
Sensors 2010, 10, 2885-2900; doi:10.3390/s100402885

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Real-Time Occlusion Handling in Augmented Reality Based on
an Object Tracking Approach

Yuan Tian, Tao Guan* and Cheng Wang

Digital Engineering & Simulation Research Center, Huazhong University of Science and Technology,

Wuhan 430074, China; E-Mails: tianyuancolor@gmail.com (Y.T.); wangch@hhu.edu.cn (C.W.)

* Author to whom correspondence should be addressed; E-Mail: qd_gt@126.com;

Tel.: +86-027-87544644; Fax: +86-027-87544644.

Received: 28 January 2010; in revised form: 2 March 2010 / Accepted: 14 March 2010 /
Published: 29 March 2010

Abstract: To produce a realistic augmentation in Augmented Reality, the correct relative

positions of real objects and virtual objects are very important. In this paper, we propose a

novel real-time occlusion handling method based on an object tracking approach. Our

method is divided into three steps: selection of the occluding object, object tracking and

occlusion handling. The user selects the occluding object using an interactive segmentation

method. The contour of the selected object is then tracked in the subsequent frames in real-

time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the

unprocessed augmented image to produce a new synthesized image in which the relative

position between the real and virtual object is correct. The proposed method has several

advantages. First, it is robust and stable, since it remains effective when the camera is

moved through large changes of viewing angles and volumes or when the object and the

background have similar colors. Second, it is fast, since the real object can be tracked in

real-time. Last, a smoothing technique provides seamless merging between the augmented

and virtual object. Several experiments are provided to validate the performance of the

proposed method.

Keywords: augmented reality; occlusion; tracking; mean shift; optical flow; graph cuts

OPEN ACCESS

Sensors 2010, 10

2886

1. Introduction

The objective of augmented reality (AR) is to superimpose computer enhancements on the real

world. In contrast with virtual reality, users can see virtual objects and the real world simultaneously in

the augmented reality system. The applications of augmented reality are extensive: computer-aided

surgery [1], entertainment [2], education [3], tourism industry [4], military exercises [5], and product

design [6].

Until now, considerable research has been done on the head-mounted display and the registration

problem, which deals with the consistency between the coordinate systems of the real and virtual

worlds [7-11]. To enhance the illusion that the virtual objects are actually present in the real scene,

researchers have paid more and more attention to the occlusion problem. The problem of occlusion

occurs when the real objects are in front of the virtual objects in the scene. Without occlusion

handling, users will have the misconception that the real object is further from the viewpoint than the

virtual objects when the virtual objects are occluded by the real objects in the scene. This not only

leads to misconceptions of spatial properties by the user, resulting in errors when trying to grab

objects, but also increases eyestrain and the probability of motion sickness [12]. An example of an

occlusion problem is shown in Figure 1. In Figure 1, the virtual object is a target. Figure 1a is the

composed image looking down from the top of the scene. We can find that the target is behind the red

caddy if we see from the viewpoint as shown in Figure 1c. This means that part of the target should be

occluded by the red caddy. Figure 1b is the composed image overlaid with virtual target without

occlusion handling. The image gives people the impression that the target is in front of the caddy,

which is not the case in fact.

Figure 1. Occlusion problem in augmented reality.

2. Related Work and Our Contribution

Various approaches have been suggested for handling occlusion problems in augmented reality.

They are mainly classified into two types: model-based and depth-based approaches.

The precondition of utilizing a model-based approach is that accurate geometric models of real

objects must be known. Fuhrmann et al. [12] simulate the occlusion of virtual objects by a

representation of the user modeled as kinematic chains of articulated solids. This method is limited to

static scenes. Ong et al. [13] used the user-segmented object silhouettes in the key frames to build the

three-dimensional (3D) model of the occluding object. The 2D occluding boundary is then obtained by

(a) (b) (c)

Sensors 2010, 10

2887

projecting the 3D shape in the intermediate frames. However, along with the motion of the viewpoint,

the 3D model will change. The projection of the recovered 3D shape cannot precisely reflect the 2D

occluding boundary in the intermediate frames. Vincent et al. [14] added two improvements: First,

they computed the 3D occluding boundary from two consecutive key views instead of all the key

views. Second, the accurate occluding boundary was recovered using a region-based tracking method.

