4:1 input image sub-sampled pixel grid strategy because the optical flow estimation 
takes into account the original spatial-temporal derivates in the input images. With this approach, we 
obtain a factor gain up to four, compared with the original one. 

Figure 2. Neighborhood propagation illustration. 

 

Once the implementation is detailed, we evaluate the system performance with the different 
approaches. On one hand, the method was implemented in C with two different SIBs; on the other 
hand, the same implementation was optimized in assembler with different SIBs. Assembler 
optimization allows to avoid RAW dependencies, optimizes memory accesses in the pipelined data 
path, and avoids unnecessary stack accesses usually implemented by the C compiler, absolute registers 
control, loops unrolling, etc.  

Table 1. System performance evaluation obtained with a 176 × 144 spatial resolution. 

Integration Block Frame Rate  
(frames per second) 

L&K C 9 × 9 Integration Block  0.3 
L&K C 9 × 9 SIB 0.9 
L&K C 9 × 9 SIB 3.6 
L&K ASM 9 × 9 SIB and propagation 11.9 
L&K C 5 × 5 Integration Block 1.3 
L&K C 5 × 5 SIB 3.3 
L&K C 5 × 5 SIB and propagation 8.9 
L&K ASM 5 × 5 SIB and propagation 28.8 
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Next, a performance study is carried out to evaluate the optimization evolution. Table 1 shows that 
the 5 × 5 SIB implemented in assembler reaches a high performance if we compare it with the 9 × 9 
SIB versions. Obviously, this is due to the memory access increase as well as to the number  
of operations.  

Therefore, with these approaches, we come to the conclusion that the global gain obtained in a 9 × 9 
version amounts to 40.47 the gain factor as show in Figure 3. On the other hand, applying these 
approaches to the 5 × 5 version, the gain factor is 31.4. The main reason why the 9 × 9 global gain is 
higher than 5 × 5 optimization is because the 5 × 5 integration stage is significantly reduced (in a 
factor of 2.7), i.e., the original version uses 25 pixels (in the block) while the SIB version only takes 
into account 9 pixels; in the meantime the 9 × 9 is reduced to a 3.2, i.e., the original version analyzes 
81 pixels while the SIB version analyzes only 25 pixels. Making use of the neighborhood propagation 
approach, the optical flow is calculated in a quarter of the sequence, which allows the achievement of 
such high gains. Figure 3 shows the gain factor evolution obtained in each approach and optimization 
as well as the global gain.  

Figure 3. Comparison of the gains obtained with the different optimization strategies. Two 
different implementations are evaluated here, 5 × 5 (red bars) and 9 × 9 (blue bars). (Left to 
right) The first group of columns represents the Sparse Integration Block (SIB) factor gain; 
the second group shows the obtained gain after applying the optical flow 4:1 propagation. 
In the third column group figure the gain when the method is optimized in assembler while 
last column show total gain factor obtained after all the approaches are combined.  

 

It is convenient extrapolate the performance result to a regular PC processor, for instance the Intel 
Core 2 Duo, to make clear the constraints we have in the proposed architecture. For a comparative 
evaluation between NIOS II and an actual processor we make use of Dhrystone 2.1 [19] benchmark. 
The NIOS II soft-core processor configuration (70 MHz NIOS II/f) used in our test, obtains 71 
DMIPS*2 while an Intel Core 2 Duo 2.00 GHz processor obtains 4240 DMIPS (using only one of the 
processor cores). If we compare both processors an Intel Core 2 Duo obtains a gain factor of 59.7. 
Furthermore, Intel Core 2 Duo uses a superscalar architecture with two cores and support SIMD 
instructions (MMX and SSE) while NIOS II is a basic processor with a scalar architecture with a 
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reduced instructions set (add, sub, mul, jmp, etc.). A study about different optimizations feasible on 
modern processor is shown in [20]. Therefore, it is important to remark that, using the presented 
processor, we are much more constrained than using standard ones, and these has motivates to employ 
the proposed model modifications, analog processor utilization and optimizations techniques.  

