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Abstract: Current methods for diagnosing early stage osteoarthritis (OA) based on the 

magnetic resonance imaging and enzyme-linked immunosorbent assay methods are 

specific, but require specialized laboratory facilities and highly trained personal to obtain a 

definitive result. In this work, a user friendly and non-invasive quartz crystal microbalance 

(QCM) immunosensor method has been developed to detect Cartilage Oligomeric Matrix 

Protein (COMP) for early stage OA diagnosis. This QCM immunosensor was fabricated to 

immobilize COMP antibodies utilizing the self-assembled monolayer technique. The 

surface properties of the immunosensor were characterized by its FTIR and 

electrochemical impedance spectra (EIS). The feasibility study was based on urine samples 

obtained from 41 volunteers. Experiments were carried out in a flow system and the 
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reproducibility of the electrodes was evaluated by the impedance measured by EIS. Its 

potential dynamically monitored the immunoreaction processes and could increase the 

efficiency and sensitivity of COMP detection in laboratory-cultured preparations and 

clinical samples. The frequency responses of the QCM immunosensor changed from 6 kHz 

when testing 50 ng/mL COMP concentration. The linear regression equation of frequency 

shift and COMP concentration was determined as: y = 0.0872 x + 1.2138 (R2 = 0.9957). 

The COMP in urine was also determined by both QCM and EIS for comparison. A highly 

sensitive, user friendly and cost effective analytical method for the early stage OA 

diagnosis has thus been successfully developed. 

Keywords: immunosensor; quartz crystal microbalance (QCM); cartilage oligomeric matrix 

protein (COMP); urinary biomarker 

 

1. Introduction  

Osteoarthritis (OA), the impairment of joint disease, is a progressive destruction of articular 

cartilage and subchondral bone, accompanying by synovial change. OA is a prevalent cause of pain 

and disability in a considerable proportion of the aging population. No method or drug has been proven 

to stop disease progression or make cartilage rejuvenate. There is no proper detection method to 

diagnose the initial cartilage degradation of OA and to determine exact therapies. Planar radiographs 

were used in detecting joint space width, but the cartilage destruction could only be determined from 

radiographs when significant cartilage degradation has occurred. Therefore, early diagnostics of  

OA symptoms by biochemical methods or sensor systems is an urgent necessity. A delayed  

gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) method was designed to 

examine glycosaminoglycan changes in articular cartilage during the development of OA. However, 

dGEMRIC is not available in most clinic facilities, it tests are lenghty and patients are also exposed to 

high radiation doses when cartilage tissue is measured by this method. On the other hand, biological 

markers might provide sufficient information to reveal dynamic changes of the cartilage. Several 

studies have shown that serum levels of cartilage oligomeric matrix protein (COMP), which is 

abundant in OA cartilage, are a sensitive marker for cartilage degradation detection and thus a 

potential prognostic marker providing important information on metabolic changes occurring in the 

cartilage matrix in joint diseases 1-4. The COMP levels in serum can be detected by the  

enzyme-linked immunosorbent assay (ELISA) method, which is a typical biochemical assay used 

mainly in immunology to detect the presence of COMP in a sample 5, but ELISA immunoassays are 

in general costly, requiring complex procedures using expensive laboratory equipment, long analysis 

times and the participation of highly skilled operators.  

Considerable efforts have been directed towards the development of simple biosensors for the 

detection of viruses 6-11. Biosensors can detect interactions between viral antigens, bacterium, 

protein particles and DNA by specific antibodies and can be classified according to the type of 

transducer used in the device 8,9. Piezoelectric sensors, such as the quartz crystal microbalance 

(QCM), are the potential candidates for biosensors. An electrical field, applied to the QCM, produces 
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mechanical stresses that induce an acoustic wave to travel in a direction perpendicular to the surfaces 

of the crystal. Biological compounds such as antibodies are capable of binding to terminal active 

functional groups (i.e., COOH, OH and NH2) of self-assembled monolayers (SAM) and 

immunocapture antigens such as COMP or other targets. The QCM can consequently detect mass 

changes due to these molecular interactions on the surface of the QCM. 

