
Sensors 2010, 10, 2975-2994; doi:10.3390/s100402975

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital
Architecture

Pablo Guzmán, Javier Díaz, Rodrigo Agís and Eduardo Ros *

Computer Architecture and Technology Department, University of Granada. C/ Periodista Daniel
Saucedo Aranda s/n E-18071 Granada, Spain; E-Mails: pguzman@atc.ugr.es (P.G.);
jdiaz@atc.ugr.es (J.D.); ragis@atc.ugr.es (R.A.)

* Author to whom correspondence should be addressed; E-Mail: eduardo@atc.ugr.es;
Tel.: +34- 958-246128; Fax: +34-958- 248993.

Received: 20 January 2010; in revised form: 5 March 2010 / Accepted: 17 March 2010 /
Published: 30 March 2010

Abstract: The purpose of this study is to develop a motion sensor (delivering optical flow
estimations) using a platform that includes the sensor itself, focal plane processing
resources, and co-processing resources on a general purpose embedded processor. All this is
implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D
projection into the camera plane of the 3-D motion information presented at the world
scenario. This motion representation is widespread well-known and applied in the science
community to solve a wide variety of problems. Most applications based on motion
estimation require work in real-time; hence, this restriction must be taken into account. In
this paper, we show an efficient approach to estimate the motion velocity vectors with an
architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II
processor. Our approach relies on the simplification of the original optical flow model and
its efficient implementation in a platform that combines an analog (focal-plane) and digital
(NIOS II) processor. The system is fully functional and is organized in different stages
where the early processing (focal plane) stage is mainly focus to pre-process the input image
stream to reduce the computational cost in the post-processing (NIOS II) stage. We present
the employed co-design techniques and analyze this novel architecture. We evaluate the
system’s performance and accuracy with respect to the different proposed approaches
described in the literature. We also discuss the advantages of the proposed approach as well
as the degree of efficiency which can be obtained from the focal plane processing
capabilities of the system. The final outcome is a low cost smart sensor for optical flow

OPEN ACCESS

Sensors 2010, 10

2976

computation with real-time performance and reduced power consumption that can be used
for very diverse application domains.

Keywords: machine vision; intelligent sensors; optical flow; focal plane; motion

1. Introduction

The term Optical Flow refers to the visual phenomenon due to the apparent movement perceived
when we move through a scene and/or regarding the objects moving within it. It represents the
projection of the 3-D motion presented in the scene to the 2-D plane of the image sensor or the retina.
Note that as a consequence of this protection, depth information is partially lost and the estimation of
the 3-D scene structure and motion from the available 2-D field is a very complex task. Optical flow
has been extensively studied in the computer vision community (see for instance [1]).

Different approaches have been proposed, in the scientific framework, to estimate the optical flow
field. The most widely used ones are the gradient based methods. These methods are based on the
constant-brightness assumption. An extended model is the well-known local method proposed by
Lucas and Kanade [2]. Another classical model is the one proposed by Horn and Schunck [3], which
introduces a global constraint of smoothness to solve the aperture problem. An actual modification
suggested by Brox and Bruhn [4] formulates a new approach to solve the Horn and Schunck model’s
Achilles heel, the linear smoothness constraint to satisfy the spatial coherence; Brox et al. propose a
non-lineal constraint of smoothness which preserves the optical flow boundaries. Another group of
methods are based on local phase correlations. Those methods rely on how the effects of displacement
in the spatial domain result in the frequency domain. The use of phase information for optical flow was
developed by Fleet and Jepson [5,6]. Correlation techniques are also used in the motion component
vector estimation, where block matching methods and similar schemes as the one proposed by
Camus [7] are valid alternatives.

In addition to the model choice used to compute the optical flow, its performance and computing
resource demands are key elements to develop an embedded system for real-world applications. In the
framework of real-time computing approaches, Díaz et al. in [8], making use of the Lucas and
Kanade [2] approach, developed an embedded system for lane-change decision aid in driving
scenarios. Other authors as Mota et al. [9] and Köhler [10] propose bio-inspired models based on
Reichardt correlators [11] for the design of low cost approaches. In the framework of analog
approaches, authors such as Stocker et al. [12] present a focal-plane aVLSI sensor to obtain the optical
flow components based on the Horn and Schunck model [3] while Mehta and Etienne-Cummings
describe a solution based on a normal flow method [13]. Matching techniques are present in the FPGA
world where Niitsuma and Maruyama [14] introduce a high performance system able to estimate
displacement vectors by means of SAD (Sum of Absolute Differences) matching algorithm.

Following the results of [8,15,16], we focus on Lucas and Kanade’s optical flow method [2], which
has been highlighted by the mentioned contributions as a good trade-off between accuracy and
performance. In this paper we will focus to obtain a high computational performance (with low
accuracy penalty), taking advantage of the analog and digital processors in Eye-RIS™ system to

Sensors 2010, 10

2977

compute optical flow. It is important to remark that this system is a multipurpose machine vision
architecture, hence it is not an ad-hoc embedded system to compute optical flow such [10,12-14]
which are designed exclusively for this task.

The rest of the paper is organized as follows: Section 2 provides a brief overview of the Eye-RIS™
system which will be the target device to implement the optical flow sensor. Section 3 presents an
introduction to the optical flow constraint equation of the Lucas and Kanade method used in this paper.
In Section 4, we suggest a number of approaches to enhance the performance of the algorithm
implemented in the Eye-RIS™ platform as well as the co-design strategy used to carry out the
implementation in this system. The evaluation of the different approaches is described in Section 5.
Finally, our experimental results are presented in Section 6 while our conclusions and directions for
future research are summarized in Section 7.