4.1. Pre-Selection of Points of Interest as a Focal Plane Based Attention Mechanism to Speed-Up the 
Optical Flow Computation 

The boundaries in an image are areas where optical flow can be more confidently estimated (unless 
they correspond to 3-D objects where occlusion problems are very common, though this case is less 
probable). These regions are rich in features; hence, the resulting estimation has more accuracy than in 
areas with poor contrast structure. This is so because the Lucas and Kanade model collects weighted 
spatio-temporal structural information. If the local contrast structure is poor, the optical flow 
estimation confidence will be low. Instead of computing all the points and discarding unreliable points 
in a second stage, we can avoid the calculations of low confidence optical flow estimates by discarding 
these points a priori (using local contrast structure estimates). In order to take advantage of this issue, 
we make use of the Roberts Cross operator to localize the edges (local contrast maxima). The used 
kernels are shown in Figure 4. 

Figure 4. Roberts Cross convolution filter. 

 
(a)                  (b) 

 

The sum of the absolute value of each convolution provides edge estimations, where each 
convolution operation obtains the maximum response when the edge angle reaches 45° (Figure 4a) 
135° (Figure 4b). The filtering procedure is implemented by applying a Gaussian filter to the  
edge response and thresholding it with the original signal. The described procedure is indicated in  
Equation (5): 

              ݂ሺݔሻ ൌ ൜1, ݊ܽ݅ݏݏݑܽܩ ݁݃݀ܧ ݁ݏ݊݋݌ݏܴ݁ ൏ ݁݃݀ܧ  ݁ݏ݊݋݌ݏܴ݁
0, ݁ݏ݈݁  (5) 

Low contrast areas will not provide significant edges. This problem can be solved or reduced by 
locally performing modifications on the image intensity histograms, for instance by applying a 3 × 3 
Laplacian convolution (aka Sharpen filter) which emphasizes the low-contrast areas. Figure 5 shows 
an image edge detection and a sharpen image edge detection.  

It can be observed that a higher edge density is obtained by applying the sharpen filter. In this 
example, Figure 5a has 13.49% of density, while Figure 5b provides a density of 38.20%. Usually, the 
edge binary map outputs are around 30 up to 40% in high edge density scenes, 50% in the worst case. 
Using the sharpen filter, this method is more prone to noise. To reduce this noise, we can use the focal 
plane computational primitives, such as binary dilatation and erosion. Applying successive erosions 
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27 (red mark in Figure 6b) reaching up to 34 (green mark in Figure 6b) frames per second, taking into 
consideration 30 fps as the usual value (blue mark in Figure 6b).  

Figure 6. (a) System performance using pre-selected points of interest and 5 × 5 SIB.  
(b) System performance using pre-selected points of interest and 9 × 9 SIB. Colored mark 
illustrates three typical scenarios using different image edge densities. The green mark 
makes reference to the best performance cases (scenes with low edge density), the blue 
one, to the most common density values (normal scenes) and the red mark, to the worst 
cases (scenes with high edge density). The error bar represents the standard deviation of 
the results for 10 trials.  

(a) 

 
(b) 

 
 

We can conclude that the proposed approach is suitable for real time computation beyond video-
rate, (25 fps). The main advantage of studying optical flow in points of interest (in our case they are 
pre-selected edges) is the increase of performance. The gain obtained is around 2 in the worse cases, 
assuming these cases in scenes with a 50% of density. Considering the best cases, scenes with 30% of 
density, the gain will arise up to 2.6. As commented before, a common scene usually contains 35% of 
density. Hence, we can conclude that the mean speed up gain is 2.3. This gain can be used to compute 
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flow at higher frame-rate (and therefore, improve the optical flow accuracy [21]) or to include new 
functionalities into the processors towards final concrete applications (for instance, to implement a 
tracking system based on the presented approach). 

It is important to remark that NIOS II is able to handle 0.044 GOPS to compute optical flow while 
the focal plane processes 4.1 GOPS to smooth the image, obtain points of interest, and compute the 
optical flow regularization. To estimate the number of operations used in the focal plane, we carried 
out an equivalence of a digital processor (NIOS II) to perform the same functionality. Due the amount 
of operations involved in a previous (focal plane) and final stage (processor) to obtain optical flow, we 
can conclude that the optical flow estimation could not be implemented in this architecture without the 
focal plane assistance. 