Sauerbrey first described the relationship between frequency shift and mass change on the crystal 

surface in air 12. The frequency response of the QCM is also dependent on both the density and 

viscosity of the solution as a liquid passes over the QCM crystal surface [13]. The QCM device is 

convenient to use and it rapidly detects in real-time the responses of antigen–antibody interactions on 

the surface of device 14,15. Therefore, the low cost and easy operated QCM device has been applied 

in various biotechnology fields, such as clinical diagnosis 16-18 and environmental monitoring 19. 
Most biochemical diagnoses of cartilage degradation use synovial fluid from invasive operations at 

diseased sites or in serum. There is very little literature in which the COMP concentration in urine of 

OA patients has been defined. In order to develop an easy to perform and homecare system for 

monitoring the cartilage degradation, a non-invasive simple QCM-based sensor was developed in this 

research. The efficiency and sensitivity of the sensor were also evaluated to further enhance its 

practicability in early OA diagnosis 

2. Experimental Section  

2.1. Materials 

COMP Human, Mouse Monoclonal Antibody, Clone:16F12 was purchased from BioVendor 

(Candler, NC, USA) and Recombinant Human COMP (>90%) was purchased from R&D Systems 

(Minneapolis, MN, USA). N’-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC, 

99%), medium for preparing phosphate buffer saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4, pH 7.4) and bovine serum albumin were purchased from Sigma (St. Louis, 

MO, USA). Thioctic Acid (TA, >98%) was obtained from ACROS (USA). The electrolyte potassium 

ferricyanide (K3[Fe(CN)6], SHOWA), potassium ferrocyanid (K4[Fe(CN)6], SHOWA) and potassium 

chloride (KCl, Sigma) were analytical grade. Doubly distilled water was used throughout the 

experiments. The feasibility study was carried out using urine samples from 41 persons including 14 

males and 27 females, collected from healthy personnel and hospital OA patients. The samples were 

provided by E-Da hospital, Kaohsiung, Taiwan, and analyzed without further treatment. 

2.2. Sensor Surface Modification 

The QCM sensor (Taitien Co., Ltd, Taiwan), coupled inside a flow injection system, was a 10 MHz 

quartz crystal with a 3.8 mm diameter gold electrode. Each of the gold electrodes was pretreated by 

electrochemical cleaning in 0.5 M H2SO4 solution using cyclic voltammetry at a scan rate of 100 mV/s 

for five cycles and then washed in de-ionized water and dried with a light stream of nitrogen gas. The 

pretreated gold electrode was immersed in the 2.5 mM thioctic acid (TA) alcohol solution at room 

temperature for 24 h in the darkroom. Afterwards, it was rinsed thoroughly with ethanol and dried with 

nitrogen gas and stock at room temperature for further used.  
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2.3. Immobilization of COMP Monoclonal Antibody 

The coupling agent, 0.2 M 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) 

was used to activated the prepared TA monolayer for 3 hr at room temperature and then rinsed with 

ethanol and dried as aforementioned. Then 20 ìL of COMP monoclonal antibody (0.01 mg mL−1) in 

PBS solution was placed on the electrode to conjugate at 4 °C for 12 h and then rinsed by PBS. 

Afterwards, the electrode was blocking by 5% bovine serum albumin (BSA) for 1.5 h. Finally, the 

electrode was rinsed with PBS and then dried by nitrogen gas. Scheme 1 illustrates the schematic 

diagram of the COMP antibody immobilization procedure.  

Scheme 1. Schematic diagram of the immobilization procedure. 

 
 

The chemical structure of the modified electrodes was characterized by Fourier Transfer Infrared 

Spectrometry (FTIR, Nicolet 5700) and the impedances of the electrodes were analyzed by 

electrochemical impedance spectrometry (EIS, CHI 614 B). The EIS analysis was accomplished in a 

three-electrode mode system wherein the modified gold electrode, a screen-printed carbon electrode 

and an external Ag/AgCl electrode were working, counter and reference electrode, respectively.  

2.4. Measurement  

Figure 1 presents a schematic diagram of the apparatus used in this work. A frequency counter 

collected the output signal of the oscillator. The prepared QCM immunsensor was mounted on one 

side of the detection vessel. PBS solution with pH 7.4 was prepared to be an assay buffer solution and 

was injected into the vessel to stabilize the equipment. After stabilization of the resonance frequency 

of QCM, the COMP solution (4 mL of 0 ng/mL to 80 ng/mL) or the urine sample (4 mL) was then 

introduced into the detection vessel. The frequency counter recorded the frequency shift when the 

immunoreactions proceeded until equilibrium was reached 25 min in order to avoid the response 

induced by non-specific adsorption. The frequency shifts in all experiments were calculated on the 

average responses of the immunoreactions with corresponding standard deviations of triplicate 

measurements. The impedance of electrodes in different sample concentration was analyzed by EIS at 

30 °C after immersion the electrode in 20 L sample solution for 5 min and following by PBS rinse. 
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The EIS analysis was accomplished with three-electrode mode in the PBS solution with 5 mM 

Fe(CN)6
3−/4− and KCl. 