In addition, they refine the occluding boundary based on snakes. The drawback of this approach is that

it can not deal with large viewpoint variations.

Berger [15] presented a new approach for resolving occlusions without 3D reconstruction. The

main idea is to label each contour point of the real object as being “behind” or “in front of”, depending

on whether it is in front of or behind the virtual object. Schmidt et al. [16] used a binocular stereo

camera system to obtain proper occlusions. The disparity calculation method is improved and

extremely efficient. Hayashi et al. [17] proposed a method for real-time stereo matching using a

contour based approach to acquire the accurate depth of the boundary of real objects. Fortin et al. [18]

described how to extract a depth map of the scene along the viewpoint. Then the depth buffer is used

to handle occlusions.

The model-based and depth-based approaches have their own disadvantages. In the model-based

method, the accuracy of 3D reconstruction has a great influence on the results of occlusion handling.

However, the contour of the real object will change when the viewpoint of the camera changes. This

will lead to reconstruction errors and inaccuracies in the 2D occluding boundary. Furthermore, the 3D

models of the real object need to be reconstructed off-line, so the model-based method is not suitable

for real-time occlusion handling. The depth-based approach is based on stereo vision theory. The

disadvantages are as follows: (1) the expensive computation time and inaccurate depth information; (2)

the complex calibration process of the stereo cameras; 3) the narrow application range, since this is

only suitable for static real scenes.

In this paper, we develop a new approach for effectively handling occlusion in real-time. Our

method is different from the model-based and depth-based methods mentioned above. The proposed

method distinguishes itself in the following ways:

First, we use an improved interactive object segmentation method based on mean shift and graph

cuts to obtain the contour of the specified occluding object in the first frame. The proposed

segmentation method finds the object boundary even though the scene is complex.

Second, a real-time method combining graph cuts and optical flow is used to track the object in the

subsequent frames. This method tracks objects robustly, even when the object contains many colors

that are similar as its background or the camera is moved through large changes of viewing angles and

volumes. Moreover, it has the ability to converge onto the object boundary within a few frames, even

when the previous object boundary is not properly initialized.

Third, we propose a way to obtain correct occlusion relationships by redrawing all the pixels of the

tracked object on the augmented image. Furthermore, the boundary between the occluding and

physical object is made seamless by a smoothing process.

The remaining parts of this paper are organized as follows. Section 3 gives an overview of the

proposed approach, while Section 4, Section 5 and Section 6 present in detail the initial selection of the

occluding object, the tracking method and occlusion handling approach, respectively. Section 7 shows

the experimental results. Finally, conclusions and future work are given in the last section.

Sensors 2010, 10

2888

3. Overview of the Proposed Approach

In the augmented reality systems, virtual objects are usually rendered on the video image without

using depth information from the real scene, so real objects are always occluded by virtual

objects [17]. We call this the “occlusion problem”, as shown in Figure 1. This problem results in poor

understanding of the geometrical relationship between real and virtual objects. The goal of our method

is to obtain the correct relative position when the real object is in front of the virtual object. The work

flow of the proposed approach is shown in Figure 2.

Figure 2. Work Flow of the Proposed Approach.

Our method consists of three steps:

1. Select the real object that will occlude the virtual object in the first frame. This selection process

is accomplished by an interactive interface, where the user labels some pixels as foreground and others

as background. All the pixels in the image are divided into two classes, object and background,

according to the hidden information provided by the labeled pixels. Finally, the object boundary is

obtained.

2. Track the object boundary in the subsequent frames. This is done by extracting feature points on

the object in the previous frame and tracking these points in the current frame. The object boundary is

estimated according to the average displacement of the tracked feature points. Then the accurate object

boundary is found in the banded area that is around the estimated boundary.

Sensors 2010, 10

2889

3. Redraw all the pixels inside the object boundary on the augmented image to correct the relative

position between the real and virtual object. A smoothing operation is utilized on the object boundary

to make a more realistic augmentation.

