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Abstract: To produce a realistic augmentation in Augmented Reality, the correct relative 

positions of real objects and virtual objects are very important. In this paper, we propose a 

novel real-time occlusion handling method based on an object tracking approach. Our 

method is divided into three steps: selection of the occluding object, object tracking and 

occlusion handling. The user selects the occluding object using an interactive segmentation 

method. The contour of the selected object is then tracked in the subsequent frames in real-

time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the 

unprocessed augmented image to produce a new synthesized image in which the relative 

position between the real and virtual object is correct. The proposed method has several 

advantages. First, it is robust and stable, since it remains effective when the camera is 

moved through large changes of viewing angles and volumes or when the object and the 

background have similar colors. Second, it is fast, since the real object can be tracked in 

real-time. Last, a smoothing technique provides seamless merging between the augmented 

and virtual object. Several experiments are provided to validate the performance of the 

proposed method. 
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1. Introduction 

The objective of augmented reality (AR) is to superimpose computer enhancements on the real 

world. In contrast with virtual reality, users can see virtual objects and the real world simultaneously in 

the augmented reality system. The applications of augmented reality are extensive: computer-aided 

surgery [1], entertainment [2], education [3], tourism industry [4], military exercises [5], and product 

design [6]. 

Until now, considerable research has been done on the head-mounted display and the registration 

problem, which deals with the consistency between the coordinate systems of the real and virtual 

worlds [7-11]. To enhance the illusion that the virtual objects are actually present in the real scene, 

researchers have paid more and more attention to the occlusion problem. The problem of occlusion 

occurs when the real objects are in front of the virtual objects in the scene. Without occlusion 

handling, users will have the misconception that the real object is further from the viewpoint than the 

virtual objects when the virtual objects are occluded by the real objects in the scene. This not only 

leads to misconceptions of spatial properties by the user, resulting in errors when trying to grab 

objects, but also increases eyestrain and the probability of motion sickness [12]. An example of an 

occlusion problem is shown in Figure 1. In Figure 1, the virtual object is a target. Figure 1a is the 

composed image looking down from the top of the scene. We can find that the target is behind the red 

caddy if we see from the viewpoint as shown in Figure 1c. This means that part of the target should be 

occluded by the red caddy. Figure 1b is the composed image overlaid with virtual target without 

occlusion handling. The image gives people the impression that the target is in front of the caddy, 

which is not the case in fact. 

Figure 1. Occlusion problem in augmented reality. 

 

2. Related Work and Our Contribution 

Various approaches have been suggested for handling occlusion problems in augmented reality. 

They are mainly classified into two types: model-based and depth-based approaches. 

The precondition of utilizing a model-based approach is that accurate geometric models of real 

objects must be known. Fuhrmann et al.  [12] simulate the occlusion of virtual objects by a 

representation of the user modeled as kinematic chains of articulated solids. This method is limited to 

static scenes. Ong et al. [13] used the user-segmented object silhouettes in the key frames to build the 

three-dimensional (3D) model of the occluding object. The 2D occluding boundary is then obtained by 

(a) (b) (c) 
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projecting the 3D shape in the intermediate frames. However, along with the motion of the viewpoint, 

the 3D model will change. The projection of the recovered 3D shape cannot precisely reflect the 2D 

occluding boundary in the intermediate frames. Vincent et al.  [14] added two improvements: First, 

they computed the 3D occluding boundary from two consecutive key views instead of all the key 

views. Second, the accurate occluding boundary was recovered using a region-based tracking method. 

In addition, they refine the occluding boundary based on snakes. The drawback of this approach is that 

it can not deal with large viewpoint variations. 

Berger [15] presented a new approach for resolving occlusions without 3D reconstruction. The 

main idea is to label each contour point of the real object as being “behind” or “in front of”, depending 

on whether it is in front of or behind the virtual object. Schmidt et al.  [16] used a binocular stereo 

camera system to obtain proper occlusions. The disparity calculation method is improved and 

extremely efficient. Hayashi et al.  [17] proposed a method for real-time stereo matching using a 

contour based approach to acquire the accurate depth of the boundary of real objects. Fortin et al. [18] 

described how to extract a depth map of the scene along the viewpoint. Then the depth buffer is used 

to handle occlusions. 

