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Abstract: A recently proposed product quantization method is efficient for large scale 

approximate nearest neighbor search, however, its performance on unstructured vectors is 

limited. This paper introduces residual vector quantization based approaches that are 

appropriate for unstructured vectors. Database vectors are quantized by residual vector 

quantizer. The reproductions are represented by short codes composed of their quantization 

indices. Euclidean distance between query vector and database vector is approximated by 

asymmetric distance, i.e., the distance between the query vector and the reproduction of the 

database vector. An efficient exhaustive search approach is proposed by fast computing the 

asymmetric distance. A straight forward non-exhaustive search approach is proposed for 

large scale search. Our approaches are compared to two state-of-the-art methods, spectral 

hashing and product quantization, on both structured and unstructured datasets. Results 

show that our approaches obtain the best results in terms of the trade-off between search 

quality and memory usage. 

Keywords: approximate nearest neighbor search; high-dimensional indexing;  

residual vector quantization 
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1. Introduction 

Approximate nearest neighbor search (ANN) is proposed to tackle the curse of the dimensionality 

problem [1,2] in exact nearest neighbor (NN) searching. The key idea is to find the nearest neighbor 

with high probability. ANN is a fundamental primitive in computer vision applications such as 

keypoint matching, object retrieval, image classification and scene recognition [3]. In many computer 

vision applications, the data-points are high-dimensional vectors that are embedded in Euclidean space, 

and the memory usage for storing and searching high-dimensional vectors is a key criterion for 

problems involving large amount of data. 

The state-of-the-art approaches such as tree-based methods (e.g., KD-tree [4], hierarchical k-means 

(HKM) [5], FLANN [6]) and hash-based methods (e.g., Exact Euclidean Locality-Sensitive Hashing 

(E2LSH) [7,8]) involve indexing structures to improve the performance. The memory usage of 

indexing structure may even be higher than the original data when processing large scale data. 

Moreover, FLANN and E2LSH need a final re-ranking based on exact Euclidean distance, which 

means the original vector should be stored in main memory, this requirement seriously limits the 

databases’ scale. Binary index methods such as [9-11] simplify the indexing structure by using  

binary code to index the space partitions. However, these methods also need the original vector for  

final re-ranking. 

Recently proposed hamming embedding methods compress the vectors into short codes and 

approximate the Euclidiean distance between two vectors by the hamming distance between their 

codes. These methods include hamming embedding [12], miniBOF [13], small hashing code [14], 

small binary code [15] and spectral hashing [16]. These methods make it possible to store large scale 

data in main memory. One weakness of these methods is the discrimination limitation of hamming 

distance as the total number of possible hamming distance is limited by code length. [17] introduced 

product quantization to compress the vector into several bytes and proposed a more accurate distance 

approximation. However, its search quality is limited on unstructured vector data. 

Objectives of the paper are comparable to those of [16,17]: (1) storing millions of high-dimensional 

vectors in memory and (2) quickly finding similar vectors to a target vector. In contrast with product 

quantization, we focus on the performance for unstructured vector data. We introduce residual vector 

quantization, which is appropriate for unstructured data, for the vector encoding. An efficient 

exhaustive search method is proposed based on fast distance computing. A non-exhaustive search 

method is proposed to improve the efficiency for large scale search. Our approaches are compared to 

two state-of-the-art methods, spectral hashing and product quantization, on both structured and 

unstructured datasets. Results show that our approaches obtain the best results in terms of accuracy  

and speed. 

Our paper is organized as follows: Section 2 presents the residual vector quantization and Section 3 

introduces our exhaustive and non-exhaustive search methods that are based on the residual vector 

quantization. Section 4 evaluates the search performance and compares our approaches with two 

state-of-the-art methods. Section 5 discusses the results and Section 6 is the conclusion. 
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2. Residual Vector Quantization 

A K-point vector quantizerQ maps a vector Dx R  into its nearest centroidin codebook

 , 1.. D
iC c i K R   : 

   arg min ,
i

i
c C

x Q x d x c


 
 

(1) 

where d(x, ci) is the exact Euclidean distance between x and ci. This destructive process can be 

interpreted as approximatingthexby one of centroids in RD space [18], and the residual vector is: 

 x x x Q x    
 (2) 