We will describe our approach in more detail in the following sections.

4. Selecting the Occluding Object

The physical occluding object is specified in the first frame by an interactive image segmentation

method. This section describes our interactive image segmentation method, which is based on the

mean shift algorithm and graph cuts techniques [19]. The user selects several pixels by marking lines

to specify the physical occluding object and a few pixels on the background as shown in Figure 2b.
This divides the pixels in the image into three types: foreground pixels }{F , background pixels }{B

and unlabeled pixels }{U . The final goal is to assign each unlabeled pixel as either foreground or

background. Our method includes three steps: color space selection, labeled pixel analysis based on

mean shift and object extraction using a graph-based method. The steps are as follows:

4.1. Color Space Selection

The selection of color space is important for the performance of image segmentation. It is proven

that the LUV color space is superior to the RGB color space in image processing. In LUV color space,
*L represents the lightness and *U and *V denote the chromatism. The distances between different

colors are defined as:

2**2**2**)()()(bababa VVUULLC  (1)

From the above definition, it is clear that the closer the two pixels are in LUV color space, the smaller

the color difference. Therefore, the Euclidean metrics and distances are perceptually uniform in LUV

color space.

4.2. Labeled Pixels Analysis Based on Mean Shift

The manual user interaction provides clues as to which object in the image he intends to segment.

An analysis of the properties of the foreground and background pixels selected by the user is done by

applying the mean shift algorithm [20]. The mean shift method is a simple iterative procedure that

shifts each data point to the average of the data points in its neighborhood [21]. For a color image, the
image is presented as a vector),(rs xxx  of five dimensions, where sx is the spatial part and rx is

the range part of the feature vector. Given n image pixels ix , ni ,...,1 in the d -dimensional space
dR (5d for color images), the radially symmetric kernels, which we use satisfy

)()(
2

, xkcxK dk (2)

where the function)(xk is referred to as the profile of the kernel, but only for 0x . The

normalization constant dkc , , which makes)(xK integrate to one, is assumed to be strictly positive.

Define)()(xkxg  for profile, the kernel)(xG is defined as

Sensors 2010, 10

2890

)()(
2

, xgcxG dg (3)

where dgc , is the corresponding normalization constant. The MS is defined as

x

h
xx

g

h
xx

gx
xm

n

i

i

n

i

i
i

Gh 














1

2

1

2

,

)(

)(

)((4)

where x is the center of the kernel, and h is the bandwidth parameter satisfying 0h . Therefore, the

MS is the difference between the weighted mean and x . The weighted mean uses the kernel G as the

weights. The center position of kernel G can be updated iteratively by

,

)(

)(

1

2

1

2

1















n

i

ij

n

i

ij
i

i

h
xy

g

h
xy

gx
y ,2,1j (5)

where 1y is the center of the initial position of the kernel. The center of each cluster is obtained when

Equation (5) converges. This divides the labeled pixels into n regions denoted as }{ F
nR for the

foreground and m regions denoted as }{ B
mR for the background. }{ F

nR and }{ B
mR are two sets of mean

pixel intensities of the clustered regions in the three different color spaces.

4.3. Object Extraction Using a Graph-Based Method

The next step is to segment the image using the approach described in [22], where a specialized

graph that reflects the properties of the image is constructed. In the graph, each node denotes a pixel in

the image and each edge connecting two adjacent nodes is assigned a nonnegative weight. Two special

nodes, called foreground terminal (a source) and background terminal (a sink), are defined. So there
are three types of edges:),(qpe (pixel-pixel) with edge weight),(qpew ,),(Spe (pixel-source) with

edge weight),(Spew and),(Tpe (pixel-sink) with edge weight),(Tpew . The edge weights are defined as

follows:

),(

1
)

2

)(
exp(

2

2

),(qpdist
II

w qp
qpe 





 (6)

where),(qpdis is the spatial distance from p to the neighborhood pixel q .
