2. Eye-RIS

In this paper, we make use of a commercial smart camera designed by AnaFocus, named the
Eye-RIS™ v1.2 [17] with image resolution of 176 × 144 pixels and capable to operate above 10,000
fps. This Vision System is a compact one which includes all the elements needed for capturing
(sensing) images, enhancing sensor operation, and processing the image stream in real-time (as
described in this paper), interpreting the information contained in such image flow, and supporting
decision-making based on the outcome of such interpretation. Eye-RIS™ system is a multipurpose
platform designed to cover the main low-level machine vision primitives with a competitive price in
relation with the offered solutions in the market. The present commercial smart cameras provide a
reduced collection of machine vision primitives in relation with the Eye-RIS system. On the other
hand, we can reuse the same architecture to develop other sort of application much faster that an
ad-hoc FPGA solution. Other advantages obtained making use of the focal plane are the GOPS (Giga
Operations per Second) and power consumption, where the focal plane [17] (250 GOPS) consume
4mW per GOPS while in a DSP [18] (4.3 GOPS) the obtained consumption is 231 mW per GOPS.
Eye-RIS™ system employs an innovative and proven architecture in which image-processing is
accomplished following a hierarchical approach with two main levels:

Early-processing: This level comes right after signal acquisition. The basic tasks at this level are
meant to extract useful information from the input image stream. Outputs of this level are reduced sets
of data comprising image features such as object locations, shapes, edges, etc.

Post-processing: Here, the amount of data is significantly smaller. Inputs are abstract entities in
many cases, and tasks are meant to output complex decisions and to support action-taking. These tasks
may involve complex algorithms within long computational flows and may require greater accuracy
than early processing.

One unique characteristic of the Eye-RIS™ vision systems compared to other commercial solutions
is that image acquisition and early-processing take place at the sensor, which is actually a Smart Image
Sensor (SIS). In this device, image acquisition and pre-processing is performed simultaneously in all
pixels of the SIS. Consequently, images do not need to be downloaded from the sensor for the initial
stages of the processing. This concept of concurrent sensing-processing extends the Image Sensor
concept to the Smart Image Sensor one. The Smart Camera integrates a SIS called Q-Eye, which is a

Sensors 2010, 10

2978

quarter CIF (aka QCIF, 176 × 144) resolution fully-programmable SIS. It consists of an array
of 176 × 144 cells plus a surrounding global circuitry. Each cell comprises multi-mode optical sensors,
pixel memories, and linear and non-linear analog processors and binary processors. Each cell is
interconnected in several ways with its 8 neighboring cells, allowing for highly flexible,
programmable, efficient, real-time image acquisition and spatial processing operations. In Smart Image
Sensors, each local processor is merged with an optical sensor. This means that each pixel can both
sense the corresponding spatial sample of the image and process this data in close interaction and
cooperation with other pixels.

Eye-RIS™ v1.2 allows ultra-high processing speed beyond 1,000 frames per second (fps) thanks to
the incorporation of mixed-signal processing at the pixel level (enough light is assumed so that
exposure time does not become a bottleneck). Processing speed is also application-dependent.
Applications with intensive post-processing algorithms might present slower frame rates, since the
performance may be constrained by the processing power of the embedded processor (NIOS II).

On the other hand, the Eye-RIS™ Vision System is not conceived for implementing intensive,
iterative gray-level processing tasks. This kind of models can be implemented using the embedded
micro-processor but its limited computational power highly limits the complexity of the vision models
that can be processed in real time. For this reason, it is necessary to take advantage of the resources
available in the architecture to develop the proposed approaches in this paper, to estimate optical flow.

The Q-Eye must be seen as a powerful resource for a further processing, i.e., early processing; for
this reason, a digital post-processing is needed. Altera NIOS II is a 32-bit RISC digital processor
working at 70 MHz clock frequency, integrated in the smart camera, which allows the controlling
execution and post-processing image stream provided by the Q-Eye.

The presented architecture has several advantages compared to conventional smart cameras, but
imposes some restrictions in programming, due to the analog nature of the SIS Q-Eye, that shall be
understood and taken into consideration by application developers.

3. Lucas and Kanade Model for Optical Flow Estimation

This section introduces the basics to understand the concept of optical flow and the method used in
this paper. An ordered sequence of images allows the apparent motion estimation. The optical flow
vector can be defined as a temporal variation in the image coordinates across the time, usually denoted
as ݒറ ൌ ሺݑ, ሻݒ , and is computed based on the spatio-temporal derivatives of the pixel luminance.
To estimate optical flow, a constraint equation is needed. Hence, it typically formulates the
constant-brightness hypothesis. The basis of this assumption is that the pixel brightness remains
constant over the movement. Thus, we can model this hypothesis with the following expression:

ቀௗ௙ሺ௫ሺ௧ሻ,௬ሺ௧ሻ,௧ሻ
ௗ௧

ቁ ൌ 0 (1)

where f represents the luminance values of each pixel in the image. Once the hypothesis is defined
since (1), is expressed as a derivate of a function with respect to time. Appling the first order Taylor
expansion we will obtain the optical flow constraint equation:

ݑ ௫݂ ൅ ݒ ௬݂ ൅ ௧݂ ൌ 0 (2)

Sensors 2010, 10

2979

where u and v are the optical flow components and the spatio-temporal derivates are represented by fx
fy ft respectively. On the basis of the optical flow constraint equation, Lucas and Kanade [2] proposed
the minimization of the error Equation (2) using the sum of the least squares:

,ݑሺܧ ሻݒ ൌ ෍ሺ ௫݂ሺ݅ሻݑ ൅ ௬݂ሺ݅ሻݒ ൅ ௧݂ሺ݅ሻሻଶ

௜א஻

 (3)

The objective of minimize the error Equation (3) is to find the displacement components vector ݑ
and ݒ, that minimize the differential error between the previous image warped (making use of the
components vector ݑ and ݒ) and the actual image. Hence the Equation (3) is minimized by partial
derivations respect the optical flow vector ݒറ ൌ ሺݑ, :ሻ . The result is presented at Equation (4)ݒ

 ቂ ݒݑ ቃ ൌ ቈ
∑ ௫݂

ଶሺ݅ሻ௜א஻ ∑ ௫݂ሺ݅ሻ ௬݂ሺ݅ሻ௜א஻

∑ ௫݂ሺ݅ሻ ௬݂ሺ݅ሻ௜א஻ ∑ ௬݂
ଶሺ݅ሻ௜א஻

቉
ିଵ

൤
െ ∑ ௫݂ ௧݂௜א஻
െ ∑ ௬݂ ௧݂௜א஻

 ൨ (4)

where ݑ and ݒ are the optical flow components, the spatio-temporal derivates are represented by ௫݂ ௬݂

௧݂ respectively, and the subscript ݅ is the i-th element of the integration block B. Through (4), we
estimate the optical flow component vectors from a pair of images of a sequence.

