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Abstract: An experimental investigation was undertaken to ascertain the potential of using 

Helmholtz resonance for volume determination and the factors that may influence 

accuracy. The uses for a rapid non-interference volume measurement system range from 

agricultural produce and mineral sampling through to liquid fill measurements. By 

weighing the sample the density can also measured indirectly. 

Keywords: Helmholtz resonator; volume measurement; density measurement;  

acoustic measurement 

 

Nomenclature 

c Speed of sound  m/s 

f1 Lower −3dB frequency Hz 

f2 Upper −3dB frequency Hz 

fres Resonant frequency  Hz 

lp Length of port   m 

lp' Port length correction  m 

Q Quality factor   − 

r Port radius   m 
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Sensors 2010, 10                            

 

 

10664

Sp Port area   m2 

θ Temperature   °C 

VA Actual sample volume mL 

Vc Chamber volume  mL 

VP Predicted sample volume mL 

1. Introduction 

Helmholtz resonance is the term for resonance occurring in a cavity linked to the surrounding 

atmosphere via a constricted neck or necks, and is named after Hermann L.F. von Helmholtz [1], who 

pioneered the discovery of its physical and mathematical principles. Bottles and stringed instruments 

are perhaps the most familiar examples of Helmholtz resonators, bottles in particular having the 

characteristic small opening into a large chamber. If air is blown across the neck of a bottle, the air in it 

resonates at a frequency proportional to the bottle’s dimensions. The fundamental equation for the 

frequency of an ideal Helmholtz resonator is similar to that for other oscillatory systems such as the 

classical mass-spring arrangement [2], and is given in most standard textbooks on acoustical theory, 

see for example Blackstock [3]. Resonant frequency, fres, is proportional to the speed of sound, c, and 

the square root of the cross sectional area, sp, of the neck or port, divided by the product of the 

resonator chamber volume, Vc, and port length, lp: 

pc

p
res lV

sc
f

2
    (1) 

In a real resonator, however, the air within the port oscillates over a distance greater than the 

physical port length. This was first observed by Lord Rayleigh [4], who proposed an effective port 

length, lp’, in which a correction was added to the physical port length to account for end effects. 

Further refinements have been made by a number of authors which also account for different resonator 

geometries; see Ingard [5], Alster [2] and Chanaud [6]. Equation (2) is a theoretical expression for the 

case of a single port located on the axis of the resonator [3]; in acoustics this is sometimes termed an 

asymmetric port. The term 0.6r is the correction for the un-flanged end of the port that opens to 

atmosphere, and the term r is the correction for the flanged end of the port that opens into the 

interior of the resonator, as indicated in Figure 1: 

rrll pp 3
8

6.0'     (2) 

When an object with volume, VA, is placed in a resonator, VA reduces the volume of its cavity. 

Equation (1) can be applied to this situation by replacing Vc vith (Vc − VP), in which VP is the predicted 

sample volume. After rearrangement, VP is expressed in terms of the resonant frequency of the system 

as indicated in Equation (3). Thus, in principle, a measured frequency can be used to determine the 

volume of an object placed in a resonator of known physical dimensions. 
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While expressions such as Equation (2) provide significantly improved estimates of fres, the match 

between measured and predicted resonant frequencies is not perfect and empirical correction for 

effective port length is advisable where feasible, see for example, Ingard [5].  

Figure 1. (a) Photo of Helmholtz resonator with water fill; (b) Schematic of resonator components. 

  
(a)             (b) 

 

Despite extensive historical and ongoing investigations into the physics and understanding of 

Helmholtz resonators by experimental and theoretical [5-7,2] and numerical approaches [7,8], little has 

been published on attempts to use a Helmholtz resonator as a measurement device. A preliminary 

investigation by Nishizu et al. [9] indicated successful volume measurements on solids were possible 

using a Helmholtz resonator in which part of the chamber volume was displaced by a sample volume 

to be measured; the use of a closed Helmholtz resonator for measuring the volume of a liquid in  

micro-gravity has been reported by Nakano et al. [10]. 