The performance of quantizer Q is measured by mean squared error (MSE): 

    2
,MSE Q EX d x Q x     

(3) 

Residual vector quantization [19,20] is a common technique to reduce the quantization error with 

several low complexity quantizers. Residual vector quantization approximate the quantization error by 

another quantizer instead of discard it. Several stage-quantizers, each has its corresponding  

stage-codebook, are connected sequentially. Each stage-quantizer approximates preceding stage’s 

residual vector by one of centroids in the stage-codebook and generates a new residual vector for 

succeeding quantization stage. Block diagrams of a two stages residual vector quantization are shown 

in Figure 1. In the learning phase (Figure 1(a)), a training vector set X  is provided and the first  

stage-codebook C1 is generated by k-means clustering method. The entire training set is then quantized 

by the first stage-quantizer Q1 which is defined by C1. The difference between X  and its first stage 

quantization outputs , which is the first residual vector set E1, is used for learning the second  

stage-codebook C2. In quantizing phase (Figure 1(b)), the input vector x is quantized by first  

stage-quantizer Q1, which is defined by first stage-codebook C1. The difference between x and its first 

stage quantization output , which is the first residual vector ε1, is quantized by second  

stage-quantizer Q2. The second residual vector ε2 is discarded. The first two quantization outputs are 

used to approximate the input vector: 

1 1 1 2 2 1 2x x x x x x x              (4) 

Figure 1. Block diagrams of two-stages residual vector quantization. (a) Learning codebooks; 

(b) Quantizing a vector.  

 
(a)       (b) 

 



Sensors 2010, 10            

 

 

11262

For L stages residual vector quantization, a vector x is approximated by the sum of its L stages’ 

quantization outputs while the last stage’s quantization error is discarded: 

1 1

L L

i L i
i i

x x x x
 

      
 

(5) 

For transformation or storage, indices of quantization outputs are used. For L stage residual vector 

quantization, which is constructed by K-point vector quantizers, the bit rate is ܮ logଶ  .per vector ܭ

The quantization performance of ith stage-quantizer is: 

2

,
1

1 1
( )

i j

K
T

i i j
j x V

MSE Q x c
N N

 
  

   
 

(6) 

where Ei is the new residual vector set generated by Qi, Vj is the jth cluster and ci,j is Vj’s centroid. 

Considering the optimization problem of finding a vector y to minimize the objection function: 
2

jx V

J x y


 
 

(7) 

By differentiating the objection function J with respect to y and setting derivative equal to zero, it is 

easy to obtain the minimizingy: 

1

jx Vj

y x
N 

   (8) 

where Nj is the number of vectors in jth cluster. This means the centroid of cluster minimizes the 

objection function: 

2 2 2 2

,

0

min
j j j j

i j y
x V x V x V x V

y

x c x y x y x
   



          (9) 

With the observations that 
2

,
1i j

K
T

i j
j x V

x c


 
  

    and
1

2

1i j

K
T

x j x V

x x x
  

  , we obtain the inequality: 

1( ) ( )i iMSE Q MSE Q   (10) 

which means the k-means clustering method guarantee the MSE of stage-quantizers are 

decreasing monotonically. 

3. Using Residual Vector Quantization for ANN 

3.1. Exhaustive Search by Fast Distance Computation 

In [17] the exact Euclidean distance between two vectors is approximated by asymmetric distance, 

i.e., the distance between a vector and a reproduction of another vector: 

      , , ,d x y d x y d x Q y   (11) 

Asymmetric distance reduces the quantization noise and improves the search quality [17]. We have 

proposed fast asymmetric distance computation based on residual vector quantization. Suppose a 
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database vector y is quantized by L × K residual vector quantizer, its indices of quantization  

output are  ,1 , 1..j ju u K j L   , and the reproduction of y is constructed by the sum of 

corresponding centroids: 

, ,
1 1

, ,1
i i

L L

i i u i u i i
i i

y y c c C u K
 

        (12) 

where ܿ௜,௨೔
 is the uith centroid of codebook Ci. The squared asymmetric distance between y and the 

target vector x is the exact squared distance between x and ݕ෤: 

    2 2 22 2

2 2 2 2

, ,
1 1

, , 2 ,

2 , 2 ,
i i

L L

i u i u
i i

d x y d x y x y x y x y

x y x c x y x c
 

     