The Lucas and Kanade method has been chosen for two main reasons. At first, this method has been
ranked with a very good accuracy vs. efficiency trade-off in other literature works [15,16]. As second
reason, it is due to the digital processing restrictions in Eye-RIS™ system as explained in section 2 that
requires a low complexity model in order to achieve real-time operation.

The next section describes how this model is simplified and optimized (in terms of processing speed)
for its implementation in a NIOS II soft-core processor with the focal plane co-processing capability.

4. Implementation

One important problem in optical flow methods is the amount of memory accesses and massive
multiplications computed by the model. For this reason, a high optimization becomes necessary to
obtain a reasonable system performance.

Figure 1. 5 × 5 Sparse Integration Block (SIB) representation.

In order to speed up the computation of the Lucas and Kanade model a Sparse Integration Block
(SIB) approach is used in (4), as show in Figure 1. Note that each element of the matrix is composed
by two image derivatives multiplication (for instance ௬݂ multiply by ௧݂ It) and then sparsely added
according the mask values. Each 0 represents missing data and therefore multiplications that are not
performed. This translates in high efficiency at reasonable accuracy requiring affordable

Sensors 2010, 10

2980

computational resources. In our model, 9 × 9 and 5 × 5 SIBs are used. In the 9 × 9 SIB case, allows to
reduce the computational load from 410 multiplications per pixel to 130 multiplications. This
represents an optimization of 68.29% in terms of computational operations and 69.13% in terms of
memory accesses with regard to the original one.

We apply the principle of vicinity, which assumes that any point in the image will have a similar
value to those in its neighborhood. This principle will be used for the optical flow estimation for
computation of only a quarter part of the pixel by 4:1 subsampling. Hence, a calculated optical flow
vector will be propagated to the neighborhood as shown in Figure 2 based on the spatial information
coherence that says that close pixels tend to have similar optical flow values. This scheme is more
accurate than a 4:1 input image sub-sampled pixel grid strategy because the optical flow estimation
takes into account the original spatial-temporal derivates in the input images. With this approach, we
obtain a factor gain up to four, compared with the original one.

Figure 2. Neighborhood propagation illustration.

Once the implementation is detailed, we evaluate the system performance with the different
approaches. On one hand, the method was implemented in C with two different SIBs; on the other
hand, the same implementation was optimized in assembler with different SIBs. Assembler
optimization allows to avoid RAW dependencies, optimizes memory accesses in the pipelined data
path, and avoids unnecessary stack accesses usually implemented by the C compiler, absolute registers
control, loops unrolling, etc.

Table 1. System performance evaluation obtained with a 176 × 144 spatial resolution.

Integration Block Frame Rate
(frames per second)

L&K C 9 × 9 Integration Block 0.3
L&K C 9 × 9 SIB 0.9
L&K C 9 × 9 SIB 3.6
L&K ASM 9 × 9 SIB and propagation 11.9
L&K C 5 × 5 Integration Block 1.3
L&K C 5 × 5 SIB 3.3
L&K C 5 × 5 SIB and propagation 8.9
L&K ASM 5 × 5 SIB and propagation 28.8

Sensors 2010, 10

2981

Next, a performance study is carried out to evaluate the optimization evolution. Table 1 shows that
the 5 × 5 SIB implemented in assembler reaches a high performance if we compare it with the 9 × 9
SIB versions. Obviously, this is due to the memory access increase as well as to the number
of operations.

Therefore, with these approaches, we come to the conclusion that the global gain obtained in a 9 × 9
version amounts to 40.47 the gain factor as show in Figure 3. On the other hand, applying these
approaches to the 5 × 5 version, the gain factor is 31.4. The main reason why the 9 × 9 global gain is
higher than 5 × 5 optimization is because the 5 × 5 integration stage is significantly reduced (in a
factor of 2.7), i.e., the original version uses 25 pixels (in the block) while the SIB version only takes
into account 9 pixels; in the meantime the 9 × 9 is reduced to a 3.2, i.e., the original version analyzes
81 pixels while the SIB version analyzes only 25 pixels. Making use of the neighborhood propagation
approach, the optical flow is calculated in a quarter of the sequence, which allows the achievement of
such high gains. Figure 3 shows the gain factor evolution obtained in each approach and optimization
as well as the global gain.

Figure 3. Comparison of the gains obtained with the different optimization strategies. Two
different implementations are evaluated here, 5 × 5 (red bars) and 9 × 9 (blue bars). (Left to
right) The first group of columns represents the Sparse Integration Block (SIB) factor gain;
the second group shows the obtained gain after applying the optical flow 4:1 propagation.
In the third column group figure the gain when the method is optimized in assembler while
last column show total gain factor obtained after all the approaches are combined.

