






















Sensors2010, 10 2228

Figure 6. An illustration of eight clusters based on three normalizedfeatures.
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5.2. Normalization

Since the values of each feature have different scales, we normalize the features as expressed in

Equation (4).

Fdjk =
fdjk −min(d,j)(fdjk)

max(d,j)(fdjk)−min(d,j)(fdjk)
, wherek = 1, 2, and3. (4)

The termsmax(d,j)(fdjk) andmin(d,j)(fdjk) are the maximum and minimum values of featurek of all

M sensors (j = 1, . . . ,M) for all D days (d = 1, . . . , D), respectively. After conducting normalization,

the range of all features is between zero and one. Thus we can use the normalized featuresFdjk (where

k = 1, 2, and3) in the same space to analyze the complexity of urban environment.

Since the normalized features are relative values of each day, they are applicable to any seasons or

weather conditions (e.g., sunny, rainy, cloudy) on the daysof interest. Also, we can have meaningful

comparison of each day with the help of normalization. Without normalization, we do not know whether

a value is high or low in comparison with others.

5.3. Definition of Clusters

The normalized bias, changing rate, and maximum of temperature data are plotted on a 3D-graph for

clustering purpose. Each feature is divided into two types,i.e., whether a value of feature is higher or

lower than a threshold of 0.5. By utilizing three features, there are eight clusters which are referred to as

A, B, C, D, E, F, G, and H and illustrated by eight cubes in Figure6. The first four clusters (A, B, C and

D) are allocated to four lower-level cubes (Fdj3 < 0.5) in counterclockwise direction. Similarly, the last
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four clusters (E, F, G and H) are allocated to four upper-level cubes (Fdj3 ≥ 0.5) in counterclockwise

direction. The definitions of each cluster are detailed below.

Cluster A: Fdj1 ≥ 0.5 andFdj2 ≥ 0.5 andFdj3 < 0.5

Cluster B: Fdj1 < 0.5 andFdj2 ≥ 0.5 andFdj3 < 0.5

Cluster C: Fdj1 < 0.5 andFdj2 < 0.5 andFdj3 < 0.5

Cluster D: Fdj1 ≥ 0.5 andFdj2 < 0.5 andFdj3 < 0.5

Cluster E: Fdj1 ≥ 0.5 andFdj2 ≥ 0.5 andFdj3 ≥ 0.5

Cluster F: Fdj1 < 0.5 andFdj2 ≥ 0.5 andFdj3 ≥ 0.5

Cluster G: Fdj1 < 0.5 andFdj2 < 0.5 andFdj3 ≥ 0.5

Cluster H: Fdj1 ≥ 0.5 andFdj2 < 0.5 andFdj3 ≥ 0.5

As some other clustering techniques (e.g., k-means and fuzzy c-means clustering algorithms), the

number of clusters is an input parameter of the proposed method. An appropriate value, which is a

priori unknown, depends on various factors such as the characteristics of data, the number of data, the

purpose of clustering, and the clustering algorithm. We could also divide each feature into three ranges

equally which leads to 27 clusters in total. Undoubtedly, the data will distribute among 27 clusters

and it would be more difficult to capture patterns of any distinctive clusters. Therefore, we decide to

use eight clusters and the clustering results in the following section confirm that coarse grain of eight

clusters is sufficient for our clustering purpose. Also, a disadvantage of applying finer clustering is higher

computational cost.

Specifying the number of clusters a priori is a weakness of our proposed method because an

inappropriate choice of number of clusters may yield poor results. As stated in Section1., this paper

focuses on temperature data so that the proposed clusteringmethodology is designed for temperature

data and some features may not be appropriate for other kindsof sensor data. As a result, low adaptability

or flexibility of the proposed method is one of possible weaknesses.

6. Clustering Results and Comparative Study

This section discusses clustering results and followed by consideration in comparison to the

k-means algorithm.

6.1. Clustering Results and Analysis

Figure7 represents three normalized features of temperature data collected on August 22, 2007. There

are eight kinds of symbols in the figure where each symbol indicates the sensors being set under the same

environmental factors. As one would expect, the same symbols roughly position near each other in the

3D space. We can conclude that the sensors shown by the same symbols detect the same characteristic

of temperature on the day of experiment.