 
4.2. Co-Design Strategy 
 

In previous sections, we defined how to estimate optical flow as well as how such optical flow has 
been implemented to speed up the optical flow estimations. In this section, we introduce the global 
description of how to estimate the motion vector components in the Eye-RIS™ system. As described 
before, the Q-Eye sensor is a system able to process in the same physical layer where the image is 
captured (focal plane computation). For this reason, at the same time that the system captures the 
image, we can process it and send it to memory where a post-digital processing takes place. 

After the image capture is finished, the focal plane processes the image with the proposed method to 
select edges, as described in the previous section, and applies a linear diffusion filter [22] that works as 
smoothing filter of the captured image and improves the numerical computation of the image 
derivatives. The estimated edge map and the current and previously captured image on the sensor form 
part of the optical flow method to be computed in the digital processor. Once the optical flow is 
calculated at the NIOS II processor, a linear diffusion filtering (regularization) is applied to the optical 
flow components in the focal plane as indicated in Figure 7, to preserve the spatial coherence [3]. Note 
that when we refer to “regularization”, we mean the process that performs the local averaging process 
and improves the spatial coherence based on the smoothness constraint. 

Figure 7. Initial Co-Design scheme. 
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An important factor to take into account is the exposure time when the image is captured. Adopting 
a sequential strategy, image acquisition, and NIOS processing being done sequentially (one after the 
other), is not convenient because it does not take advantage of the pipelined processing capabilities of 
the system. The focal plane (Q-Eye) is able to work asynchronously with the processor, and the system 
will be able to capture and process in the focal plane at the same time that we are making use of the 
digital processor. To accomplish this, the exposure time, focal plane processing, and processor 
computing time must be taken into account.  

Furthermore, analog-based internal memories in the focal plane cannot retain the images for a long 
time due to leakage. Taking into account that the mean value of an image stored in an internal focal 
plane memory, decreases around 0.8 LSBs every 40 ms. Prolonged storage leads to significant 
degradation, due to transistors leakage. In order to reduce this signal degradation as well as remain a 
constant sampling period, we must meet the following constraint, as indicated in expression (6): 

                    ܲ ௉ܶ௥௢௖௘௦௦௢௥ ൏ ܶܧ ൅ ܲ ிܶ௢௖௔௟ ௉௟௔௡௘ (6) 

where the time of optic flow processing in NIOS II is ܲ ௉ܶ௥௢௖௘௦௦௢௥ , while ܶܧ is the capture exposure 
time and ܲ ிܶ௢௖௔௟ ௉௟௔௡௘ is the focal plane processing time. The processing time, in the focal plane, takes 
approximately 3–40 µs per operation. Hence, we can consider this time to be negligible if we compare 
it to the exposure time or the processing time on the processor. Although the frame-rate is determined 
by ܲ ௉ܶ௥௢௖௘௦௦௢௥, if large movements are presented in the scene, we can make use of lower exposure 
times (to reduce the displacement). In this case, a slightly more complicated scheme is necessary to 
reduce, as much as possible, the time that each frame is stored in the analog memories. For this 
purpose, the optical flow process must be split in different stages. In the first stage, the I୲ image is 
captured by the focal plane at the same time as the partial optical flow estimation (half of the 
resolution) of a previous captured sequence I୲ିଶ and I୲ିଵ, is carried out on the processor. The second 
stage captures I୲ାଵ image and processes the unfinished optical flow calculation of the previous stage. 
The last stage transfers the optical flow components to the focal plane to apply the post-processing 
lineal diffusion filter which act as a Gaussian isotropic filter. Note that we do not have a continuous 
acquisition process where time between frames is fixed. Contrary, we handle the acquisition process 
(according to the scheme of Figure 8) to avoid the image degradation and preserve, as much as 
possible, the time interval between the captured images. Therefore estimating the flow only between 
pairs of consecutive frames is possible to avoid the problems previously explained. That is to say, we 
compute the flow between frames I୲ିଶ and I୲ିଵ and between frames I୲ and I୲ାଵ but we do not compute 
the flow between frames I୲ିଵ and I୲ because the time interval can be different. This is because after 
compute optical flow another further processing algorithms could be applied. Figure 8 illustrates  
this process.  
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Figure 8. Different stages to estimate optical flow in Eye-RIS™ system. 
 