It is convenient extrapolate the performance result to a regular PC processor, for instance the Intel
Core 2 Duo, to make clear the constraints we have in the proposed architecture. For a comparative
evaluation between NIOS II and an actual processor we make use of Dhrystone 2.1 [19] benchmark.
The NIOS II soft-core processor configuration (70 MHz NIOS II/f) used in our test, obtains 71
DMIPS*2 while an Intel Core 2 Duo 2.00 GHz processor obtains 4240 DMIPS (using only one of the
processor cores). If we compare both processors an Intel Core 2 Duo obtains a gain factor of 59.7.
Furthermore, Intel Core 2 Duo uses a superscalar architecture with two cores and support SIMD
instructions (MMX and SSE) while NIOS II is a basic processor with a scalar architecture with a

3.1231 3.9261 3.3009

40.4761

2.548 3.8115 3.2359

31.4273

0

5

10

15

20

25

30

35

40

45

Sparse Integration
Block

Propagation Gain Assembler Gain Global Gain

9x9 Integration Block

5x5 Integration Block

Sensors 2010, 10

2982

reduced instructions set (add, sub, mul, jmp, etc.). A study about different optimizations feasible on
modern processor is shown in [20]. Therefore, it is important to remark that, using the presented
processor, we are much more constrained than using standard ones, and these has motivates to employ
the proposed model modifications, analog processor utilization and optimizations techniques.

4.1. Pre-Selection of Points of Interest as a Focal Plane Based Attention Mechanism to Speed-Up the
Optical Flow Computation

The boundaries in an image are areas where optical flow can be more confidently estimated (unless
they correspond to 3-D objects where occlusion problems are very common, though this case is less
probable). These regions are rich in features; hence, the resulting estimation has more accuracy than in
areas with poor contrast structure. This is so because the Lucas and Kanade model collects weighted
spatio-temporal structural information. If the local contrast structure is poor, the optical flow
estimation confidence will be low. Instead of computing all the points and discarding unreliable points
in a second stage, we can avoid the calculations of low confidence optical flow estimates by discarding
these points a priori (using local contrast structure estimates). In order to take advantage of this issue,
we make use of the Roberts Cross operator to localize the edges (local contrast maxima). The used
kernels are shown in Figure 4.

Figure 4. Roberts Cross convolution filter.

(a) (b)

The sum of the absolute value of each convolution provides edge estimations, where each
convolution operation obtains the maximum response when the edge angle reaches 45° (Figure 4a)
135° (Figure 4b). The filtering procedure is implemented by applying a Gaussian filter to the
edge response and thresholding it with the original signal. The described procedure is indicated in
Equation (5):

 ݂ሺݔሻ ൌ ൜1, ݊ܽ݅ݏݏݑܽܩ ݁݃݀ܧ ݁ݏ݊݋݌ݏܴ݁ ൏ ݁݃݀ܧ ݁ݏ݊݋݌ݏܴ݁
0, ݁ݏ݈݁ (5)

Low contrast areas will not provide significant edges. This problem can be solved or reduced by
locally performing modifications on the image intensity histograms, for instance by applying a 3 × 3
Laplacian convolution (aka Sharpen filter) which emphasizes the low-contrast areas. Figure 5 shows
an image edge detection and a sharpen image edge detection.

It can be observed that a higher edge density is obtained by applying the sharpen filter. In this
example, Figure 5a has 13.49% of density, while Figure 5b provides a density of 38.20%. Usually, the
edge binary map outputs are around 30 up to 40% in high edge density scenes, 50% in the worst case.
Using the sharpen filter, this method is more prone to noise. To reduce this noise, we can use the focal
plane computational primitives, such as binary dilatation and erosion. Applying successive erosions

S

a
o
a
e

to
th
e
f
f
e
m
w
e

4
c
w

Sensors 201

and dilatatio
optical flow
a 3 × 3 erosi
element to re

Figure
sharpe

Once we
o optimize t
his process

evaluation o
filling with
first chart, F
experiment,
measuremen
we remark d
error bars.

Analyzin
40% of dens
can oscillate
with a typica

0, 10

ons to the b
w operations
ion filter fo
emove sing

e 5. (a) Ima
en pre-filter

have reach
the comput
 is carried

of this appro
1’s from th

Figure 6a, r
we measu

nt starts from
different sc

ng the obtain
sity with a 3
e between 5
al value of 6

binary outp
s on the N

ollowed by a
gle points.

age edge de
ing.

hed this poin
ation time.
out on the

oach. To ca
he beginnin
efers to the
ure the fr
m 10% of d
cene cases t

ned results
35% as mea
6 (red mark
62 fps (blue

put includes
NIOS proces
a 3 × 3 dilat

etection in t

nt, we integ
Since the p
 fly withou

arry out this
g until the

e 5 × 5 SIB
ame rate w

density until
that can be

and taking
an value, we
k in Figure 6
e mark in Fi

s less noise
ssor. A typ
tation filter

the original

(a)

(b)

grate the edg
oints of inte

ut affecting
s experimen
end of the
and the se

while the
l a density o
 found as w

into consid
e can deduc
6a) up to 70
igure 6a). In

e and becom
pical action

with a simp

image. (b)

ge binary m
erest are pre

the global
nt we build
binary mas
cond one, F
edge bina

of 100%, i.e
well as the

deration tha
ce that maki
0 (green ma
n the case o

mes sparse
n to remove
ple filled sq

Image edg

map with the
eviously sel
 performan
a synthetic

sk, adding a
Figure 6b, t
ary mask d
e., the whole

standard d

at normal sc
ing use of 5

ark in Figure
f the 9 × 9,

er before co
e this noise
quared mask

ge detection

e optical flo
lected in the

nce. Figure
c density di
a 10% in ea
to the 9 × 9
density inc
e image. In

deviation m

cenes have
5 × 5 SIB, th
e 6.a) frame
the frame r

 298

omputing th
e is applyin
k as structur

with a

w estimatio
e focal plan
6 shows th

istribution b
ach step. Th
9 SIB. In th
creases. Th

both figure
arked by th

from 30% t
he frame rat
es per secon
rate is aroun

83

he
ng
re

on
ne,
he
by
he
his
his
es,
he

to
te

nd
nd

Sensors 2010, 10

2984

27 (red mark in Figure 6b) reaching up to 34 (green mark in Figure 6b) frames per second, taking into
consideration 30 fps as the usual value (blue mark in Figure 6b).