Since the temperature variation differs day by day, we investigate temperature data by considering

the distribution of defined clusters on one-day basis for a whole week during August 21–27, 2007. The
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percentages of sensor data in each cluster of each day are represented in Figure8. The temperature

variation highly depends on the weather condition of each day (sunny, cloudy,etc.). Thus we include

the period of sunshine in percentage for every two hours from8:00 a.m. to 8:00 p.m. in Table3. The

data of sunshine period is coarse grain,i.e., they are the percentages of sunshine period in the whole

experimental area that covers all of eight installation points. Although the sunshine period over each

sensor should be different from the approximate values shown in Table3, knowing such data is helpful

when discussing the clustering results in this section. Thedata of sunshine period in the table are publicly

available at the Japan Meteorological Agency website [35].

Figure 7. A plot of three features on a 3D-graph (August 22, 2007). Eachsymbol indicates

the sensors being installed under the same environmental factors.
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Table 3. Percentages of sunshine period for every two hours during August 21–27, 2007.

21st 22nd 23rd 24th 25th 26th 27th

8:00 65% 100% 0% 5% 25% 50% 90%

10:00 75% 100% 10% 0% 85% 85% 80%

12:00 100% 100% 50% 25% 80% 75% 100%

14:00 100% 100% 40% 25% 100% 100% 20%

16:00 100% 80% 15% 50% 80% 90% 25%

18:00 40% 20% 0% 5% 10% 0% 20%

20:00 0% 0% 0% 0% 0% 0% 0%

In Figure8, cluster D is apparently distinct on the 23rd, 24th, and 25thwhere more than half of

temperature data (i.e.,96%, 77%, and 63%, respectively) fall under this cluster. The cluster D indicates

positive bias (Fdj1 ≥ 0.5), low changing rate (Fdj2 < 0.5), and low maximum temperature (Fdj3 < 0.5).

Low amount of sunshine on the 23rd and 24th correlates to two features of cluster D,i.e., low changing



Sensors2010, 10 2231

rate and low maximum temperature. Although the variation ofsunshine does not obviously contribute

to positive bias of temperature, the normalized bias of these two days is high enough to cross the border

line of 0.5. Merely 4% of data on the 23rd fall under cluster A because of sensors which were installed

toward the east and west were affected by the sunshine (sunrise and sunset) andFdj2 of a small amount

of sensors are high enough to cross the threshold of 0.5. If the percentage of sunshine is high, more

percentage of data should fall under cluster A. The amount ofsunshine on the 25th directly leads to

positive bias and low changing rate of temperature. However, the amount of sunshine is high on this

sunny day; thereby normalized maximum temperature of some data (23%) is above the threshold of 0.5

and falls under other clusters. Therefore, the percentage of cluster D on the 25th (63%) is not so high as

those of the 23rd (96%) and 24th (77%).

Figure 8. Distribution of temperature in each cluster for the whole week (August 21–27,

2007).
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Although the ratio of cluster D on the 26th (38%) is less than half, it is the most distinct cluster of the

day. The underlying reason is that the amount of sunshine is high in the morning in comparison with that

of the afternoon. As a result, some of data (25%) show negative bias and fall under cluster C which is

the second distinct cluster of the day. Note that the only difference between clusters C and D is the bias

of temperature,i.e, the features of changing rate and maximum temperature are the same.

The most distinct cluster of the 27th is the cluster C (55%) which indicates negative bias (Fdj1 < 0.5),

low changing rate (Fdj2 < 0.5), and low maximum temperature (Fdj3 < 0.5). The variation of sunshine

obviously correlates to the properties of negative bias andlow changing rate. However, some data show

high maximum temperature due to high amount of sunshine in the morning. As a result, 45% of data

fall under cluster G, the second-rank cluster of the day, where the only difference in comparison with

cluster C is the maximum temperature. We note here that the sensors that were installed toward the east

were affected by the sunrise in the morning and the maximum temperature is higher than the threshold

of 0.5. If the percentage of sunshine is high all day (both morning and afternoon), the sensors that were



Sensors2010, 10 2232

installed toward the west should be affected by the sunset inthe afternoon and most of data

should fall in cluster G.