 

5. Evaluation 

The purpose of this section is to evaluate and validate the suggested approaches described in the 
previous section. In this paper the error measure (7) will be the same that the used by Barron et al. [1], 
which consists in the angular error estimation between the ground-truth optical flow vector and the 
estimated one: 

߰ா ൌ ሺሬܸԦ௖ݏ݋ܿܿݎܽ · ሬܸԦ௘ሻ (7) 

where ψE is the estimated error, Vc the true vector flow from the Ground-truth values, Ve the estimated 
vector flow and ՜ denotes the vector normalization. Note that this error metrics is non linear and 
combine information from the angular and magnitude error. Nevertheless it is frequently used and 
therefore has been used for the sake of comparison with other contributions available at the literature.  

To evaluate the angular error (7) in a sequence, the real optical flow must be known. The Yosemite 
sequence, created by Lynn Quam [1], has been widely used for quantitative evaluation of optical flow 
methods. It is based on an aerial image of the Yosemite Valley, where the ground-truth values of this 
synthetic sequence are known. 
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Once the angular error estimation procedure is defined, we carry out an angular error study on the 
simplified Lucas and Kanade approach described in this work. As a first step, we will evaluate the 
original model implementation in software, with the different proposed approaches and densities 
(100% and 48.5%) as shown in Table 2.  

Table 2. Average angular error (AAE) and standard deviation (STD), in Yosemite 
sequence (without clouds), with the different proposed approaches and densities on Matlab. 

Integration Block and Used Approach AAE  
100% 

STD 
100% 

AAE 
48.5% 

STD 
48.5% 

5 × 5 Barron’s implementation 11.01º 17.14º 10.32º 17.40º 
5 × 5 20.68º 21.75º 20.38º 20.57º 
9 × 9 14.75º 14.85º 14.63º 14.16º 

5 × 5 SIB 19.64º 20.72º 19.34º 19.54º 
9 × 9 SIB 14.09º 13.99º 13.98º 13.33º 

5 × 5 Propagation 20.74º 21.97º 20.43º 20.84º 
9 × 9 Propagation 14.73º 15.04º 14.56º 14.32º 

5 × 5 SIB + Propagation 19.71º 20.98º 19.39º 19.86º 
9 × 9 SIB + Propagation 14.08º 14.21º 13.92º 13.51º 

5 × 5 SIB Propagation + Regularization σ = 5.29 12.30º 12.18º 12.10º 11.29º 
9 × 9 SIB Propagation + Regularization σ = 5.29 10.51º 8.46º 10.51º 8.12º 
5 × 5 SIB Propagation + Regularization σ = 7.48 11.33º 10.26º 11.17º 9.53º 
9 × x9 SIB Propagation + Regularization σ = 7.48 9.89º 7.11º 9.86º 6.75º 

 
To compare our approaches, we will measure the error in the Lucas and Kanade implementation 

proposed by Barron [1], where the optical flow is estimated making use of a temporal resolution of 5 
images and 5 × 5 integration blocks. The table which is shown above indicates that with a 9 × 9 
integration block, we obtain better results that working with a 5 × 5 integration block and getting an 
error similar to the Barron’s implementation. Making use of large blocks, the model weights better the 
optical flow components but with the associated problem of the computation time. Comparing the 
angular error between sparse and non-sparse blocks, the table shows that the error is quite similar 
between them. Hence, by applying sparse integration blocks (SIB), the performance becomes higher 
regarding the original one. 

As we stated in Section 4, the main idea is to propagate the optical flow estimation to the 
neighborhood. The results obtained above reveal us that making use of this performance optimization; 
we reach quite similar results if we compare them with non-propagated version. Hence, we can say 
that this approach is totally valid since the loss in accuracy is insignificant in both sparse and non-
sparse integration block approaches. 