The model-based and depth-based approaches have their own disadvantages. In the model-based 

method, the accuracy of 3D reconstruction has a great influence on the results of occlusion handling. 

However, the contour of the real object will change when the viewpoint of the camera changes. This 

will lead to reconstruction errors and inaccuracies in the 2D occluding boundary. Furthermore, the 3D 

models of the real object need to be reconstructed off-line, so the model-based method is not suitable 

for real-time occlusion handling. The depth-based approach is based on stereo vision theory. The 

disadvantages are as follows: (1) the expensive computation time and inaccurate depth information; (2) 

the complex calibration process of the stereo cameras; 3) the narrow application range, since this is 

only suitable for static real scenes. 

In this paper, we develop a new approach for effectively handling occlusion in real-time. Our 

method is different from the model-based and depth-based methods mentioned above. The proposed 

method distinguishes itself in the following ways: 

First, we use an improved interactive object segmentation method based on mean shift and graph 

cuts to obtain the contour of the specified occluding object in the first frame. The proposed 

segmentation method finds the object boundary even though the scene is complex. 

Second, a real-time method combining graph cuts and optical flow is used to track the object in the 

subsequent frames. This method tracks objects robustly, even when the object contains many colors 

that are similar as its background or the camera is moved through large changes of viewing angles and 

volumes. Moreover, it has the ability to converge onto the object boundary within a few frames, even 

when the previous object boundary is not properly initialized. 

Third, we propose a way to obtain correct occlusion relationships by redrawing all the pixels of the 

tracked object on the augmented image. Furthermore, the boundary between the occluding and 

physical object is made seamless by a smoothing process. 

The remaining parts of this paper are organized as follows. Section 3 gives an overview of the 

proposed approach, while Section 4, Section 5 and Section 6 present in detail the initial selection of the 

occluding object, the tracking method and occlusion handling approach, respectively. Section 7 shows 

the experimental results. Finally, conclusions and future work are given in the last section. 
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3. Overview of the Proposed Approach 

In the augmented reality systems, virtual objects are usually rendered on the video image without 

using depth information from the real scene, so real objects are always occluded by virtual  

objects [17]. We call this the “occlusion problem”, as shown in Figure 1. This problem results in poor 

understanding of the geometrical relationship between real and virtual objects. The goal of our method 

is to obtain the correct relative position when the real object is in front of the virtual object. The work 

flow of the proposed approach is shown in Figure 2. 

Figure 2. Work Flow of the Proposed Approach. 

 
 

Our method consists of three steps: 

1. Select the real object that will occlude the virtual object in the first frame. This selection process 

is accomplished by an interactive interface, where the user labels some pixels as foreground and others 

as background. All the pixels in the image are divided into two classes, object and background, 

according to the hidden information provided by the labeled pixels. Finally, the object boundary is 

obtained. 

2. Track the object boundary in the subsequent frames. This is done by extracting feature points on 

the object in the previous frame and tracking these points in the current frame. The object boundary is 

estimated according to the average displacement of the tracked feature points. Then the accurate object 

boundary is found in the banded area that is around the estimated boundary. 
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3. Redraw all the pixels inside the object boundary on the augmented image to correct the relative 

position between the real and virtual object. A smoothing operation is utilized on the object boundary 

to make a more realistic augmentation. 

We will describe our approach in more detail in the following sections. 

4. Selecting the Occluding Object 

The physical occluding object is specified in the first frame by an interactive image segmentation 

method. This section describes our interactive image segmentation method, which is based on the 

mean shift algorithm and graph cuts techniques [19]. The user selects several pixels by marking lines 

to specify the physical occluding object and a few pixels on the background as shown in Figure 2b. 
This divides the pixels in the image into three types: foreground pixels }{F , background pixels }{B  

and unlabeled pixels }{U . The final goal is to assign each unlabeled pixel as either foreground or 

background. Our method includes three steps: color space selection, labeled pixel analysis based on 

mean shift and object extraction using a graph-based method. The steps are as follows: 

4.1. Color Space Selection 

The selection of color space is important for the performance of image segmentation. It is proven 

that the LUV color space is superior to the RGB color space in image processing. In LUV color space, 
*L  represents the lightness and *U  and *V denote the chromatism. The distances between different 

colors are defined as: 

2**2**2** )()()( bababa VVUULLC                                          (1) 

From the above definition, it is clear that the closer the two pixels are in LUV color space, the smaller 

the color difference. Therefore, the Euclidean metrics and distances are perceptually uniform in LUV 

color space. 