Figure 1. A schematic diagram of the apparatus. 1: liquid tank; 2: inject port; 3:  

flow-through cell; 4: oscillator; 5: frequency counter; 6: computer; 7: pump; 8: waste; 9: 

chamber. 

 

3. Results and Discussion  

3.1. Characterization of the Modified Electrode 

In order to determine the chemical structure of the modified gold electrode, each electrode sample 

was characterized by FTIR. Figure 2(a) shows the FTIR spectra of modified electrodes at different 

density stages.  

Figure 2. Surface characterization of the electrodes. (A-C) FTIR spectrums of the modified 

gold electrodes in different stapes (A) thiotic acid; (B) EDC; (C) COMP monoclonal 

antibody. 

 
 

For the thiotic acid modified electrode the C=O and C-H functional groups appeared at  

1,700~1,730 cm−1 and 2,900 cm−1, respectively. It suggested that the thiotic acid was successfully 
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modified onto the electrode surface. In Figure 2(b), the C-N vibration peak at 1,150 cm−1 and the 

enhanced N-H vibration peaks at 3,400 cm−1 implied that the carboxylic acid group was activated by 

EDC. In Figure 2(c), the C-H and N-H vibration peaks suggest that the anti-COMP layer was 

successfully immobilized onto the electrode surface.  

The reproducibility of the modified gold electrodes was evaluated by examining the impedance for 

each electrode. The impedance of the COMP antibody immobilized electrode and the BSA treated 

electrode were evaluated by EIS at 30 °C. All electrochemical measurements were performed in a  

three-electrode electrochemical cell. A screen printed carbon and a screen printed Ag/AgCl electrodes 

were used as the counter and reference electrode, respectively. A QCM was introduced as the working 

electrode. A thioctic acid monolayer was formed by the SAMs technique, and then the functional 

group of TA monolayer was activated by EDC. Finally anti-COMP and BSA were immobilized on 

modified electrode area successfully. Impedance spectroscopy (EIS) studies demonstrated that the 

formation of antibody–antigen complexes increased the electron-transfer resistance (Rct) of 

Fe(CN)6
3−/4− redox pair at the BSA/anti-COMP/EDC/TA/gold electrode. Figure 3 represents the EIS 

spectra for different electrodes, and the average impedances for the COMP antibody modified 

electrode was 2,766 . The relatively low deviation implied that the high reproducibility and high 

reliability of the electrodes utilizing this SAM immobilization technique. 

Figure 3. Impedance of the gold electrode immobilized by COMP monoclonal antibody 

and the electrode after BSA treatment (nine different electrodes). 

 

3.2. QCM Immunosensor for Detecting COMP 

The binding capacity of the proposed QCM immunosensor was examined by detecting various 

concentrations of COMP. Figure 4 showed the typical frequency responses monitored by the QCM 

immunosensor for COMP detection at 26 °C. When the QCM immunosensor detected COMP 

concentration at 50 ng/mL, the frequency response quickly shifted downward from 219 to 213 kHz. 

The temperature of the sample fluids should be strictly controlled because it can strongly affect the 

immunological reactions; hence a fluid temperature controller was also incorporated in our QCM 

device.  
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Figure 4. Frequency responses of the developed QCM immunosensor. 

 

We compared four different fluid temperatures to determine the optimum working conditions for 

the immunological reactions. At 25 °C and 26 °C the reactions were most effective, and there was no 

distinct difference between 25 °C and 26 °C. Compared to the ELISA method that requires more than 

30 min identification time, the QCM immunosensor could identify COMP in a few seconds. Besides 

the time advantage, the complicated procedures and expensive experimental materials of the ELISA 

assay make it difficult to become a homecare system. 

3.3. High Correlation Between of COMP Concentration and Frequency 

According to the data from the commercial ELISA kit (BioVendor) when detecting COMP, the 

calibration standard curve of human COMP concentration was established according to the kit protocol 

using the concentration range from 4–128 ng/mL. The QCM sensor device for COMP detection should 

also have high response and sensitivities to reflect the real concentrations of COMP in detecting 

sample. In this study, a linear relationship between COMP concentration and frequency shift at 26 °C 

was shown in Figure 5.  