The last test, we evaluate optical flow regularization (spatial coherence). In this way, we can correct 
small errors, weighting them with the neighborhood. The most common smoothing filter used is the 
Gaussian convolution. Hence, we apply the mentioned filter to the estimated optical flow and then, as 
a priori, the same test scheme is implemented. Analyzing the experiment above, we can deduce that 
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the obtained results are better if we apply this smoothing convolution filter to the optical flow 
components. The angular error reduction is higher for small integration blocks, both sparse and  
non-sparse. While using larger masks, the error is lower, if we compare these masks with the smaller 
ones (5 × 5). This is due to the fact that, for the information collected in small blocks, the model 
weighted worse than in the case of masks with larger neighborhoods. Hence, applying the 
regularization to the result helps to weight again the vicinity, being therefore small mask based 
approaches more favored. If we compare our results, after the regularization step, with the Barron’s 
implementation we obtain quite similar angular errors but otherwise we reduce the standard deviation 
by more than a half. 

All the previous simplified approaches have been evaluated using Matlab code, with double floating 
point data representation, to illustrate the effect of the successive approaches. To obtain a realistic 
evaluation, we will estimate the angular error in the Eye-RIS™ system. In order to carry out these 
measurements, different integration blocks and post smoothing filters (regularization) are taken into 
account. In this evaluation, we assume as valid all the approaches and simplifications evaluated before. 
Note that here a new filter, in the regularization step, is used. This filter, lineal diffusion filter [22], 
implements a low-pass filter that emulates a Gaussian filter using the Resistive Grid module available 
on the SIS Q-Eye (focal plane). Due to the nature of the linear diffusion and its equivalence with the 
Gaussian filter [22], we decided to use this filter because it is more precise and exploits the advantages 
of the focal plane.  

In Table 3 show the measure the average angular error and standard deviation error with different 
densities (100% and 48.5%).We must remark that the optical flow estimation is developed making use 
of fix point arithmetic approach. 

Table 3. Average angular error (AAE) and standard deviation (STD), in Yosemite 
sequence (without clouds), with the different proposed approaches and densities on  
Eye-RIS system. 

Integration Block and Used Approach AAE  
100% 

STD 
100% 

AAE 
48.5% 

STD 
48.5%

5 × 5 SIB  24.79º 20.12º 23.45º 18.55º
9 × 9 SIB  17.10º 14.02º 15.88º 12.59º

5 × 5 SIB Propagation 24.84º 20.09º 23.25º 18.41º
9 × 9 SIB Propagation 17.14º 13.88º 15.94º 12.55º

5 × 5 SIB Propagation + Regularization σ = 5.29 15.61º 12.01º 13.12º 10.53º
9 × 9 SIB Propagation + Regularization σ = 5.29 13.06º 10.11º 11.25º 8.86º 
5 × 5 SIB Propagation + Regularization σ = 7.48 14.61º 10.63º 12.24º 9.46º 
9 × 9 SIB Propagation + Regularization σ = 7.48 13.09º 9.34º 10.44º 7.87º 

 
We conclude that after performing the angular error measurements of optical flow, taking into 

account different blocks of integration as well as linear diffusion filters (regularization), the best result 
obtained is the 9 × 9 SIB with a lineal diffusion filter with σ = 5.29 as shown in Table 3. The 
differences with the previous version (Table 2) are mainly produced because we work on fix point 
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arithmetic of 32 bits in NIOS II, properly rescaled across the different processing operations to keep 
the relevant information. Note that, though bit-width and representation is significantly different than 
the purely software version (MATLAB version), the results fit quite well the previous data which 
validate our fixed point implementation.  

6. Experimental Results 

In this section, we present our experimental results with real sequences. To evaluate the optical flow 
results, we have decided to use a traffic sequence where the cars move through the scene. In this 
sequence, the optical flow has a clear interpretation and therefore, a qualitative evaluation can be done. 
The original sequence, Ettlinger-Tor, can be obtained from [23]. The optical flow estimation is carried 
out in different sequences applying both SIBs (5 × 5 and 9 × 9). To interpret the obtained results, the 
optical flow vector direction is encoded with a color (according to the colored frames of the different 
images) whereas the vector’s magnitude is expressed by the color intensity as shown in Figure 9. 
 