Cluster G occupies the highest ratio (40%) on the 22nd which is the sunniest day of the week. The

result is plausible since cluster G indicates negative bias(Fdj1 < 0.5), low changing rate (Fdj2 < 0.5),

and high maximum temperature (Fdj3 ≥ 0.5). Due to the stable amount of sunshine on this day, it is

obvious that the maximum temperature should be high and the changing rate of temperature should be

low. Also, the 22nd has negative bias because the amount of sunshine in the morning is higher than that

of the afternoon.

Two clusters, D and H, equally occupy 30% of the temperature data collected on the 21st. Both

clusters indicate positive bias (Fdj1 ≥ 0.5) and low changing rate (Fdj2 < 0.5), while the characteristic

of maximum temperature is different. Cluster D indicates low maximum temperature (Fdj3 < 0.5),

whereas cluster H shows the opposite one. The amount of sunshine clearly implies positive bias and low

changing rate of temperature which are common characteristics of both clusters. It is intuitive that the

maximum temperature of each sensor stay around the threshold, i.e., some is above and some is below;

thus the temperature data fall under both clusters D and H.

6.2. Comparative Study

To study how well the proposed methodology presents the characteristics of the clusters, we include

the clustering results based on the k-means algorithm in Figure9 where the number of clusters is set to

eight. The eight clusters are named S, T, U, V, W, X, Y, and Z because the definitions of clusters differ

from ours. In particular, the definition of cluster is determined by centroids of each cluster which are

different on each day. For example, the centroids of each cluster on the 26th are shown in Table4.

Figure 9. Distribution of temperature in each cluster based on k-means algorithm.
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Table 4. Centroids of each cluster on August 26, 2007.

Fdj1 Fdj2 Fdj3 Mapping results

Cluster S 0.1835 0.5297 0.5768 Cluster F

Cluster T 0.5697 0.0674 0.3116 Cluster D

Cluster U 0.5565 0.2339 0.4509 Cluster D

Cluster V 0.2879 0.2894 0.5128 Cluster G

Cluster W 0.1070 0.7334 0.8436 Cluster F

Cluster X 0.4663 0.5385 0.6404 Cluster F

Cluster Y 0.4130 0.2067 0.3951 Cluster C

Cluster Z 0.4981 0.4268 0.4961 Cluster C

It is apparent from Figure9 that there are no distinctive clusters on each day,i.e., the percentages of

each cluster are lower than 30%. As a result, we cannot have any insightful discussion and meaningful

information based on these results. Therefore, we decide tomap the above results to our definition of

clusters (i.e., the clusters A, B, C, D, E, F, G, and H). The centroid of each cluster is used as a criterion

to map the whole cluster. For example, cluster S in Table4 (Fdj1 = 0.1835,Fdj2 = 0.5297, andFdj3 =

0.5768) falls under cluster F (Fdj1 < 0.5,Fdj2 ≥ 0.5, andFdj3 ≥ 0.5). Figure10 shows the results of

mapping k-means clusters for the whole week (August 21–27, 2007).

Figure 10. Distribution of temperature after mapping k-means clustering results to the

proposed definition of clusters.
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The results of our method (Figure8) and k-means algorithm (Figure10) are exactly the same on the

22nd, 23rd, and 24th, while the results are slightly different on the 21st, 25th, 26th, and 27th. However,

the trends of clustering results or distinctive clusters are exactly identical. Thus we conclude that our

proposed method presents the characteristics of the clusters as well as those of the k-means algorithm.
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When considering computational complexity, the proposed clustering technique is linear,i.e.,

O(2DM(2n + 1)), while the clustering of k-means algorithm [24] can be calculated in exponential

time, i.e.,O(DMxn+1 logM), wherex is the number of clusters. Obviously, the proposed clustering is

lightweight and much faster than the k-means algorithm.

7. Empirical Analysis on Fine-Grained Data

Previous sections have addressed the correlation between weather and temperature through the results

of clustering. In this section, we empirically analyze the fine-grained temperature data by focusing on

other environmental factors.

7.1. Selection of Representative Data

We selected three days,i.e., the 22nd, 23rd, and 27th, which represent different weatherconditions

as detailed in Table5. The 22nd was sunny; the 23rd was rainy; the 27th was sunny in the morning

but turned to cloudy in the afternoon. Then we selected threeobservation points (S1, S2, andS3) with

different environmental factors as summarized in Table6. The environmental factors we are interested

include width of street and existence of trees around the installation points of sensors. The width of

streets atS1 andS2 is six lanes, whileS3 is one-lane street. Trees exist atS1 andS3, while none exists at

S2. The locations of three observation points are representedin Figure11.