      

    

 
 (13) 

where  is dot product.  is pre-computed off-line when the database vector is quantized. The 

dot products of codebooks’ centroids and target vector xare computed and stored in a look-up 

tablewhen x is submitted: 

 , , , ,, , , ,1 ,1i j i j i j i j iT t t x c c C i L j K        (14) 

The squared asymmetric distance can then be efficiently estimated by several table lookups: 

  2 22

,
1

, 2
i

L

i u
i

d x y x y t


      (15) 

If we only consider the order of distance, term  is a constant for all database vector and can be 

ignored in asymmetric distance computation. R nearest neighbors are selected based on the 

estimatedsquared asymmetric distances. 

3.2. Non-Exhaustive Search by Rough Approximation 

Exhaustive search has to scan quantization codes of all database vectors. In problems such as  

bag-of-features-based large scale image retrieval, billions of images are represented by hundreds of 

local feature vectors per image, and it is prohibitive to scan the feature vector database, even with fast 

asymmetric distance computation. 

In [17] the authors proposed a non-exhaustive search method for large scale datasets. A coarse 

quantizer is involved to filter out farther database vectors, and then a product quantizer is used for fine 

search. In contrast with using an external coarse quantizer, we propose a straight forward 

non-exhaustive search approach based on the approximating sequence of database vector y that is 

generated by residual vector quantization: 

 ( ) ( )

1

, ,1
l

l l
i

i

y y y l L


      (16) 

Our exhaustive search approach uses only the most accurate item ( )Ly  to approximate the y. In  

non-exhaustive search, the first 1L  quantization outputs generate a rough approximation: 

yx, y~

x
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1

1( )
1

1

,
L

L
i

i

y y L L


    (17) 

The rough asymmetric distances between database vectors and the target vector are then evaluated 

by table lookups for coarse search: 

    
1

1 1
2 22

,
1

, 2
i

L
L L

i u
i

d x y x y t


      (18) 

The database vectors which have large rough distances are pruned and the remaining database 

vectors are used to evaluate more accurate distances to the target vector by their most accurate 

approximations as in Equation (13). 

The total number of possible rough approximations is ܭ௅భ, thus an inverted file system is used to 

improve the search performance. Each inverted list corresponds to a possible rough approximation. 

When encoding database vectors by L × K residual vector quantization, each vector’s first L1 indices 

are used to determine which inverted list it should be inserted in, then the L1 indices are discarded and 

only the last L2 = L − L1 indices and its vector id are stored in the inverted list. A query vector first 

evaluated its distances to the ܭ௅భ possible rough approximations by Equation (18). The W nearest 

rough approximations are selected and corresponding W inverted lists are scanned to evaluate more 

accurate distance to query vector: 

          

        1 1

1

2 2 22 2

1

2 2 2

1

, 2 , 2 ,

, 2 ,

i

i

L
uL L L L

i
i

L
uL L L

i
i L

d x y x y x y x y x c

d x y y y x c



 

     

   





   

  

 (19) 

Equation (19) shows the squared asymmetric distances which are computed in fine search can be 

updated by squared rough distance in the coarse search and only L2 table lookups per vector are 

involved. The term ฮ࢟෥ሺࡸሻฮ
ଶ

െ ฮ࢟෥ሺࡸ૚ሻฮ
ଶ
 is pre-calculated and stored in offline quantization stage. By 

fast table lookups and distance update scheme, both coarse and fine search are efficient. R nearest 

neighbors are selected based on the squared asymmetric distances that are estimated in fine search. 

4. Experiments and Results 

4.1. Dataset 

Three public available datasets were used to evaluate the performances of ANN methods: the 

structured SIFT descriptor dataset [21], semi-structured GIST descriptor dataset [21] and unstructured 

VLAD descriptor dataset [22]. SIFT descriptor codes small image patch while GIST descriptor and 