Bpif

Fpif

Upif
dd

d

w

B
i

F
i

B
i

Spe

0

),(
























Bpif

Fpif

Upif
dd

d

w

B
i

F
i

F
i

Tpe 0),((7)

Sensors 2010, 10

2891

where F
id is the minimum distance from the color pI of pixel p to foreground clusters }{ F

nR , and

similarly, B
id is the minimum distance from its color pI to background clusters }{ B

mR .

For a pixel-pixel edge, the more similar the two adjacent pixels are, the larger the weight is, and

thus the two adjacent pixels are more likely to be assigned to the same class (foreground or

background). The edge weights of pixel-source and pixel-sink reflect the penalties that assign pixels to

foreground and background. They may reflect how the pixel fits into the classification provided by the

user interaction. For a labeled foreground pixel, the user has specified that it belongs to the foreground

and it can never be assigned as a background pixel, so the pixel-source edge weight is set to infinite

and the pixel-sink edge weight is set to zero. Similarly, for a labeled background pixel, the pixel-sink

edge weight is set to zero and the pixel-source edge weight is set to infinite. For an unlabeled pixel, the

edge weight of pixels-source will be large when the pixel has a similar color to the foreground clusters,

thus it is more likely to be assigned to the foreground. By contrary, the edge weight of pixels-sink will

be large when the pixel has similar color to the background clusters, thus it is more likely to be

assigned to the background.

After constructing the graph and setting all the edge weights in the graph, we use the maximum

flow-minimum cut algorithm described in [23] to find the cut that minimizes the sum of the

edge weights:

)min(),(),(),(   TpeSpeqpe wwwCut  (8)

where the coefficient 0 specifies a relative importance of),(qpew versus),(Spew and),(Tpew . The

result is that each pixel in the image is assigned to the foreground or background exclusively as shown

in Figure 2c.

5. Occluding Real Object Tracking

To make the relationship between the physical and virtual object correct, the contour of the physical

object should be tracked in subsequent frames. In this paper, the object contour is tracked using a

graph cuts based method motivated by Xu et al. [24] and Lombaert et al. [25]. The steps are illustrated
in Figure 3. Given the object contour 1tC (the blue boundary in Figure 3a) of the previous frame I at

time 1t , we need to get an accurate contour tC (the blue boundary in Figure 3f) in the current frame

J at time t . The processing method at each frame includes three steps: tracking features, estimating

coarse contour and obtaining accurate contour.

Sensors 2010, 10

2892

Figure 3. The steps of object tracking. (a) The object contour 1C t at time 1-t . (b) The

features detected in frame I at time 1t . (c) The tracked features in frame J at time t .

(d) The coarse contour tĈ of frame J at time t . (e) The banded area tB . (f) The accurate

contour tC of frame J at time t .

5.1. Tracking Features

In the feature tracking step, high quality features need to be detected in real-time. The fast corner

detection method using machine learning to classify patches of the image as corners or non-corners is

used to get good features in the previous frame I . It has been shown to be faster than existing feature

detectors such as Harris, SUSAN and SIFT (DoG) [26] and outperforms them all in terms of speed.

We discard all the features not in the object boundary and only track these K remaining features in the

current frame J . The detected features in previous frame I are the green pixels as shown in Figure

3b. Then the Lucas-Kanade optical flow tracker based on image pyramids [27] is used to track the
features. For a feature point),(yx uuu  on frame I at time 1t , the goal is to find its corresponding

location),(yyxx dududuv  on frame J at time t . The vector d is the image velocity and

minimizes the residual function  .  is defined as:

 









xx

xx

yy

yy

wu

wux

wu

wuy
yxyx dydxJyxIddd 2)),(),((),()( (9)

where xw and yw are constant with typical values of 2, 3, 4, 5, 6, 7 pixels. Define spatial gradient

matrix:

 






 












xx

xx

yy

yy

wu

wux

wu

wuy yyx

yxx

yxIyxIyxI
yxIyxIyxI

G
),(),(),(

),(),(),(
2

2

 (10)

where),(yxI x and),(yxI y are the gradient in the x and y directions.