Figure 6. (a) System performance using pre-selected points of interest and 5 × 5 SIB.
(b) System performance using pre-selected points of interest and 9 × 9 SIB. Colored mark
illustrates three typical scenarios using different image edge densities. The green mark
makes reference to the best performance cases (scenes with low edge density), the blue
one, to the most common density values (normal scenes) and the red mark, to the worst
cases (scenes with high edge density). The error bar represents the standard deviation of
the results for 10 trials.

(a)

(b)

We can conclude that the proposed approach is suitable for real time computation beyond video-
rate, (25 fps). The main advantage of studying optical flow in points of interest (in our case they are
pre-selected edges) is the increase of performance. The gain obtained is around 2 in the worse cases,
assuming these cases in scenes with a 50% of density. Considering the best cases, scenes with 30% of
density, the gain will arise up to 2.6. As commented before, a common scene usually contains 35% of
density. Hence, we can conclude that the mean speed up gain is 2.3. This gain can be used to compute

Sensors 2010, 10

2985

flow at higher frame-rate (and therefore, improve the optical flow accuracy [21]) or to include new
functionalities into the processors towards final concrete applications (for instance, to implement a
tracking system based on the presented approach).

It is important to remark that NIOS II is able to handle 0.044 GOPS to compute optical flow while
the focal plane processes 4.1 GOPS to smooth the image, obtain points of interest, and compute the
optical flow regularization. To estimate the number of operations used in the focal plane, we carried
out an equivalence of a digital processor (NIOS II) to perform the same functionality. Due the amount
of operations involved in a previous (focal plane) and final stage (processor) to obtain optical flow, we
can conclude that the optical flow estimation could not be implemented in this architecture without the
focal plane assistance.

4.2. Co-Design Strategy

In previous sections, we defined how to estimate optical flow as well as how such optical flow has
been implemented to speed up the optical flow estimations. In this section, we introduce the global
description of how to estimate the motion vector components in the Eye-RIS™ system. As described
before, the Q-Eye sensor is a system able to process in the same physical layer where the image is
captured (focal plane computation). For this reason, at the same time that the system captures the
image, we can process it and send it to memory where a post-digital processing takes place.

After the image capture is finished, the focal plane processes the image with the proposed method to
select edges, as described in the previous section, and applies a linear diffusion filter [22] that works as
smoothing filter of the captured image and improves the numerical computation of the image
derivatives. The estimated edge map and the current and previously captured image on the sensor form
part of the optical flow method to be computed in the digital processor. Once the optical flow is
calculated at the NIOS II processor, a linear diffusion filtering (regularization) is applied to the optical
flow components in the focal plane as indicated in Figure 7, to preserve the spatial coherence [3]. Note
that when we refer to “regularization”, we mean the process that performs the local averaging process
and improves the spatial coherence based on the smoothness constraint.

Figure 7. Initial Co-Design scheme.

Sensors 2010, 10

2986

An important factor to take into account is the exposure time when the image is captured. Adopting
a sequential strategy, image acquisition, and NIOS processing being done sequentially (one after the
other), is not convenient because it does not take advantage of the pipelined processing capabilities of
the system. The focal plane (Q-Eye) is able to work asynchronously with the processor, and the system
will be able to capture and process in the focal plane at the same time that we are making use of the
digital processor. To accomplish this, the exposure time, focal plane processing, and processor
computing time must be taken into account.

Furthermore, analog-based internal memories in the focal plane cannot retain the images for a long
time due to leakage. Taking into account that the mean value of an image stored in an internal focal
plane memory, decreases around 0.8 LSBs every 40 ms. Prolonged storage leads to significant
degradation, due to transistors leakage. In order to reduce this signal degradation as well as remain a
constant sampling period, we must meet the following constraint, as indicated in expression (6):

 ܲ ௉ܶ௥௢௖௘௦௦௢௥ ൏ ܶܧ ൅ ܲ ிܶ௢௖௔௟ ௉௟௔௡௘ (6)

where the time of optic flow processing in NIOS II is ܲ ௉ܶ௥௢௖௘௦௦௢௥ , while ܶܧ is the capture exposure
time and ܲ ிܶ௢௖௔௟ ௉௟௔௡௘ is the focal plane processing time. The processing time, in the focal plane, takes
approximately 3–40 µs per operation. Hence, we can consider this time to be negligible if we compare
it to the exposure time or the processing time on the processor. Although the frame-rate is determined
by ܲ ௉ܶ௥௢௖௘௦௦௢௥, if large movements are presented in the scene, we can make use of lower exposure
times (to reduce the displacement). In this case, a slightly more complicated scheme is necessary to
reduce, as much as possible, the time that each frame is stored in the analog memories. For this
purpose, the optical flow process must be split in different stages. In the first stage, the I୲ image is
captured by the focal plane at the same time as the partial optical flow estimation (half of the
resolution) of a previous captured sequence I୲ିଶ and I୲ିଵ, is carried out on the processor. The second
stage captures I୲ାଵ image and processes the unfinished optical flow calculation of the previous stage.
The last stage transfers the optical flow components to the focal plane to apply the post-processing
lineal diffusion filter which act as a Gaussian isotropic filter. Note that we do not have a continuous
acquisition process where time between frames is fixed. Contrary, we handle the acquisition process
(according to the scheme of Figure 8) to avoid the image degradation and preserve, as much as
possible, the time interval between the captured images. Therefore estimating the flow only between
pairs of consecutive frames is possible to avoid the problems previously explained. That is to say, we
compute the flow between frames I୲ିଶ and I୲ିଵ and between frames I୲ and I୲ାଵ but we do not compute
the flow between frames I୲ିଵ and I୲ because the time interval can be different. This is because after
compute optical flow another further processing algorithms could be applied. Figure 8 illustrates
this process.

Sensors 2010, 10

2987

Figure 8. Different stages to estimate optical flow in Eye-RIS™ system.