Potential applications for this technology include: (1) agricultural produce measurements for size 

and density sorting; (2) dynamic liquid fill level measurements; and (3) mineral extraction and mining 

in which mineral density and sorting is required. The limitations imposed by the measurement time, 

when measuring produce samples, may be reduced if the approximate density is known in advance and 

an estimated volume inferred. Thus, a very localised narrow frequency scan could be performed 

reducing the measurement time. 

In light of the limited prior work into volume measurements using a Helmholtz resonator, the focus 

in the methods developed in this investigation has been empirical rather than theoretical. 
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2. Experimental Section 

2.1. Experimental Equipment 

An asymmetric single port resonator system was manufactured and could be configured to have 

nominal internal volumes of 1 L, 2 L or 3 L and a 170 mm long port (Figure 1(a)). An asymmetric port 

is one in which the port extends outwards from the resonator cavity. All parts except the port were 

made of clear PerspexTM (150 mm diameter, 5 mm thick walled tube and 12.5 mm thick flats for end 

plates) to allow easy machining and visibility of samples within the chamber. The port was made of 

extruded 50 mm aluminium tube with a 3 mm wall thickness giving an internal port diameter of 44 mm. 

The chamber lengths were 63 mm, 127 mm and 190 mm. Chamber end plates were O-ringed to seal 

against the chamber tube as well as the port plates. Port plates and chamber end plates were fastened 

using a combination of threaded rod and threaded studs secured with wing nuts. The advantage of this 

system was rapid and easy switching of chamber sizes and port configurations. 

Two PCB103A sound pressure microphones (PCB Piezotronics Inc. New York, NY, USA) were 

used to measure resonant frequency and amplitude. The first was spaced 20 mm from the port opening, 

and the second was centre-mounted in the chamber base (Figure 1(b)). The chamber microphone plate 

was removed for liquid volume measurements and a replaced with a blank. The PCB microphone 

amplitude was calculated using the measured voltage signals referenced to a 1 V source to give outputs 

in decibels (dB). The primary sound source for this investigation was a full range, eight-inch, 

polycarbonate cone driver in an infinite baffle enclosure. The enclosure was optimally designed using 

Thiele and Small [11-13] design parameters. 

A National Instruments PCI 6221 M series Data acquisition card was used for the signal generation 

for the acoustic inputs and analysis of the signals from the microphones and temperature sensor. Both 

generation and acquisition were implemented at 40,000 samples per second, i.e., 40 kHz. Using a high 

sample rate facilitated smoothly generated fractional sine waves. A 100 W Digitech AA-0470 audio 

amplifier was used to drive the loudspeaker at a nominal 80 to 90 dB. A resistive temperature device 

(RTD) was used to provide speed-of-sound temperature compensation. Software was designed using 

National Instruments LabVIEW™ and used to generate and acquire frequency data. 

A three-stage hunting algorithm was developed to find and reduce the time required to identify the 

resonant frequency. First, pink noise was applied to the resonator to establish an approximate resonant 

frequency, Chanaud [6]. Once determined, a 2 Hz frequency sweep was used to further isolate the 

resonant peak. Lastly, a very narrow 0.1 Hz sweep was applied to detect the resonant frequency to a 

precision of 0.005 Hz. The hunting technique reduced the resonant frequency identification time from 

many minutes, for traditional frequency scanning, to approximately 40 seconds. Quicker times were 

possible at the expense of accuracy, for example a 20 second hunting time quartered the maximum 

achievable accuracy. 

Regular solid samples, spheres (1 mL to 278 mL) and cubes (2 mL to 864 mL), were used as test 

specimens. Cubes were precision milled from mild steel; whereas some spheres were made of glass 

and some of steel. Tap water was used as an exemplar for liquid fill measurements as it was readily 

available and has well defined characteristics. During volume measurements on water the temperature 

range was 10 °C to 15 °C. The water was allowed to equilibrate in temperature with its surroundings 
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and de-gas for two hours prior to use. Quantities of water were measured by weight using a set of 

Mettler PE6000 scales (±0.1 g). 

2.2. Experimental Method 

One hundred mL amounts of water were added to the chamber and the resonant frequencies, Q 

factors and temperatures recorded (Figure 2). Linear temperature compensation, c = 331.6 + 0.6θ [14], 

was implemented to dynamically adjust the speed of sound constant within the Helmholtz equation, 

where θ is in degrees Celsius. Adjustments for humidity were not made, as its contribution is small and 

not able to provide any measurement benefits or increased accuracy. 