(a) (b) (c)

(d) (e) (f)

Sensors 2010, 10

2893

Define image mismatch vector:

 

















xx

xx

yy

yy

wu

wux

wu

wuy yk

xk
k yxII

yxII
b

),(

),(
 (11)

where the thk image difference kI is defined as follows:

],[],[),(yyyyxxxx wuwuwuwuyx  ,),(),(),(yxJyxIyxI kk  (12)

where kJ is the new translated image. Compute the optimal solution of d using the Lucas-Kanade

optical flow computation:

kopt bGd 1 (13)

optd is the optimal solution in theory, in practice, we compute it using iterative computations. Suppose

the residual optical flow kk bG 1 , the pixel displacement guess kd is defined as:








)1(

0

1

0

kdd
d

kkk 
 (14)

For the pyramid representations of frame I and J , the image matching error at level L is

defined as:

 









xx

xx

yy

yy

wu

wux

wu

wuy

L
y

L
y

L
x

L
x

LL
yx

L gdygdxJyxIddd 2)),(),((),()( (15)

where Lg is the initial pyramidal guess at level L which is available from the computations done from

level mL (the value of mL is the height of the pyramid) to level 1L . The expression of Lg is








)(2

0
11 LLL

L

dgg
g m

 (16)

The final optical flow solution d is then available after the finest optical flow computation:





mL

L

LL ddgd
0

00 2 (17)

Therefore, the corresponding point of feature, point u , is found. The tracked features in the current

frame J are the green pixels as shown in Figure 3c. This tracking method is proven to be robust and

all computations are kept at a subpixel accuracy by using bilinear interpolation.

5.2. Estimating Coarse Contour

After tracking the features, the coarse contour of the object in the current frame J can be estimated.
We compute the average displacement tD of the matched features between previous frame I and

current frame J :

M
ff

D tjtiMji
t
  

 1,,),((18)

Sensors 2010, 10

2894

where M is the set of matched features, tif , and 1, tjf are two matched features in frame I and J

respectively. The coarse contour tĈ of the object in the current frame J is simply the previous

contour tC with the foreground pixels translated by tD . Figure 3d shows the coarse contour of the

current frame J .

5.3. Obtaining Accurate Contour

To get the accurate object boundary, we first dilate the coarse contour tĈ by eight pixels to produce

a band area tB . All pixels in the inner boundary are automatically labeled as foreground pixels and all

pixels in the outer boundary are automatically labeled as background pixels. The blue area of Figure 3e

is an example of a band. To obtain an accurate contour we use the same method as mentioned in

Section 4, which is made up of two steps: hidden information analysis and graph-based image

segmentation. By contrast with the method mentioned in Section 4, we don’t construct a graph of the
entire image, the graph will only contain nodes for pixels in band tB . Because tB typically covers less

than 1% of the entire image, the tracking procedure is guaranteed to be real-time.

6. Occlusion Handling

This section deals with the actual mechanics of the occlusion handling. Suppose the intrinsic

camera parameters are known in advance and do not change. First, we need to get the current frame

with the virtual object rendered in it. We use the standard marker based approach to render the virtual

objects. This requires three steps: (1) search for the marker in the current frame; (2) calculate the

position and orientation of the marker; (3) align the 3D virtual object with the marker by transforming

them using the position and orientation parameters calculated in step 2. The result is that we get the

augmented image frame with the virtual object overlaid on the marker. In our implementation, this is

done using ARToolKit [28]. The augmented image will have the wrong occlusion relationship between

real and virtual objects when the real object occludes the virtual object. The next step is to acquire the

correct relationship between real and virtual objects. We redraw all the pixels on the physical tracked

object in a new synthesized image. This simple process can effectively deal with the occlusion

problem in augmented reality. Moreover, the border between the virtual and the occluding real object

is smoothed to be seamless. An example of the occlusion handling process is shown in Figure 4.

Figure 4. An example of occlusion handling. (a) The tracked contour of the real object. (b)

Augmented image with the wrong relationship between the real and virtual objects. (c)

Synthesized image with the correct relative relationship.