5. Evaluation

The purpose of this section is to evaluate and validate the suggested approaches described in the
previous section. In this paper the error measure (7) will be the same that the used by Barron et al. [1],
which consists in the angular error estimation between the ground-truth optical flow vector and the
estimated one:

߰ா ൌ ሺሬܸԦ௖ݏ݋ܿܿݎܽ · ሬܸԦ௘ሻ (7)

where ψE is the estimated error, Vc the true vector flow from the Ground-truth values, Ve the estimated
vector flow and ՜ denotes the vector normalization. Note that this error metrics is non linear and
combine information from the angular and magnitude error. Nevertheless it is frequently used and
therefore has been used for the sake of comparison with other contributions available at the literature.

To evaluate the angular error (7) in a sequence, the real optical flow must be known. The Yosemite
sequence, created by Lynn Quam [1], has been widely used for quantitative evaluation of optical flow
methods. It is based on an aerial image of the Yosemite Valley, where the ground-truth values of this
synthetic sequence are known.

Sensors 2010, 10

2988

Once the angular error estimation procedure is defined, we carry out an angular error study on the
simplified Lucas and Kanade approach described in this work. As a first step, we will evaluate the
original model implementation in software, with the different proposed approaches and densities
(100% and 48.5%) as shown in Table 2.

Table 2. Average angular error (AAE) and standard deviation (STD), in Yosemite
sequence (without clouds), with the different proposed approaches and densities on Matlab.

Integration Block and Used Approach AAE
100%

STD
100%

AAE
48.5%

STD
48.5%

5 × 5 Barron’s implementation 11.01º 17.14º 10.32º 17.40º
5 × 5 20.68º 21.75º 20.38º 20.57º
9 × 9 14.75º 14.85º 14.63º 14.16º

5 × 5 SIB 19.64º 20.72º 19.34º 19.54º
9 × 9 SIB 14.09º 13.99º 13.98º 13.33º

5 × 5 Propagation 20.74º 21.97º 20.43º 20.84º
9 × 9 Propagation 14.73º 15.04º 14.56º 14.32º

5 × 5 SIB + Propagation 19.71º 20.98º 19.39º 19.86º
9 × 9 SIB + Propagation 14.08º 14.21º 13.92º 13.51º

5 × 5 SIB Propagation + Regularization σ = 5.29 12.30º 12.18º 12.10º 11.29º
9 × 9 SIB Propagation + Regularization σ = 5.29 10.51º 8.46º 10.51º 8.12º
5 × 5 SIB Propagation + Regularization σ = 7.48 11.33º 10.26º 11.17º 9.53º
9 × x9 SIB Propagation + Regularization σ = 7.48 9.89º 7.11º 9.86º 6.75º

To compare our approaches, we will measure the error in the Lucas and Kanade implementation

proposed by Barron [1], where the optical flow is estimated making use of a temporal resolution of 5
images and 5 × 5 integration blocks. The table which is shown above indicates that with a 9 × 9
integration block, we obtain better results that working with a 5 × 5 integration block and getting an
error similar to the Barron’s implementation. Making use of large blocks, the model weights better the
optical flow components but with the associated problem of the computation time. Comparing the
angular error between sparse and non-sparse blocks, the table shows that the error is quite similar
between them. Hence, by applying sparse integration blocks (SIB), the performance becomes higher
regarding the original one.

As we stated in Section 4, the main idea is to propagate the optical flow estimation to the
neighborhood. The results obtained above reveal us that making use of this performance optimization;
we reach quite similar results if we compare them with non-propagated version. Hence, we can say
that this approach is totally valid since the loss in accuracy is insignificant in both sparse and non-
sparse integration block approaches.

The last test, we evaluate optical flow regularization (spatial coherence). In this way, we can correct
small errors, weighting them with the neighborhood. The most common smoothing filter used is the
Gaussian convolution. Hence, we apply the mentioned filter to the estimated optical flow and then, as
a priori, the same test scheme is implemented. Analyzing the experiment above, we can deduce that

Sensors 2010, 10

2989

the obtained results are better if we apply this smoothing convolution filter to the optical flow
components. The angular error reduction is higher for small integration blocks, both sparse and
non-sparse. While using larger masks, the error is lower, if we compare these masks with the smaller
ones (5 × 5). This is due to the fact that, for the information collected in small blocks, the model
weighted worse than in the case of masks with larger neighborhoods. Hence, applying the
regularization to the result helps to weight again the vicinity, being therefore small mask based
approaches more favored. If we compare our results, after the regularization step, with the Barron’s
implementation we obtain quite similar angular errors but otherwise we reduce the standard deviation
by more than a half.

All the previous simplified approaches have been evaluated using Matlab code, with double floating
point data representation, to illustrate the effect of the successive approaches. To obtain a realistic
evaluation, we will estimate the angular error in the Eye-RIS™ system. In order to carry out these
measurements, different integration blocks and post smoothing filters (regularization) are taken into
account. In this evaluation, we assume as valid all the approaches and simplifications evaluated before.
Note that here a new filter, in the regularization step, is used. This filter, lineal diffusion filter [22],
implements a low-pass filter that emulates a Gaussian filter using the Resistive Grid module available
on the SIS Q-Eye (focal plane). Due to the nature of the linear diffusion and its equivalence with the
Gaussian filter [22], we decided to use this filter because it is more precise and exploits the advantages
of the focal plane.

In Table 3 show the measure the average angular error and standard deviation error with different
densities (100% and 48.5%).We must remark that the optical flow estimation is developed making use
of fix point arithmetic approach.

Table 3. Average angular error (AAE) and standard deviation (STD), in Yosemite
sequence (without clouds), with the different proposed approaches and densities on
Eye-RIS system.