VLAD descriptor code entire image. SIFT descriptor is a histogram of oriented gradients that extracted 

from gray image patch. GIST descriptor is similar to SIFT applied to the entire image. It applies an 

oriented Gabor filter over different scales and averages the filter energy in each bin. The VLAD 

descriptor is constructed by first aggregating images’ SIFT descriptors’ quantization residual vectors 

locally and then reducing their dimensions by PCA. 
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The SIFT dataset and GIST dataset have three subsets: learning set, database set, and query set. The 

learning set is used for learning the model and evaluating quantization performance, the database and 

query sets are used for evaluating ANN search performance. For the SIFT dataset, the learning set is 

extracted from Flicker images [12] and the database and query descriptors are from INRIA Holidays 

images [23]. For GIST, the learning set consists of a subset of the tiny image set of [24]. The database 

set is the Holidays image set combined with Flicker1M used in [12]. The query vectors are from the 

Holidays image queries [23]. VLAD dataset is generated by public package and public  

local image descriptors [22] which are extracted from Holiday image dataset [23]. The dataset  

has 1,491 128-dimensional vectors and was divided into 500 groups. The first descriptor of each group 

is the query image and the correct retrieval results are the other images of the group. Total vectors in 

dataset are used as training set and database set. All these descriptors are high-dimensional float 

vectors. Scales of these datasets are summarized in Table 1. 

Table 1. Dataset information. 

Dataset SIFT GIST VLAD 
Dimension of descriptor 128 960 128 

Size of learning set 100,000 500,000 1,491 
Size of database set 1,000,000 1,000,000 1,491 

Size of query set 10,000 1,000 500 

4.2. Quantization Performance 

This section investigates the quantization performance of our approach by evaluating the influence 

of parameters over quantization error. K is the number of centroids of stage-quantizer, L is the total 

number of stage-quantizers. The code length, i.e., ܮ logଶ  .is regarded as a metric of storage ,ܭ

Figure 2. Quantization error associated with K and L. (left) SIFT dataset; 

(right) GIST dataset. 
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Figure 2 shows the trade-offs between quantization accuracy and memory. It is clear that the 

quantization error is reduced by increase either K or L. For a fixed number of bits, the residual vector 

quantizer which has fewer stage-codebooks and more centroids in each stage-codebook is more 

accurate than the residual vector quantizer which has more stage-codebooks and fewer centroids in 

each stage-codebook. 

4.3. Parameters’ Influences on Search Accuracy 

The performances of our approaches are measured by two metrics: recall@R and ratio of distance 

errors (RDE). Recall@R is defined in [17] as the proportion of query vectors for which the nearest 

neighbor is randked in the first R positions. Values of recall@R close to 1 indicate high quality of 

search results. RDE [11] is defined as: 

1

1

( , )
1

( , )

k

ii
k

ii

d NN x
RDE

d ANN x




  


 (20) 

where NNi is the ith exact nearest neighbor of query x and ANNi is x’s ith approximate nearest neighbor. 

Values of RDE close to 0 indicate high quality of results. Mean and standard variance of RDE is used 

to measure the average search quality. 

Figure 3 and 4 show the performance of our exhaustive search method. Figure 3 shows the trade-off 

between recall@R and code length for SIFT and GIST datasets. When the code length is fixed, the 

residual vector quantizer which has fewer codebooks and more centroids in each codebook is more 

accurate than the residual vector quantizer which has more codebooks and fewer centroids in each 

codebook. It seems a good choice to use 8 × 256 residual vector quantization for SIFT descriptor  

and 16 × 256 residual vector quantization for GIST descriptor. 

Figure 3. Exhaustive search accuracy. (left) SIFT dataset. (right) GIST dataset. 

 
 

Figure 4 shows the RDE for SIFT dataset. The mean of RDE is tending to 0 when increasing code 

length. The standard variance of RDE is also significant reduced when increasing code length, which 

means the query results are more stable when more bits are used to encode the vectors. 
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Figure 4. RDE for SIFT dataset, exhaustive search method. (left) mean of RDE. 

(right) standard variance of RDE. 

 
 

Figure 5 shows impact of the parameters for our non-exhaustive search method. K = 256,  

ଵܮ א ሼ1,2} and ܮଶ א ሼ1,2,4,8,16ሽ are the numbers of stage-quantizers used for coarse search and fine 

search, W is the number of candidate inverted lists for fine search.The total number of inverted lists is 

ଶܮ ௅భ. The code lengthܭ logଶ  is regarded as a metric of storage. Results of our exhaustive search ܭ

method are also plotted in dash line for comparison. For simplicity, our exhaustive search and  

non-exhaustive search methods are respectively denoted as RVQ and IVFRVQ. We observed that the 

performance of IVFRVQ strongly depends on W which determines the fraction of inverted lists that are 

scanned. When a small fraction of inverted lists are scanned, increasing the code length is useless for 

improving the performance. When sufficient inverted lists are scanned, performance of IVFRVQ is 

comparable to even better than RVQ. 