Table 5. Weather condition of three selected days.

Morning Afternoon

22nd Sunny Sunny

23rd Rainy Rainy

27th Sunny Cloudy

Table 6. Environmental characteristics of three observation points.

Observation points Width of street Trees

S1 Broad Exist

S2 Broad Not exist

S3 Narrow Exist
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Figure 11. Three observation pointsS1, S2, andS3.

P2

S3

S2S2

P

S1

P5

7.2. Feature-based Distance

We calculate thefeature-based distancebetween any arbitrary observation pointsSv andSw by using

the definition of Euclidean distance as expressed in Equation (5).

Dist(Sv, Sw) =

√

(Fdv1 − Fdw1)
2 + (Fdv2 − Fdw2)

2 + (Fdv3 − Fdw3)
2
, (5)

whered is the observation day.

There are also other definitions of distance to describe how two elements are close to or far away

from each other. For example, Mahalanobis distance and normalized Euclidean distance, which are

widely used in cluster analysis, take into account the correlations of the data set (i.e., the covariance). In

particular, the calculated distance indicates how far a test point is to the center of mass by also considering

the deviation of the data set. As a result, the distance highly depends on the distribution of data set, and

it is a useful way of determining similarity of an unknown sample set to a known one.

It is intuitive that similar environmental factors lead to similar pattern of measured temperature.

Hence, Mahalanobis distance of an observation point whose environmental factors holds high percentage

of data set will be short, and vice versa. In other words, Mahalanobis distance depends on sensor

installation of UScan system. Sensors were installed in eight observation points selected from a

250m-by-430m area where the data set may not be large enough to represent the correct distribution

of various environmental factors in Tokyo. Therefore, using Mahalanobis distance may not be an

appropriate measure because it indicates distance based onthe distribution of environmental factors

in the limited area. The purpose of calculating feature-based distance is to find relative distance between

any two observation points and simple Euclidean distance isable to satisfy the objective.

To refer easily, we define feature-based distances between each of three observation points as follows.

u1= Dist(S1, S2), u2= Dist(S1, S3), u3= Dist(S2, S3).

7.3. Empirical Investigation and Discussion

Based on the environmental characteristics of three selected points described in Table6, u1, u2, and

u3 indicate the impact of trees, width of street, and both trees and width of street on temperature change,
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respectively (see Table8). The results of feature-based distances (see Figure12) obviously show that

the impact of street width is much higher than that of trees because the distance u2 is longer than u1 on

all three days. The values of features used for calculating the distances are given in Table7. Previous

section has showed the correlation between temperature andthe amount of sunshine. The result in

Figure12 confirms that the impact of sunshine on temperature also depends on the width of street and

the existence of trees,i.e., the distances on sunny day (the 22nd) are the longest.

Table 7. Three features of three observation points (S1, S2, andS3) in three selected days

(the 22nd, 23rd, and 27th).

22nd F(22nd)j1 F(22nd)j2 F(22nd)j3

S1 0.40 0.22 0.62

S2 0.45 0.12 0.83

S3 0.23 0.68 0.46

23rd F(23rd)j1 F(23rd)j2 F(23rd)j3

S1 0.78 0.47 0.18

S2 0.80 0.40 0.34

S3 0.58 0.14 0.24

27th F(27tℎ)j1 F(27tℎ)j2 F(27tℎ)j3

S1 0.42 0.43 0.38

S2 0.35 0.33 0.53

S3 0.34 0.66 0.42

Figure 12. Feature-based distances between selected observation points.
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Figure12 reveals the difference between two observation points, butwe cannot identify the

temperature trend of each individual point. With the help ofthe proposed three features (Table7), it

suggests thatS2, which is a broad street without tree, has the highest maximum temperature with low

changing rate (less than the threshold 0.5). This trend is apparent on the sunny 22nd, since temperature

highly correlates to the amount of sunshine.
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Table 8. Environmental factors of interest of each feature-based distance.