4.2. Labeled Pixels Analysis Based on Mean Shift 

The manual user interaction provides clues as to which object in the image he intends to segment. 

An analysis of the properties of the foreground and background pixels selected by the user is done by 

applying the mean shift algorithm [20]. The mean shift method is a simple iterative procedure that 

shifts each data point to the average of the data points in its neighborhood [21]. For a color image, the 
image is presented as a vector ),( rs xxx   of five dimensions, where sx  is the spatial part and rx  is 

the range part of the feature vector. Given n  image pixels ix , ni ,...,1  in the d -dimensional space 
dR ( 5d  for color images), the radially symmetric kernels, which we use satisfy 

)()(
2

, xkcxK dk                                                              (2) 

where the function )(xk  is referred to as the profile of the kernel, but only for 0x . The 

normalization constant dkc , , which makes )(xK  integrate to one, is assumed to be strictly positive. 

Define )()( xkxg   for profile, the kernel )(xG  is defined as 
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)()(
2

, xgcxG dg                                                              (3) 

where dgc ,  is the corresponding normalization constant. The MS is defined as 
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where x  is the center of the kernel, and h  is the bandwidth parameter satisfying 0h . Therefore, the 

MS is the difference between the weighted mean and x . The weighted mean uses the kernel G  as the 

weights. The center position of kernel G  can be updated iteratively by 
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where 1y  is the center of the initial position of the kernel. The center of each cluster is obtained when 

Equation (5) converges. This divides the labeled pixels into n  regions denoted as }{ F
nR  for the 

foreground and m  regions denoted as }{ B
mR  for the background. }{ F

nR  and }{ B
mR  are two sets of mean 

pixel intensities of the clustered regions in the three different color spaces. 

4.3. Object Extraction Using a Graph-Based Method 

The next step is to segment the image using the approach described in [22], where a specialized 

graph that reflects the properties of the image is constructed. In the graph, each node denotes a pixel in 

the image and each edge connecting two adjacent nodes is assigned a nonnegative weight. Two special 

nodes, called foreground terminal (a source) and background terminal (a sink), are defined. So there 
are three types of edges: ),( qpe (pixel-pixel) with edge weight ),( qpew , ),( Spe (pixel-source) with 

edge weight ),( Spew  and ),( Tpe (pixel-sink) with edge weight ),( Tpew . The edge weights are defined as 

follows: 
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where ),( qpdis  is the spatial distance from p  to the neighborhood pixel q . 
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where F
id  is the minimum distance from the color pI  of pixel p  to foreground clusters }{ F

nR , and 

similarly, B
id  is the minimum distance from its color pI  to background clusters }{ B

mR . 

For a pixel-pixel edge, the more similar the two adjacent pixels are, the larger the weight is, and 

thus the two adjacent pixels are more likely to be assigned to the same class (foreground or 

background). The edge weights of pixel-source and pixel-sink reflect the penalties that assign pixels to 

foreground and background. They may reflect how the pixel fits into the classification provided by the 

user interaction. For a labeled foreground pixel, the user has specified that it belongs to the foreground 

and it can never be assigned as a background pixel, so the pixel-source edge weight is set to infinite 

and the pixel-sink edge weight is set to zero. Similarly, for a labeled background pixel, the pixel-sink 

edge weight is set to zero and the pixel-source edge weight is set to infinite. For an unlabeled pixel, the 

edge weight of pixels-source will be large when the pixel has a similar color to the foreground clusters, 

thus it is more likely to be assigned to the foreground. By contrary, the edge weight of pixels-sink will 

be large when the pixel has similar color to the background clusters, thus it is more likely to be 

assigned to the background. 

After constructing the graph and setting all the edge weights in the graph, we use the maximum 

flow-minimum cut algorithm described in [23] to find the cut that minimizes the sum of the  

edge weights: 

)min( ),(),(),(   TpeSpeqpe wwwCut                                      (8) 

where the coefficient 0  specifies a relative importance of ),( qpew  versus ),( Spew  and ),( Tpew . The 

result is that each pixel in the image is assigned to the foreground or background exclusively as shown 

in Figure 2c. 