Figure 5. Search accuracy of non-exhaustive search. (left) SIFT dataset.  

(right) GIST dataset. 
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Tables 2 and 3 show comparisons of search efficiency. Both RVQ and IVFRVQ encode the vector 

into 64-bit code. It is clear that the pruning strategy significantly reduces the search time. It is noticed 

that it has to increase the W for search accuracy when L1 = 2, but the frequent inverted lists access 

reduces the search performance. 

Table 2. Comparison of RVQ and IVFRVQ on SIFT dataset. 

Method Parameters 
Search 

time(msec) 
Average number 
of scanned codes 

Recall 
@100 

RVQ 8, 256L K   34 1,000,000 0.96 
IVFRVQ 1 21, 8, 256, 1L L K W     0.65 4,261 0.56 

1 21, 8, 256, 8L L K W     2.6 33,602 0.93 

1 22, 8, 256, 64L L K W     3.2 1,682 0.80 

1 22, 8, 256, 512L L K W     15.1 9,692 0.96 

Table 3. Comparison of RVQ and IVFRVQ on GIST dataset. 

Method Parameters 
Search 

time(msec) 
Average number 
of scanned codes 

Recall 
@100 

RVQ 8, 256L K   36.1 1,000,000 0.67 
IVFRVQ 

 
1 21, 8, 256, 1L L K W     2.9 5,205 0.36 

1 21, 8, 256, 8L L K W     4.6 42,699 0.67 

1 22, 8, 256, 64L L K W     5.7 2,423 0.55 

1 22, 8, 256, 512L L K W     20.5 16,512 0.74 

4.4. Compared with the State of the Art 

In this section we compare our approach with two state-of-the-art methods: spectral hashing (SH) 

and product quantization. The performance of product quantization is sensitive to the grouping order of 

vector components. The natural product quantization groups the consecutive components while the 

structured product quantization groups related components together based on the prior knowledge of 

vector’s structure. Experimental results in [17] show that the natural product quantization is 

appropriate for SIFT descriptor while the structured product quantization is appropriate for GIST 

descriptor. For simplicity, the natural product quantization method is denoted as PQ while the 

structured product quantization method is denoted as PQ*, their non-exhaustive version are denoted as 

IVFPQ and IVFPQ* respectively. Vectors are compressed into 64-bit binary codes. Eight 256-point 

quantizers are used for PQ and a 1024-point quantizer is used as the coarse quantizer for IVFPQ. We 

use L = 8, K = 256 for RVQ and L1 = 1, L2 = 8, K = 256 for IVFRVQ. 

Figure 6 compares the search qualities on SIFT and GIST datasets. On the benchmark SIFT, our 

approaches significantly outperform spectral hashing and are slightly better than product quantization 

methods. On the benchmark GIST, our approaches significantly outperform spectral hashing and 

natural product quantization methods and are comparable to structured product quantization methods. 
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Figure 6. Comparison of search accuracies obtained by spectral hashing, product 

quantization methods and our approaches. (left) SIFT dataset, 64-bit codes. (right) GIST 

dataset, 64-bit codes. 

 
 

The VLAD dataset is used for evaluating the accuracy of ANN methods on unstructured vectors. 

The performance is measured by mean average precision (mAP) [22] which is defined as the area of 

recall-precision curve, a larger value of mAP indicate a better retrieval performance. Table 4 shows the 

accuracies obtained by different methods (spectral hashing, product quantization and our approach) 

and different code length configurations (32 bits, 64 bits, 128 bits). Both product quantizer and our 

residual vector quantizer are constructed by 256-point vector quantizer. The code length of spectral 

hashing is directly assigned while those of product quantization and our approach are controlled by the 

number of quantizers. We use a 1024-point quantizer as the coarse quantizer for IVFPQ. We only test 

the 32-bit and 64-bit configurations for our approaches because the stage-quantization errors are too 

small to be handled by our single precision implementation when 16 stage-quantizers are used. It is 

clear that our approach is significant outperform spectral hashing and product quantization. 