Figure 9. Optical flow representation. The color corresponds with the direction of the 
optical flow vector while the magnitude is encoded as the color intensity.  

 

 
 

In the results shown below we can observe that the optical flow increases, as we increase the sparse 
integration block (5 × 5 SIB and 9 × 9 SIB). To estimate the optical flow in Figure 10 and Figure 12 we 
applied to the image a lineal diffusion smoothing, equivalent to a Gaussian filter with σ = 2.5, while 
the optical flow regularization corresponds to a Gaussian filter with σ = 3.3. 

In Section 4.1, we proposed a method to obtain the image edge response in a focal plane. With this 
approach, we are able to obtain a mean gain of 2.3. Once the edge estimation is computed in the focal 
plane, morphological operations of dilatation and erosion are applied to the binary map (two 
dilatations and one erosion with a 3 × 3 kernel) to bring near the optical flow results to the obtained 
ones without the sparse estimation. In Figure 11, we show the binary maps processed in the Q-Eye. 

After the estimation of the points of interest, the motion vectors are calculated on the processor and 
post smoothed on the Q-Eye. The results of this procedure are shown in Figure 12. As can be 
observed, the output density is slightly lower if we compare it with previous results.  
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dense optical flow without the risk of areas of low contrast, a 5 × 5 SIB shall be chosen. When the 
precision is a crucial factor, pre-selection of point of interest into the estimation of motion vector and 
using a 9 × 9 SIB is the best choice. If the time is an essential component, the option that best meets 
these requirements is using 5 × 5 SIB and pre-selection of points of interest to the optical  
flow estimator.  

Figure 12. Optical flow estimation, on edges, in a traffic sequence. The average edge 
density, in these images, is 42.5%. Flow field is overlaid with the original frame. In the 
first row (a–c), the optical flow is estimated using 9 × 9 SIB. In the second Row (d–f), the 
optical flow is estimated using 5 × 5 SIB. 

 
(a)                               (b)                               (c) 

 
(d)                               (e)                              (f) 

7. Conclusions and Future Research 

In this paper, we propose an approach to solve optical flow through the Lucas and Kanade method 
on hybrid architecture, analog and digital processing, based on a computing focal plane and a digital 
processor. An early image processing is carried out in the analog device, where the image acquisition 
and processing are executed in the same physical layer (taking advantage of pixel-wise processing 
parallelism). Once this early image processing is done, the processor is used to estimate the motion 
vector components with the different proposed simplifications and optimizations. This co-design 
strategy allows to improve the input image SNR and at the same time, focuses our attention on the 
relevant image features. This strategy allows to enhance the system accuracy and performance in terms 
of computing speed.  

In this contribution, we show the different model modifications towards an embedded architecture 
where computing resources are significantly constrained. The originality and challenge of this work lie 
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in the way that the approach was implemented in this architecture, which has low computation power 
for digital processing, to obtain reasonable results it is necessary to take full advantage of the powerful 
capabilities of the analog processor. The presented optical flow implementation, on a platform that 
integrates analog focal plane processing capabilities and digital processing resources takes full 
advantage of both computational paradigms. Furthermore, different simplifications and optimizations 
(such as the post-processing filters) are adapted to better match the computing architecture. The 
development of vision models in this kind of platforms requires an efficient management of the 
available processing resources. 

Focal plane computations allow pixel-wise processing parallelism. Taking full advantage of these 
parallelism capabilities is not straightforward and also requires evaluating the signal degradation due to 
analog processing of storage at the focal plane resources. We have carried out a performance 
evaluation in terms of processing speed and accuracy as well as the evaluation of different 
simplifications and optimizations, estimating their impact on the final performance rate and accuracy. 
The results from the experiment reveal us an empirical validation of the proposed scheme. We can 
conclude that the obtained implementation (and its performance results) validates the proposed 
approach, as a high complexity model implemented on a low cost sensor. This article may be useful for 
those who may have similar restrictions as those exposed here (addressing approaches on hybrid 
analog-digital platforms) or for those who need to speed-up the models with an affordable loss in 
accuracy using focal plane analog computing. Future research will focus our work in the automotive 
sector, to detect car overtaking, where the optical flow is the main factor to carry out these purposes. 
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