Integration Block and Used Approach AAE
100%

STD
100%

AAE
48.5%

STD
48.5%

5 × 5 SIB 24.79º 20.12º 23.45º 18.55º
9 × 9 SIB 17.10º 14.02º 15.88º 12.59º

5 × 5 SIB Propagation 24.84º 20.09º 23.25º 18.41º
9 × 9 SIB Propagation 17.14º 13.88º 15.94º 12.55º

5 × 5 SIB Propagation + Regularization σ = 5.29 15.61º 12.01º 13.12º 10.53º
9 × 9 SIB Propagation + Regularization σ = 5.29 13.06º 10.11º 11.25º 8.86º
5 × 5 SIB Propagation + Regularization σ = 7.48 14.61º 10.63º 12.24º 9.46º
9 × 9 SIB Propagation + Regularization σ = 7.48 13.09º 9.34º 10.44º 7.87º

We conclude that after performing the angular error measurements of optical flow, taking into

account different blocks of integration as well as linear diffusion filters (regularization), the best result
obtained is the 9 × 9 SIB with a lineal diffusion filter with σ = 5.29 as shown in Table 3. The
differences with the previous version (Table 2) are mainly produced because we work on fix point

Sensors 2010, 10

2990

arithmetic of 32 bits in NIOS II, properly rescaled across the different processing operations to keep
the relevant information. Note that, though bit-width and representation is significantly different than
the purely software version (MATLAB version), the results fit quite well the previous data which
validate our fixed point implementation.

6. Experimental Results

In this section, we present our experimental results with real sequences. To evaluate the optical flow
results, we have decided to use a traffic sequence where the cars move through the scene. In this
sequence, the optical flow has a clear interpretation and therefore, a qualitative evaluation can be done.
The original sequence, Ettlinger-Tor, can be obtained from [23]. The optical flow estimation is carried
out in different sequences applying both SIBs (5 × 5 and 9 × 9). To interpret the obtained results, the
optical flow vector direction is encoded with a color (according to the colored frames of the different
images) whereas the vector’s magnitude is expressed by the color intensity as shown in Figure 9.

Figure 9. Optical flow representation. The color corresponds with the direction of the
optical flow vector while the magnitude is encoded as the color intensity.

In the results shown below we can observe that the optical flow increases, as we increase the sparse
integration block (5 × 5 SIB and 9 × 9 SIB). To estimate the optical flow in Figure 10 and Figure 12 we
applied to the image a lineal diffusion smoothing, equivalent to a Gaussian filter with σ = 2.5, while
the optical flow regularization corresponds to a Gaussian filter with σ = 3.3.

In Section 4.1, we proposed a method to obtain the image edge response in a focal plane. With this
approach, we are able to obtain a mean gain of 2.3. Once the edge estimation is computed in the focal
plane, morphological operations of dilatation and erosion are applied to the binary map (two
dilatations and one erosion with a 3 × 3 kernel) to bring near the optical flow results to the obtained
ones without the sparse estimation. In Figure 11, we show the binary maps processed in the Q-Eye.

After the estimation of the points of interest, the motion vectors are calculated on the processor and
post smoothed on the Q-Eye. The results of this procedure are shown in Figure 12. As can be
observed, the output density is slightly lower if we compare it with previous results.

S

m
p
r
r
m

Sensors 201

Figure
the ori
the sec

Figure
focal p

We can c
must be take
proposed ap
educing the
atio (since

most approp

0, 10

e 10. Optic
iginal frame
cond Row (

e 11. Binar
plane.

conclude th
en into cons
pproach. In
e input data
most of the

priate appro

cal flow es
e. In the fir
(d-f), the op

ry edge map

hat using po
sideration a

the case o
a stream (in
e scenario w
oach depend

stimation in
rst Row (a-c
tical flow is

(a)

(d)

p processed

(a)

oints of inte
as shown in
of static cam
nstead of lo

will be static
ds on the tar

n a traffic
c), the optic
s estimated

 (b)

 (e)

d, with the

 (b)

erest, the no
Figure 12c

meras, we
ocal contras
c). When ch
rget applica

sequence.
cal flow is e
using 5 × 5

 (c)

 (f)

proposed m

 (c)

on-edge dete
,f. We are u
can also us
st structure)
hoosing a m
ation and sc

Flow field
estimated u
SIB.

method in S

ection risk
unable to stu
se other pre
), for instan

method to es
enario. If th

d is overlai
using 9 × 9 S

Section 4.1,

in areas of
udy these a
e-selection
nce local im
stimate opti
he applicati

 299

id with
SIB. In

, in the

low contra
areas with th

schemes fo
mage chang
ical flow, th
on requires

91

ast
he
or
ge
he

a

Sensors 2010, 10

2992

dense optical flow without the risk of areas of low contrast, a 5 × 5 SIB shall be chosen. When the
precision is a crucial factor, pre-selection of point of interest into the estimation of motion vector and
using a 9 × 9 SIB is the best choice. If the time is an essential component, the option that best meets
these requirements is using 5 × 5 SIB and pre-selection of points of interest to the optical
flow estimator.

Figure 12. Optical flow estimation, on edges, in a traffic sequence. The average edge
density, in these images, is 42.5%. Flow field is overlaid with the original frame. In the
first row (a–c), the optical flow is estimated using 9 × 9 SIB. In the second Row (d–f), the
optical flow is estimated using 5 × 5 SIB.

(a) (b) (c)

(d) (e) (f)

7. Conclusions and Future Research

In this paper, we propose an approach to solve optical flow through the Lucas and Kanade method
on hybrid architecture, analog and digital processing, based on a computing focal plane and a digital
processor. An early image processing is carried out in the analog device, where the image acquisition
and processing are executed in the same physical layer (taking advantage of pixel-wise processing
parallelism). Once this early image processing is done, the processor is used to estimate the motion
vector components with the different proposed simplifications and optimizations. This co-design
strategy allows to improve the input image SNR and at the same time, focuses our attention on the
relevant image features. This strategy allows to enhance the system accuracy and performance in terms
of computing speed.

In this contribution, we show the different model modifications towards an embedded architecture
where computing resources are significantly constrained. The originality and challenge of this work lie

Sensors 2010, 10

2993

in the way that the approach was implemented in this architecture, which has low computation power
for digital processing, to obtain reasonable results it is necessary to take full advantage of the powerful
capabilities of the analog processor. The presented optical flow implementation, on a platform that
integrates analog focal plane processing capabilities and digital processing resources takes full
advantage of both computational paradigms. Furthermore, different simplifications and optimizations
(such as the post-processing filters) are adapted to better match the computing architecture. The
development of vision models in this kind of platforms requires an efficient management of the
available processing resources.