Figure 2. Water filling of resonant chamber. 

 
 

A higher Q factor (Quality factor) for the resonator enables the resonant frequency to be identified 

more readily and the potential accuracy improved, Equation (4). The Q factor provides an indication of 

how well the system is resonating. The frequencies f1 and f2 are the roll-off frequencies either side of 

the main resonant peak and define the narrowness of the peak. By scanning through the frequencies 

below and above the resonant frequency the f1 and f2 frequencies can be identified: 

where Q is the quality factor, fres is resonant frequency, f1 is the lower −3 dB frequency, f2 is the  

upper −3 dB frequency. 

A fill level versus detected resonant frequency curve could then be plotted and compared to theory 

using Equation (1). Successful measurement results would allow theoretical back calculation,  

Equation (3), of a sample’s volume, when placed in the resonator chamber.  

Water fill tests were followed by solid sample tests using spheres and cubes to establish how 

changes in displacement type affect the resonant frequency. All solid samples were centrally located 

with reference to the port axis on the bottom plate to prevent possible nonsymmetrical acoustic effects 

within the chamber. Additional work has been undertaken to establish the significance of location, but 

is not presented in this paper. Again, temperature and frequency were measured and volumes 

calculated via the modified Helmholtz equation, Equation (3).  

21 ff

f
Q res


  (4) 

Chamber

Port

Water fill height 
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3. Results and Discussion 

3.1. Volume Measurements of Water Fill 

Initial results using water at different fill ratios revealed measured frequencies close to those 

predicted using the Helmholtz equation (Figure 3). Results suggested a second order polynomial 

calibration curve could be applied when comparing the actual water volume (VA) with the predicted 

water volume (VP) using Equation (3) and the deviation volume VP − VA. Doing so resulted in a 

coefficient of determination of 0.99 (Figure 4). Using a parabolic curve fit overlaid on the 

experimental volume results allowed subsequent measurements to be made within 3 mL of the actual 

values when measuring water (Figure 5). This represents an accuracy of better than ±0.1% of the 

resonator’s volume (3 L). Repeatability for a given measurement was generally ±1 mL when successive 

measurements were made on the same volume. 

Figure 3. Measured resonant frequency and predicted resonant frequency for varying water 

fill using 3 L chamber, 170 mm long, and 44 mm diameter port. 

 

Figure 4. Actual water volume versus deviation volume (VP − VA) using Helmholtz 

equation with 3 L chamber, 170 mm long, and 44 mm diameter port. 
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Figure 5. Actual water volume versus corrected deviation volume (VP − VA) using 

Helmholtz equation with second order correction. Measured using 3 L chamber, 170 mm 

long, and 44 mm diameter port. 

 
 

The reason for a second order deviation is unclear, but could be due to secondary effects caused by 

implicit assumptions made in simplifying acoustical theory used to generate the Helmholtz equation, 

see for example Blackstock [3]. These assumptions include the small signal approximations made to 

allow linearisation and the completion of the wave equation. Also, various small angle approximations 

are made in lumped parameter analysis within transmission theory. Because frequency measurements 

were being made to such a high accuracy these seemingly unimportant small terms may now  

be significant. The Q factor is an important indicator of resonant strength. It was observed that the Q 

factor remained steady at approximately 60 (Figure 6) up to a fill of 2.5 L in a 3 L chamber.  

Figure 6. Q factor with increasing water fill level, measured using 3 L chamber, 170 mm 

long, and 44 mm diameter port. 

 
 

The success in the predictive capabilities is in part due to the consistently high Q factor. This 

maintained the resolvability of the resonant peak. Also, the high Q factor is indicative of low energy 

absorption by the water. At greater fill levels the water approached the interior port where the moving 
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rapidly indicating attenuation in resonance activity, Figure 6. Error bars indicate the range in three 

repeat measurements of the Q factor value at each successive fill level. 

The air in the port moves a physical distance beyond the port entrance and exit determined by the 

amount of flanging material at each port termination. The extension beyond the port’s physical length 

is in part also proportional to the inertia of the air contained in the port as it oscillates, [5-7]. The 

relationship between these variables is not yet completely understood. However, an empirical value 

can be derived from measurements using different flange sizes and interference caused by a close 

proximity barrier. 