7. Experimental Results

(a) (b) (c)

Sensors 2010, 10

2895

The proposed approach has been implemented using Visual C++, OpenCV [29] and ARToolKit on

a 1.9 GHz CPU with 512 MB RAM. The video sequences are captured using a Logitech Pro5000

camera. In all cases, the input images had a resolution of 320 × 240 pixels. The camera’s intrinsic

parameters are solved in advance using the method introduced in [30]. The system can run the

proposed approach at a speed of about 18 frames per second. Several experiments have been

conducted to test the proposed occlusion handling method.

Figure 5. Results of the first experiment to test the proposed occlusion handling method.

In the first experiment, the user labels a few pixels with green lines to represent the foreground and

a few pixels with red lines to represent the background in the first frame (Figure 5a). The physical

object is then segmented from the background using the segmentation method based on mean shift and

graph cuts. The physical object is tracked using the method combining optical flow and graph cuts in

the subsequent frames. Finally, we redraw all the pixels on the tracked physical object of the

augmented image to produce a new synthesized image with the correct relative relationship. A

smoothing process is undertaken to make the boundary between the physical and virtual object

seamless. In this experiment, the virtual model is a spider. The left image of Figure 5b shows that the

USB stick is in front of the virtual spider, so that if the user has a viewpoint as shown in the right

image of Figure 5b, part of the virtual spider should be occluded by the USB stick. The right image of

Figure 5b shows the incorrect relative relationship between the physical and virtual objects without

occlusion handling. Figure 5c-h shows the comparison between the incorrect occlusion images shown

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Sensors 2010, 10

2896

in the left and the correct occlusion images shown in the right. These results demonstrate that our

approach can effectively handle the occlusion problem.

The segmentation result in the first frame may not be satisfied because of insufficient user

interaction, but this does not harm the results of the occlusion handling. The physical object boundary

computed in the first frame need only be approximate, because the segmentation boundary will

generally converge onto the object boundary within a few frames. As an example, in the second

experiment, as shown in Figure 6a, there are two augmented images seen from different viewpoint.

Figure 6b shows that the boundary of the segmented tea box in the first frame is blurry. Many

foreground pixels around the object boundary are misclassified as background pixels. However, after a

few frames, the computed object boundary converges onto the true object boundary and the edge is

clear. Figure 6c-j demonstrates that the results of the occlusion handling are robust even the boundary

in the first frame is inaccurate and the viewpoint of the camera changes.

Figure 6. Results of the second experiment.

When the pixels on the object are similar to the background, it is difficult to track the object in the

subsequent frames. This problem may lead to incorrect results in the occlusion handling. In the third

experiment, the virtual model is a teapot. Some pixels of the stapler have almost the same color as the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Sensors 2010, 10

2897

desktop. The results shown in Figure 7 demonstrate that our approach is effective even in the difficult

case when the camera changes over a wide range of viewing angles and volumes.

Figure 7. Results of the third experiment.

To show that our approach can meet the real-time requirements, the average processing time of

each step are shown in Table 1. The step of selecting the physical object is implemented only in the

first frame. Thus the total processing time at each frame is the sum of occluding physical object

tracking time and occlusion handling time which takes about 0.053 second per frame on the average.

This processing time satisfies the real-time requirement in the augmented reality systems.

Table 1. Processing time of each step.

Steps Average processing
time (seconds)

Total time
(seconds)

Occluding real
object

specifying

hidden information
analysis

0.153

0.231
graph-based image

segmentation
0.078

Occluding real
object tracking

feature tracking 0.007

0.053

coarse contour
estimating

0.000

accurate contour
obtaining

0.031

Occlusion handling 0.015

Sensors 2010, 10

2898

8. Discussion

Our experimental results demonstrate that our algorithm can successfully and robustly handle the

occlusion problem for augmented reality applications in real-time. The total running time is

proportional to the size of the object and the size of the video image captured. However, our approach

is still performs well even when the object covers a large area of the image or when the video image is

large. For an input image with a resolution of 640 × 480 pixels, the average processing time is about

10 frames per second.