5. Occluding Real Object Tracking 

To make the relationship between the physical and virtual object correct, the contour of the physical 

object should be tracked in subsequent frames. In this paper, the object contour is tracked using a 

graph cuts based method motivated by Xu et al. [24] and Lombaert et al. [25]. The steps are illustrated 
in Figure 3. Given the object contour 1tC  (the blue boundary in Figure 3a) of the previous frame I  at 

time 1t , we need to get an accurate contour tC  (the blue boundary in Figure 3f) in the current frame 

J  at time t . The processing method at each frame includes three steps: tracking features, estimating 

coarse contour and obtaining accurate contour. 
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Figure 3. The steps of object tracking. (a) The object contour 1C t  at time 1-t . (b) The 

features detected in frame I  at time 1t . (c) The tracked features in frame J  at time t . 

(d) The coarse contour tĈ  of frame J  at time t . (e) The banded area tB . (f) The accurate 

contour tC  of frame J  at time t . 

 

5.1. Tracking Features 

In the feature tracking step, high quality features need to be detected in real-time. The fast corner 

detection method using machine learning to classify patches of the image as corners or non-corners is 

used to get good features in the previous frame I . It has been shown to be faster than existing feature 

detectors such as Harris, SUSAN and SIFT (DoG) [26] and outperforms them all in terms of speed. 

We discard all the features not in the object boundary and only track these K  remaining features in the 

current frame J . The detected features in previous frame I  are the green pixels as shown in Figure 

3b. Then the Lucas-Kanade optical flow tracker based on image pyramids [27] is used to track the 
features. For a feature point ),( yx uuu   on frame I  at time 1t , the goal is to find its corresponding 

location ),( yyxx dududuv   on frame J  at time t . The vector d  is the image velocity and 

minimizes the residual function  .   is defined as: 
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where xw  and yw  are constant with typical values of 2, 3, 4, 5, 6, 7 pixels. Define spatial gradient 

matrix: 
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where ),( yxI x  and ),( yxI y  are the gradient in the x  and y  directions.  

 

 

 
(a)                                 (b)                               (c) 

 
(d)                              (e)                             (f)
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Define image mismatch vector: 

 

















xx

xx

yy

yy

wu

wux

wu

wuy yk

xk
k yxII

yxII
b

),(

),(
                                              (11) 

where the thk  image difference kI  is defined as follows: 

],[],[),( yyyyxxxx wuwuwuwuyx  ,   ),(),(),( yxJyxIyxI kk    (12) 

where kJ  is the new translated image. Compute the optimal solution of d  using the Lucas-Kanade 

optical flow computation: 

kopt bGd 1                                                           (13) 

optd  is the optimal solution in theory, in practice, we compute it using iterative computations. Suppose 

the residual optical flow kk bG 1 , the pixel displacement guess kd  is defined as: 
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For the pyramid representations of frame I  and J , the image matching error at level L  is  

defined as: 
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where Lg  is the initial pyramidal guess at level L  which is available from the computations done from 

level mL ( the value of mL  is the height of the pyramid) to level 1L . The expression of Lg  is 
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The final optical flow solution d  is then available after the finest optical flow computation: 


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LL ddgd
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00 2                                                    (17) 

Therefore, the corresponding point of feature, point u , is found. The tracked features in the current 

frame J  are the green pixels as shown in Figure 3c. This tracking method is proven to be robust and 

all computations are kept at a subpixel accuracy by using bilinear interpolation. 

5.2. Estimating Coarse Contour 

After tracking the features, the coarse contour of the object in the current frame J  can be estimated. 
We compute the average displacement tD  of the matched features between previous frame I  and 

current frame J : 

M
ff

D tjtiMji
t
  

 1,,),(                                                   (18) 
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where M  is the set of matched features, tif ,  and 1, tjf  are two matched features in frame I  and J  

respectively. The coarse contour tĈ  of the object in the current frame J  is simply the previous 

contour tC  with the foreground pixels translated by tD . Figure 3d shows the coarse contour of the 

current frame J . 