3.2. Volume Measurements on Spheres and Cubes 

Spheres and cubes displayed differences in their effect on the resonant frequency, independently of 

their equivalent volume displacement. For small displacements both initially have a near flat volume 

deviation, which rises sharply at a particular displacement (Figure 7). Volume measurements on 

spheres showed almost one-to-one volume prediction up to ~100 mL at which point a marked increase 

in over prediction occurred. The same behaviour was observed in cube samples with over prediction 

appearing at volumes over 400 mL (Figure 7). 

Figure 7. Deviation volume from actual volume for spheres when measured using 1 L, 2 L 

and 3 L chamber, 170 mm long, and 44 mm diameter port. 

 
 

A comparison was also made of data from 1 L, 2 L and 3 L chambers using various spherical 

samples (Figure 7). There was a visible difference in the volume deviation data between the three 

chamber sizes used. As noted earlier the 3 L chamber showed a rapid increase in over prediction of the 
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between predicted volumes and the actual volumes. A local maximum in over prediction is evident, but 

this may not be significant as the uncertainty in measurement for the 2 L configuration is ±2 mL. The 1 

L chamber predicted volume data was also very close to the actual volumes of the samples measured, 

within 1 mL. Restriction due to the chamber height limited the largest spherical sample that could be 

tested to 45 mL for the 1 L configuration. 
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second order polynomial (Figure 4), whereas individual solid samples show a rapid rise in over 

prediction at a threshold determined by their volume and apparent surface geometry. Over prediction 

deviations for spheres and cubes were best corrected with an exponential fit. This data suggests that the 

volume displacement type significantly affects the resonant frequency. The three distinct sample types 

change the way sound propagates in the chamber and hence the transmission properties of  

the chamber. 

As a pressure wave emanates from the internal end of the port, it encounters a flat surface, in the 

case of water filling, which is effectively a high impedance barrier. This causes the bulk of the pressure 

wave to be reflected back up the chamber. If the emanating pressure wave encounters a regular or 

irregular solid the pressure wave becomes dispersed and the resulting resonant frequency will in part 

be a function of chamber size and interference. The lumped parameter analysis of the chamber used in 

deriving the Helmholtz equation will no longer be valid, necessitating a correction curve for accurate 

volume calculations. 

Standard acoustical theory [3], for a sphere, suggests the sound wave is likely to be reflected  

omni-directionally. In contrast, the cubic samples are liable to reflect the sound waves as point sources 

from the edges and corners as well as from its planar surfaces. The angular samples represent a 

different interference source from spherical ones. Adding to the complexity of the angular sample is 

the size of any flat surfaces. The larger they are the more efficiently they reflect the incident sound 

pressure waves. Studies conducted by Barmatz et al. [15], Leung et al. [16] and Cordero and  

Mujica [17] used rigid spheres in a ½ wave resonant cavity and found scattering to affect the resonant 

frequency. However, the Helmholtz resonator frequency is related to the chamber volume not a 

standing wave within the chamber. Therefore, the systems are not directly comparable. 

4. Conclusions 

Volume measurements on specific liquid and solid samples were made to a high accuracy using a 

suitably designed Helmholtz resonator in which an object to be measured changes the resonator 

chamber volume. The consequence of this chamber volume change is a measurable change in the 

induced resonant frequency. Therefore, indirect volume measurements were possible through 

frequency measurement. 

It was established that the volume measurement accuracy was, in part a function of the resonator 

chamber volume for tested chamber volumes between 1 L and 3 L. A resonant hunting technique, 

incorporating pink noise and narrow frequency scanning, enabled a reduction in measurement time 

from several minutes to approximately 40 seconds while maintaining an accuracy of ±0.1% of the 

chamber volume. 

Appropriate calibration curve fitting was required when either solid samples or water-filling 

displacement was used within the resonant chamber. Water volume displacements could be accurately 

measured provided a second order polynomial correction was applied and likewise for regular solids 

using an exponential correction. The Helmholtz resonance equation provides a method for accurately 

measuring liquids and solids placed within a suitably designed chamber with temperature 

compensation and a sample-dependant correction curve. 
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