Feature-based distances Environmental factors of interest

u1= Dist(S1, S2) Trees

u2= Dist(S1, S3) Width of street

u3= Dist(S2, S3) Trees and width of street

With the exception of the rainy 23rd, the distance u3 is the longest among three distances because it

indicates the difference between a six-lane street withouttree (S2) and a one-lane street with trees (S3).

We can conclude that temperature change on a rainy day, whichis not affected by sunshine, depends on

other factors rather than the width of street and the existence of trees.

The difference of feature-based distance betweenS1 andS2 supports the necessity of fine-grained

sensor networks. Both observation points are in very close proximity (see Figure11). The Euclidean

distance between these two points is less than three meters.However, when investigating Table7,

the differences of normalized maximum temperature are approximately 0.15–0.20,i.e., 15%–20%

difference.

8. Conclusions

In this paper, we have described the system architecture of UScan which is a fine-grained sensor

network for studying the characteristic of complex temperature in an urban area. More than 200 sensors

have been installed in a 250m-by-430m area in downtown Tokyo, and the temperature data have been

continuously collected for two months without any human intervention. The preliminary results in

Section4., where the temperature different of nearby sensors is as high as9 ∘C, assert the necessity

of fine-grained deployment of sensors in an urban area due to its complexity.

To study the large amount of fine-grained sensor data in an efficient manner, we have proposed a

clustering method which is able to classify the variation oftemperature and discovered the correlation

between temperature change and the amount of sunshine. The clustering results of the proposed method

are comparable with those of k-means algorithm, while the propose method enables the cost-effective

analysis on very large database without involving high computational cost such as iterative calculations

used by the well-known k-means algorithm [24]. In particular, computational complexity of the proposed

clustering method is linear, while the k-means algorithm solves the problem of clustering in exponential

time. We have further investigated temperature data in fine-grained manners by considering other

environmental factors such as the width of street and the existence of trees that also affect temperature

change. As a next step, we are planning to study the correlation between temperature and other dynamic

factors such as the amount of pedestrians’ and vehicles’ traffic. Traffic information can be obtained by

using cameras and pattern recognition techniques [36, 37].

Although fine-grained sensor data provide insightful information in an urban area, we should not

deploy sensors too densely because it is not a cost-effective method. However, an appropriate density

of sensor deployment depends on both controllable and uncontrollable factors such as deployment

environments, target applications, and security concerns. In particular, complicated and unplanned
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downtown areas require high density of sensors to capture detailed information. High number of

redundant sensors is necessary to substitute for malfunctioned sensors in harsh environments. Moreover,

an appropriate density is different for each application. Our testbed was deployed for several usages and

each node consists of several kinds of sensors (i.e., temperature, vibration, and illumination) which

can be utilized for different target applications. When focusing on the scope of the paper where

complexity of urban area is an issue, an appropriate densityis different for each observation point.

To investigate an appropriate value of sensor density by comparing clustering results of multiple node

densities, the number of sensors deployed should be higher than an appropriate one which is a priori

unknown. However, as mentioned in Section3.2., the problem of limited installation points hinders us

from installing highly dense network to pursue this important issue. As one of our future works, we plan

to find more flexible places to perform experiments and investigate the issue of appropriate density.

The computational complexity of both proposed method and k-means algorithm has been analyzed

in Section6.2. Another future work includes further verification by actually measuring the execution

times of these both methods because such experiment would show whether the time to cluster the data is

significant when the total latency is considered.

As suggested in Section1., clustering patterns of long-term data could reveal characteristic of each

area. To help analyzers to understand data in a more convenient way, we plan to enhance the current

web API by letting the analyzers select areas of interest andpreferred conditions such as sunny, rainy,

or cloudy days to compare clustering results. The analyzerscould know, for example, the temperature

of which areas change drastically on sunny day. Also, the system could automatically find areas whose

clustering patterns are similar as complementary information for the analyzers. If the clustering patterns

are similar, we might let some or all sensors of an area sleep temporality so as to prolong the lifetime of

sensors. Besides, the analyzers could infer temperature related information from the area where sensors

are operating.

By using the UScan data, we will analyze the acquired data in more detail for the purpose of creating

efficient fine-grained urban sensing applications. Investigating other kinds of feature as different means

of clustering is also our future plan.
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