5.3. Obtaining Accurate Contour 

To get the accurate object boundary, we first dilate the coarse contour tĈ  by eight pixels to produce 

a band area tB . All pixels in the inner boundary are automatically labeled as foreground pixels and all 

pixels in the outer boundary are automatically labeled as background pixels. The blue area of Figure 3e 

is an example of a band. To obtain an accurate contour we use the same method as mentioned in 

Section 4, which is made up of two steps: hidden information analysis and graph-based image 

segmentation. By contrast with the method mentioned in Section 4, we don’t construct a graph of the 
entire image, the graph will only contain nodes for pixels in band tB . Because tB  typically covers less 

than 1% of the entire image, the tracking procedure is guaranteed to be real-time. 

6. Occlusion Handling 

This section deals with the actual mechanics of the occlusion handling. Suppose the intrinsic 

camera parameters are known in advance and do not change. First, we need to get the current frame 

with the virtual object rendered in it. We use the standard marker based approach to render the virtual 

objects. This requires three steps: (1) search for the marker in the current frame; (2) calculate the 

position and orientation of the marker; (3) align the 3D virtual object with the marker by transforming 

them using the position and orientation parameters calculated in step 2. The result is that we get the 

augmented image frame with the virtual object overlaid on the marker. In our implementation, this is 

done using ARToolKit [28]. The augmented image will have the wrong occlusion relationship between 

real and virtual objects when the real object occludes the virtual object. The next step is to acquire the 

correct relationship between real and virtual objects. We redraw all the pixels on the physical tracked 

object in a new synthesized image. This simple process can effectively deal with the occlusion 

problem in augmented reality. Moreover, the border between the virtual and the occluding real object 

is smoothed to be seamless. An example of the occlusion handling process is shown in Figure 4. 

Figure 4. An example of occlusion handling. (a) The tracked contour of the real object. (b) 

Augmented image with the wrong relationship between the real and virtual objects. (c) 

Synthesized image with the correct relative relationship. 

 
7. Experimental Results 

 
(a)                               (b)                          (c)



Sensors 2010, 10                            

 

 

2895

The proposed approach has been implemented using Visual C++, OpenCV [29] and ARToolKit on 

a 1.9 GHz CPU with 512 MB RAM. The video sequences are captured using a Logitech Pro5000 

camera. In all cases, the input images had a resolution of 320 × 240 pixels. The camera’s intrinsic 

parameters are solved in advance using the method introduced in [30]. The system can run the 

proposed approach at a speed of about 18 frames per second. Several experiments have been 

conducted to test the proposed occlusion handling method. 

Figure 5. Results of the first experiment to test the proposed occlusion handling method. 

 
 

In the first experiment, the user labels a few pixels with green lines to represent the foreground and 

a few pixels with red lines to represent the background in the first frame (Figure 5a). The physical 

object is then segmented from the background using the segmentation method based on mean shift and 

graph cuts. The physical object is tracked using the method combining optical flow and graph cuts in 

the subsequent frames. Finally, we redraw all the pixels on the tracked physical object of the 

augmented image to produce a new synthesized image with the correct relative relationship. A 

smoothing process is undertaken to make the boundary between the physical and virtual object 

seamless. In this experiment, the virtual model is a spider. The left image of Figure 5b shows that the 

USB stick is in front of the virtual spider, so that if the user has a viewpoint as shown in the right 

image of Figure 5b, part of the virtual spider should be occluded by the USB stick. The right image of 

Figure 5b shows the incorrect relative relationship between the physical and virtual objects without 

occlusion handling. Figure 5c-h shows the comparison between the incorrect occlusion images shown 

 
(a)                                                   (b) 

 
(c)                                                    (d) 

 
(e)                                                     (f) 

 
(g)                                                   (h) 
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in the left and the correct occlusion images shown in the right. These results demonstrate that our 

approach can effectively handle the occlusion problem. 

The segmentation result in the first frame may not be satisfied because of insufficient user 

interaction, but this does not harm the results of the occlusion handling. The physical object boundary 

computed in the first frame need only be approximate, because the segmentation boundary will 

generally converge onto the object boundary within a few frames. As an example, in the second 

experiment, as shown in Figure 6a, there are two augmented images seen from different viewpoint. 