Focal plane computations allow pixel-wise processing parallelism. Taking full advantage of these
parallelism capabilities is not straightforward and also requires evaluating the signal degradation due to
analog processing of storage at the focal plane resources. We have carried out a performance
evaluation in terms of processing speed and accuracy as well as the evaluation of different
simplifications and optimizations, estimating their impact on the final performance rate and accuracy.
The results from the experiment reveal us an empirical validation of the proposed scheme. We can
conclude that the obtained implementation (and its performance results) validates the proposed
approach, as a high complexity model implemented on a low cost sensor. This article may be useful for
those who may have similar restrictions as those exposed here (addressing approaches on hybrid
analog-digital platforms) or for those who need to speed-up the models with an affordable loss in
accuracy using focal plane analog computing. Future research will focus our work in the automotive
sector, to detect car overtaking, where the optical flow is the main factor to carry out these purposes.

Acknowledgements

The authors would like to thank Jarno Ralli for his help in this project. This work was supported by
the company Anafocus (Innovaciones Microelectrónicas S.L.) and the Spanish Grants DINAM-
VISION (DPI2007-61683) and Andalusia regional projects (P06-TIC-02007 and TIC-3873).

References and Notes

1. Barron, J.L.; Fleet, D.J.; Beauchemin, S.; Burkitt, T. Performance of optical flow techniques. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Champaign, IL,
USA, June 1992; pp. 236-242.

2. Lucas, B.; Kanade, T. An iterative image registration technique with an application to stereo
vision. In Proceedings of Seventh International Joint Conference on Artificial Intelligence,
Vancouver, Canada, 1981; pp. 674-679.

3. Horn B.; Schunck, B. Determining optical flow. Artif. Intell. 1981, 17, 185-203.
4. Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High accuracy optical flow estimation based on a

theory for warping. Proceedings of 8th European Conference on Computer Vision; Pajdla, T.,
Matas, J., Eds.; Springer: Prague, Czech Republic, 2004; pp. 25-36.

5. Fleet, D.J.; Jepson, A.D. Computational of component image velocity from local phase
information. Int. J. Comput. Vis. 1990, 5, 77-104.

6. Fleet, D.J. Measurement of Image Velocity; Kluwer Academic: Norwell, MA, USA, 1992.
7. Camus, T. Real-time quantized optical flow. Real-Time Imaging 1997, 3, 71-86.

Sensors 2010, 10

2994

8. Díaz, J.; Ros, E.; Rotter, A.; Mühlenberg, M. Lane-change decision aid system based on
motion-driven vehicle tracking. IEEE Trans. Intell. Transp. Syst. 2008, 57, 2736-2746.

9. Mota, S.; Ros, E.; Ortigosa, E.M.; Pelayo, F.J. Bio-Inspired motion detection for blind spot
overtaking monitor. Int. J. Robotic. Autom. 2004, 19, 190-196.

10. Köhler, T.; Röchter, F.; Lindemann, J.P.; Möller, R. Bio-inspired motion detection in an
FPGA-based smart camera module. Bioinspir. Biomim. 2009, 4, 15008.

11. Hassenstein, B.; Reichardt, W. Systemtheoretische Analyse der Zeit-Reihenfolgen und
Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z.
Naturforsch. 1956, 11b, 513-524.

12. Stocker, A.A. Analog integrated 2-D optical flow sensor. Analog Integr. Circuit. Signal 2006, 46,
121-138.

13. Mehta, S.; Etienne-Cummings, R. A simplified normal optical flow measurement CMOS camera.
IEEE Trans. Circ. Syst. I 2006, 53, 1223-1234.

14. Niitsuma, H.; Maruyama, T. High speed computation of the optical flow. In Proceedings of the
13th International Conference on Image Analysis and Processing (ICIAP '05), Cagliari, Italy,
September 2005; pp. 287-295.

15. Liu, H.; Hong, T.; Herman, M.; Camus, T.; Chellapa, R. Accuracy vs. efficiency trade-off in
optical flow algorithms. Comput. Vis. Image Understand. 1998, 72, 271-286.

16. Galvin, B.; McCane, B.; Novins, K.; Mason, D.; Mills, S. Recovering motion fields: an evaluation
of eight optical flow algorithms. In Proceedings of British Machine Vision Conference,
Southampton, UK, October 1998; pp. 195-204.

17. Rodríguez-Vazquez, A. The eye-RIS CMOS vision system. Analog Circuit Design: Sensors,
Actuators and Power Drivers; Springer: Dordrecht, The Netherlands, 2008; pp. 15-32.

18. Olofsson, A.; Lange, F.A. 4.32 GOPS 1W general-purpose DSP with an enhanced instruction set
for wireless communication. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. 2002, 2, 36-89.

19. Weicker, R.P. Dhrystone: a synthetic systems programming benchmark. CACM 1984, 27,
1013-1030.

20. Anguita, M.; Díaz, J.; Ros, E.; Fernández-Baldomero, F.J. Optimization strategies for
high-performance computing of optical-flow in general-purpose processors. IEEE Trans. Circ.
Syst. Video T. 2009, 19, 1475-1488.

21. Díaz, J.; Ros, E.; Agís, R.; Bernier, J.L. Superpipelined high-performance optical-flow
computation architecture. Comput. Vis. Image Understand. 2008, 112, 262-273.

22. Weickert, J. Anisotropic Diffusion in Image Processing; ECMI Series; Teubner: Stuttgart,
Germany, 1998.

23. Institut für Algorithmen und Kognitive Systeme. Ettlinger-Tor Sequence. Available online:
http://i21www.ira.uka.de/image_sequences/ (accessed on 2 March 2010).

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