Equivalently, our method obtains a comparable search quality with only half the code length of 

product quantization. 

Table 4. Comparison with state of the art on VLAD dataset. 

 32 bits 64 bits 128 bits 
SH 0.255 0.349 0.397 
PQ 0.337 0.409 0.457 

RVQ 0.407 0.510  

4.5. Speed Comparison  

Table 5 compares the search time of different methods on the SIFT dataset. Spectral hashing and 

product quantization use the public available Matlab packages. Our approaches are implemented in 

Matlab. Both the hamming distance computation for spectral hashing and the asymmetric distance 

computation for product quantization and our approaches are optimized by C. All methods compress 
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SIFT descriptors 64-bit binary code. The time is measured on a 2.2 GHz CPU laptop with 3 GB of 

RAM. The approaches RVQ, PQ and SH have similar rum times because they all scan the whole 

database and compute the distances by table lookups. Non-exhaustive search methods significant 

improve the performance. IVFRVQ is more efficient than IVFPQ for equal search accuracy because 

IVFPQ calculates W look-up tables for individual candidate inverted list while IVFRVQ only 

calculates one look-up table. 

Table 5. Search speed for 64-bit code and different methods (SIFT dataset). 

Method Parameters 
Search 

time(msec) 
Average number 
of scanned codes 

Recall 
@100 

RVQ 8, 256L K   34 1,000,000 0.96 
IVFRVQ 1 21, 8, 256, 8L L K W     2.6 33,602 0.93 
PQ 8, 256L K   33.7 1,000,000 0.93 
IVFPQ 1024, 8, 256, 8K L K W      3 9,102 0.87 
IVFPQ 1024, 8, 256, 16K L K W     7.3 17,621 0.93 
SH 64nbit   35.3 1,000,000 0.53 

5. Discussion 

5.1. Advantages of Residual Vector Quantization 

The advantage of residual vector quantization is quantizing the whole vector in original space. 

Product quantization is based on the assumption that the subspaces are statistically mutual independent 

such that the original space can be represented by the production of these subspaces. But vectors in 

real data do not all meet that assumption. Moreover, the vector’s structure determines the quantization 

parameters and makes product quantization inflexible. In contrast, residual vector quantization 

processes the whole vector in original space, and the parametersare not limited by the structure  

of vector. 

5.2. Link between Residual Vector Quantization and Hierarchical k-means 

Residual vector quantization can be regarded as a simplified hierarchical k-means (HKM). When 

generating a new quantization level, HKM performs k-means clustering in each previous level’s 

cluster and generate a new partition for each previous level’s cluster. In contrast, residual vector 

quantization generates a global partition and then embeds it into each previous level’s cluster. It is 

similar to the hamming embedding (HE) method, while HE involves two levels and uses the 

orthogonal partition in each cluster. The simplified structure makes it possible to have more 

quantization levels and each level have more centroids for fine division of space. The method that 

transforming tree-like structure to flat structure, which has been used in ferns classifier [25], 

significant reduces the complexity of index structure while maintaining a fine-grained division  

of space. 
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5.3. Complexity 

Processing vectors in original high dimensional space causes negative implications for complexity. 

Operations such as finding the nearest centroid or generating residual vectors are performed in high 

dimensional space while product quantization process subvectors in the low dimensional subspace. 

The memory usage of codebook is negligible when compared to the memory occupied by a 

codeddatabase. The complexity of look-up table computation is also negligible when compared with 

the complexity of scanning the database’s codes. The drawback is the computational complexities of 

learning and quantization stage of residual vector quantization are linear times of the complexities of 

product quantization. Our feature work will focus on reducing the complexities of learning and 

quantization stage. 

6. Conclusions 

We have introduced residual vector quantization for approximate nearest neighbor search. Two 

efficient search approaches are proposed based on residual vector quantization. The non-exhaustive 

search method significantly improves the performance. We evaluate the performance on two structured 

datasets and one unstructured dataset, and compare our approaches with spectral hashing and product 

quantization. Our approaches obtain the best results in terms of the trade-off between accuracy, speed 

and memory usage. Results on structured datasets show our approaches slightly outperform product 

quantization. For unstructured data, our approaches significant outperform the product quantization.  
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