However, there are still some disadvantages of our method. After the user specifies the occluding

object, the object will occlude the virtual object all the time. With the camera moving all about the

virtual object, our approach will lead to incorrect occlusion relationships when the virtual object is

between the camera and physical object. In other words, the camera can be moved around the virtual

object in a limited angle, from 0 to 180 degrees.

Another limitation of our algorithm will occur if the virtual object is surrounded by a large real

object and the virtual object is occluded by some real parts and then occludes other real parts. In such a

situation our method will fail, meaning that our method can solve the occlusion problem when the

virtual object is behind the real object, but not when the virtual object is surrounded by a large

real object.

Based on the above discussions, our method is good for desktop systems using a camera moving

around the virtual object with a limited angle (from 0–180 degrees) and not systems using a handheld

or head-mounted display with lots of camera movement. To overcome the problems mentioned above,

we consider modeling the whole scene to get the depth map of the scene from different angles of view.

In this way, the depth of each pixel in the image captured from any viewpoint is known, and then the

correct occlusion relationship can be obtained by comparing the depth.

9. Conclusions and Future Work

In this paper, we have proposed an effective real time occlusion handling method based on an

object tracking approach. Correct relative positions between real and virtual objects can be obtained

using our approach. Experimental results show that the proposed method is effective, robust and

stable, even in the case of a poor initial object boundary. The approach can deal with complex scenes

and large changes in viewpoints and volumes. Moreover, our method can operate in real-time.

However, when the camera moves too fast, the tracking process may fail and we do not get the correct

occlusion handling results. In the future, we will work on some methods to deal with this problem.

Furthermore, in AR systems, the ideal occlusion handling method is to automatically handle the

occlusion problem without user interaction. In future work, we will consider automatically detecting

the occlusion relationship between the real and virtual objects using depth map. By comparing the

depth of each pixel on the real and virtual objects, the correct occlusion relationship can be obtained

without user interaction. This approach will reduce the manual operation and this is the research

emphasis of our future work.

Sensors 2010, 10

2899

Acknowledgements

This work is supported in part by National Natural Science Foundation of China with project No.

60903095; in part by Postdoctoral Science Foundation of China with project No. 20080440941.

References and Notes

1. Soler, L.; Nicolau, S.; Schmid, J.; Koehl, C.; Marescaux, J.; Pennec, X.; Ayache, N. Virtual

reality and augmented reality in digestive surgery. In Proceedings of ISMAR, Arlington, VA, USA,

2004; pp. 278-279.

2. Thomas, B.; Close, B.; Donoghue, J.; Squires, J. ARQuake: An outdoor/indoor augmented reality

first person application. In Proceedings of the Fourth International Symposium on Wearable
Computers, Atlanta, GA, USA, 2000; pp. 139-146.

3. Fjeld, M.; Voegtli, B.M. Augmented chemistry: an interactive educational workbench. In
Proceedings of International Symposium on Mixed and Augmented Reality , Darmstadt, Germany,

2002; pp. 259-260.

4. Vlahakis, V.; Karigiannis, J.; Ioannidis, N. Archeoguide: challenges and solutions of a

personalised augmented reality guide for archaeological sites. IEEE Comput. Graph. Appl. 2003,

22, 52-60.

5. Julier, S.; Baillot, Y.; Lanzagorta, M.; Brown, D.; Rosenblum, L. Bars: battlefield augmented

reality system. In Proceedings of NATO Symposium on Information Processing Techniques for
Military Systems, Istanbul, Turkey, 2000.

6. Lee, W.; Park, J. Augmented foam: a tangible augmented reality for product design. In
Proceedings of ISMAR, Vienna, Austria, 2005; pp. 106-109.

7. David, Y.; Efron, U. The image transceiver device: studies of improved physical design. Sensors

2008, 8, 4350-4364.

8. Tao, G.; Li, L.J.; Cheng, W. Registration using multiplanar structures for augmented reality

systems. J. Comput. Inf. Sci. Eng. 2008, 8, 041002-1~041002-6.