Figure 5. Calibration curve: Relationship between COMP concentration and observed 

frequency shift at 26 °C. 
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The linear regression equation is y = 0.0872 x + 1.2138 (R2 = 0.9957), where y is absolute value of 

frequency shift and x is COMP concentration in ng/mL. The frequency shifts were observed in the 

range of 1–200 ng/mL, which showed the QCM sensors have higher sensitivity and faster response 

than the ELISA method in the real time detection, thus allowing the possibility of estimating COMP 

concentrations in unknown samples.  

3.4. EIS Analysis of COMP Concentration 

Since the impedance of the electrode was significantly altered by the electrode surface condition, 

we exploited the EIS technique to detect the COMP concentration. The modified electrodes were 

immersed in 20 L of solution with the desired COMP concentration for 5 min and then rinsed with 

PBS. Due to the different amounts of COMP adsorption, the impedance of the electrodes changed with 

the COMP concentrations as shown in Figure 6. Impedance spectroscopy (EIS) studies demonstrated 

that the formation of antibody–antigen complexes increased the electron-transfer resistance (Rct) of 

Fe(CN)6
3−/4− redox pair at the BSA/anti-COMP/EDC/TA/gold electrode. Because of the relatively large 

surface area for EIS analysis, the sensitivity of the electrode was higher at relatively low COMP 

concentrations. Nevertheless, the operating procedure of EIS is much simpler than the ELISA method 

and it could therefore be applied as a homecare system.  

Figure 6. The Nyquist plot of the gold electrodes in different COMP aqueous solutions. 

 
3.5. Monitoring of COMP Binding in Urine  

This QCM based sensor needs to be further evaluated for its rapid and sensitive detection of COMP 

in practical clinical specimens of OA. We collected 41 urine samples including patients with OA and 

normal persons to compare the measurement results of the QCM and electrochemical immunosensor. 

According to the ELISA kit obtained from BioVendor 20, the COPM concentration in serum was 

relatively higher than that in urine. COMP concentrations of 41 urine specimens measured by the EIS 
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assay and the QCM sensor are shown in Figure 7. The high, low and mean data was the serum COMP 

concentrations from 246 unselected blood donors assayed with the Human COMP ELISA kit obtained 

from BioVendor 20.  

Figure 7. Detection of the urine COMP level of 41 volunteers’ urine samples by QCM 

sensor (a) and ELISA kit [20] (b). I, II, IV: Osteoarthritis Research Society International 

(OARSI) histological grade in the progression of osteoarthritis. 

 
(a)  

 
(b)  

 

The trends of the results obtained by QCM and EIS were similar. Comparisons of ELISA data, 

QCM results and the reference values of COMP concentrations 20, showed the COMP concentration 

measured by QCM and EIS sensor showed results consistent with the traditional ELISA detection. The 

urine COMP level in patients with grade 1–2 of OA presented higher concentrations than the mean 

level in normal persons. However, the urine COMP level in patients with grade 4 OA was very low. It 

was because that cartilage erosion in a patient with grade 4 of OA is very serious, therefore the 

cartilage was almost decayed and no more COMP was released to be detected. The developed QCM 
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immunosensor provides a rapid and sensitive measure for detecting the presence of COMP, and 

therefore can be applied to early diagnosis of OA. 

4. Conclusions  

Clinical diagnosis of OA is difficult, especially in the early stages of cartilage degradation. Most 

methods for OA diagnosis involve invasive collection of specimens or radiophotography that could 

expose patients on the radiation. Most patients that have been defined as OA have cartilage erosion 

with fast degradation of cartilage, so early OA detection is important for early cartilage protection or 

medical treatments. A detection system and device for easy operation, like the device for detecting 

blood glucose, should be helpful for homecare. This study used the well known COMP antibody 

biomarker immobilized on a QCM sensor and established its stable detection properties at room 

temperature. From the data of this study, such a QCM sensor showed the same sensitivity as EIS, and 

the values of COMP of volunteers also reflect the grades of cartilage degradation determined by 

clinical diagnosis. In addition, the analytical procedures of this QCM immunosensor are direct and 

simple in real time without multiple labeling and separation steps. The experimental results suggested 

that a highly sensitive and user friendly QCM sensor has been successfully developed for early stage 

OA diagnosis. 
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