Figure 6b shows that the boundary of the segmented tea box in the first frame is blurry. Many 

foreground pixels around the object boundary are misclassified as background pixels. However, after a 

few frames, the computed object boundary converges onto the true object boundary and the edge is 

clear. Figure 6c-j demonstrates that the results of the occlusion handling are robust even the boundary 

in the first frame is inaccurate and the viewpoint of the camera changes. 

Figure 6. Results of the second experiment. 

 
 

When the pixels on the object are similar to the background, it is difficult to track the object in the 

subsequent frames. This problem may lead to incorrect results in the occlusion handling. In the third 

experiment, the virtual model is a teapot. Some pixels of the stapler have almost the same color as the 

 
(a)                                                    (b) 

 
(c)                                                    (d) 

 
(e)                                                     (f) 

 
(g)                                                   (h) 

 
(i)                                                 (j)
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desktop. The results shown in Figure 7 demonstrate that our approach is effective even in the difficult 

case when the camera changes over a wide range of viewing angles and volumes. 

Figure 7. Results of the third experiment. 

 
 

To show that our approach can meet the real-time requirements, the average processing time of 

each step are shown in Table 1. The step of selecting the physical object is implemented only in the 

first frame. Thus the total processing time at each frame is the sum of occluding physical object 

tracking time and occlusion handling time which takes about 0.053 second per frame on the average. 

This processing time satisfies the real-time requirement in the augmented reality systems. 

Table 1. Processing time of each step. 

Steps Average processing 
time (seconds) 

Total time 
(seconds) 

Occluding real 
object 

specifying 

hidden information 
analysis 

0.153  

0.231 
graph-based image 

segmentation 
0.078 

 
 

Occluding real 
object tracking 

feature tracking 0.007  
 

 
0.053 

coarse contour 
estimating 

0.000 

accurate contour 
obtaining 

0.031 

Occlusion handling 0.015 
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8. Discussion 

Our experimental results demonstrate that our algorithm can successfully and robustly handle the 

occlusion problem for augmented reality applications in real-time. The total running time is 

proportional to the size of the object and the size of the video image captured. However, our approach 

is still performs well even when the object covers a large area of the image or when the video image is 

large. For an input image with a resolution of 640 × 480 pixels, the average processing time is about 

10 frames per second. 

However, there are still some disadvantages of our method. After the user specifies the occluding 

object, the object will occlude the virtual object all the time. With the camera moving all about the 

virtual object, our approach will lead to incorrect occlusion relationships when the virtual object is 

between the camera and physical object. In other words, the camera can be moved around the virtual 

object in a limited angle, from 0 to 180 degrees. 

Another limitation of our algorithm will occur if the virtual object is surrounded by a large real 

object and the virtual object is occluded by some real parts and then occludes other real parts. In such a 

situation our method will fail, meaning that our method can solve the occlusion problem when the 

virtual object is behind the real object, but not when the virtual object is surrounded by a large  

real object. 

Based on the above discussions, our method is good for desktop systems using a camera moving 

around the virtual object with a limited angle (from 0–180 degrees) and not systems using a handheld 

or head-mounted display with lots of camera movement. To overcome the problems mentioned above, 

we consider modeling the whole scene to get the depth map of the scene from different angles of view. 

In this way, the depth of each pixel in the image captured from any viewpoint is known, and then the 

correct occlusion relationship can be obtained by comparing the depth. 

9. Conclusions and Future Work 

In this paper, we have proposed an effective real time occlusion handling method based on an 

object tracking approach. Correct relative positions between real and virtual objects can be obtained 

using our approach. Experimental results show that the proposed method is effective, robust and 

stable, even in the case of a poor initial object boundary. The approach can deal with complex scenes 

and large changes in viewpoints and volumes. Moreover, our method can operate in real-time. 

However, when the camera moves too fast, the tracking process may fail and we do not get the correct 

occlusion handling results. In the future, we will work on some methods to deal with this problem. 

Furthermore, in AR systems, the ideal occlusion handling method is to automatically handle the 

occlusion problem without user interaction. In future work, we will consider automatically detecting 

the occlusion relationship between the real and virtual objects using depth map. By comparing the 

depth of each pixel on the real and virtual objects, the correct occlusion relationship can be obtained 

without user interaction. This approach will reduce the manual operation and this is the research 

emphasis of our future work. 
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