9. Li, L.J.; Guan, T.; Ren, B.; Yao, X.W.; Wang, C. Registration based on Euclidean reconstruction

and natural features tracking for augmented reality systems. Assem. Autom. 2008, 28, 340-347.

10. Guan, T.; Wang, C. Registration based on scene recognition and natural features tracking

techniques for wide-area augmented reality systems. IEEE Trans. Multimedia. 2009, 11,

1393-1406.

11. Duan, L.Y.; Guan, T.; Yang, B. Registration combining wide and narrow baseline feature tracking

techniques for markerless AR systems. Sensors 2009, 9, 10097-10116.

12. Fuhrmann, A.; Hesina, G.; Faure, F.; Gervautz, M. Occlusion in collaborative augmented

environments. Comput. Graph.-UK 1999, 23, 809-819.

13. Ong, K.C.; the, H.C.; Tan, T.S. Resolving occlusion in image sequence made easy. Visual Comput.
1998, 14, 153-165.

14. Lepetit, V.; Berger, M.O. A semi-automatic method for resolving occlusion in augmented reality.

In Proceedings of CVPR, Hilton Head Island, SC, USA, 2000; pp. 225–230.

15. Berger, M.O. Resolving occlusion in augmented reality: a contour based approach without 3D

reconstruction. In Proceedings of CVPR, San Juan, Puerto Rico, 1997; pp. 91-96.

Sensors 2010, 10

2900

16. Schmidt, J.; Niemann, H.; Vogt, S. Dense disparity maps in real-time with an application to

augmented reality. In Proceedings of Sixth IEEE Workshop on Applications of Computer Vision ,

Orlando, FL, USA, 2002; pp. 225-230.

17. Hayashi, K.; Kato, H.; Nishida, S. Occlusion detection of real objects using contour based stereo

matching. In Proceedings of ICAT, Christchurch, New Zealand, 2005; pp. 180-186.

18. Fortin, P.; Hebert, P. Handling occlusions in real-time augmented reality: dealing with movable

real and virtual objects. In Proceedings of the 3rd Canadian Conference on Computer and Robot
Vision, Quebec City, QC, Canada, 2006; p. 54.

19. Tian, Y.; Guan, T.; Wang, C.; Li, L.J.; Liu, W. Interactive foreground segmentation method using

mean shift and graph cuts. Sens. Rev. 2009, 29, 157-162.

20. Comaniciu, D.; Meer, P. Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619.

21. Cheng, Y.Z. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell.

1995, 17, 790-799.

22. Boykov, Y.Y.; Jolly M.P. Interactive graph cuts for optimal boundary and region segmentation of

objects in N-D images. In Proceedings of ICCV, Vancouver, BC, Canada, 2001; pp. 105-112.

23. Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for

energy minimization in computer vision. In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition , Sophia Antipolis, France, 2001;

pp. 359-374.

24. Xu, N.; Bansal, R.; Ahuja, N. Object segmentation using graph cuts based active contours. In
Proceedings of IEEE International Conferen ce on Computer Vision and Pattern Recognition ,

Madison, USA, 2003; pp. 46-53.

25. Lombaert, H.; Sun, Y.Y.; Grady, L.; Xu, C.Y. A multilevel banded graph cuts method for fast

image segmentation. In Proceedings of ICCV, Beijing, China, 2005; pp. 259-265.

26. Lingua, A.; Marenchino, D.; Nex, F. Performance analysis of the SIFT operator for aAutomatic

feature extraction and matching in photogrammetric applications. Sensors 2009, 9, 3745-3766.

27. Pyramidal implementation of the Lucas Kanade feature tracker. Available online:

http://sourceforge.net/projects/opencvlibrary/ (accessed on 2 March 2010).

28. ARToolKit. Available online: http://www.hitl.washington.edu/artoolkit/documentation/ (accessed

on 2 March 2010).

29. OpenCV. Available online: http://www.intel.com/research/mrl/research/opencv (accessed on 2

December 2009).

30. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell. 2000, 22, 1330-1334.

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

This article is an open-access article distributed under the terms and conditions of the Creative

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

