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Abstract: Sensor data fusion technology can be used to best extract useful information 

from multiple sensor observations. It has been widely applied in various applications such 

as target tracking, surveillance, robot navigation, signal and image processing. This paper 

introduces a novel data fusion approach in a multiple radiation sensor environment using 

Dempster-Shafer evidence theory. The methodology is used to predict cloud presence 

based on the inputs of radiation sensors. Different radiation data have been used for the 

cloud prediction. The potential application areas of the algorithm include renewable power 

for virtual power station where the prediction of cloud presence is the most challenging 

issue for its photovoltaic output. The algorithm is validated by comparing the predicted 

cloud presence with the corresponding sunshine occurrence data that were recorded as the 

benchmark. Our experiments have indicated that comparing to the approaches using 

individual sensors, the proposed data fusion approach can increase correct rate of cloud 

prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three 

percent. 

Keywords: multi-sensor; data fusion; dempster-shafer; prediction; renewable energy; 

virtual power station 
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1. Introduction 

Multi-sensor data fusion [1,2] has been developed recently to solve a diverse set of problems having 

common characteristics. It is analogous to the ongoing cognitive process used by humans to integrate 

data continually from their sensors to make inferences about the external world. Humans receive and 

process sensory data including sights, sounds, smells, tastes and touch, which are then assessed to 

draw conclusions about the environment and what they mean. Data fusion is an important tool for 

improving the performance of detecting system when various sensors are available. It seeks to 

combine data from multiple sensors to perform inferences that will be more efficient and potentially 

more accurate than if they were achieved by means of a single sensor. Fusion of multi-sensor data 

provides significant advantages over single source data in two aspects: one is the statistical advantage 

gained by combining data of same source (e.g., obtaining an improved estimate of a physical 

phenomenon via redundant observations), the other is the use of multiple types of sensors to increase 

the accuracy with which a quantity can be observed and characterized. 

This paper introduces a novel data fusion approach based on Dempster-Shafer evidence theory [3,4]. 

The approach is used for cloud presence prediction in Virtual Power Station (VPS) [5], where 

individual small-scale renewable energy sites are aggregated together to form a “virtual” power station 

that appears as a single dispatchable quantity to the wider electricity system. Since such a quantity has 

greater benefit to the wider system than the individual responses of many uncoordinated energy sites, 

the virtual power station can improve the payback period for renewable energy systems. The concept 

relies on sophisticated prediction and aggregation mechanisms to firstly anticipate the power available 

from a renewable energy system, and then aggregate many small systems into one quantity with 

reliable output. A great challenge in fulfilling the task is to precisely predict the output of each 

individual solar or photovoltaic (PV) generator, which is affected by a lot of factors. Among these 

factors, cloud presence is the most important. Conventionally, the solutions for compensating this 

inaccurate prediction include using battery and dumping power. They both increase system cost. The 

best way is to improve the prediction accuracy of PV output. It is known that PVs in VPS are 

geographical distributed. If the cloud presence for near future can be accurately predict based on some 

available indirectly related sensor data, the PV output can be predicted accordingly. In this way, other 

corresponding PVs can accordingly adjust their power commitment to the grid, finally decreasing the 

total system cost and increasing power commitment reliability. This paper concentrates on the 

discussion of our approach of cloud prediction based on a group of sensor data including shortwave 

radiation and reflected shortwave radiation. 

This paper is organized as follows. Section 2 gives a brief introduction of Dempster-Shafer theory 

for multi sensor data fusion. Section 3 focuses on its applications and presents our implementation for 

cloud prediction. Section 4 describes a series of experiments and related results to quantify the 

performance of cloud prediction. Finally, a conclusion is drawn in Section 5. 

2. Dempster-Shafer Data Fusion Theory 

Dempster-Shafer evidence theory offers an alternative to traditional probabilistic theory for the 

mathematical representation of uncertainty. It has been widely applied in various applications such as 

target tracking, surveillance, robot navigation, signal and image processing [6-9]. The significant 
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innovation of Dempster-Shafer theory is that it deals with measures of “belief”, and is based on the 

non-classical idea of “mass” as opposed to probability. Dempster-Shafer theory does not require an 

assumption regarding the probability of the individual constituents of the set or interval. It has a unique 

advantage of making inferences from incomplete and uncertain knowledge. This is a potentially 

valuable tool for the evaluation of risk and reliability in engineering applications when it is not 

possible to obtain a precise measurement from experiments, or when knowledge is obtained from 

expert elicitation. An important aspect of this theory is the combination of evidence obtained from 

multiple sources and the modelling of conflict between them. It allows other alternative scenarios for 

the system, such as “unknown”. 

2.1. Prior Requirements for Dempster-Shafer Theory 

Comparing to the Bayesian theory [6] which requires prior probabilities, Dempster-Shafer theory 

requires some preliminary assignment of masses that reflects our initial knowledge of the system, 

including the “unknown” state. The key concept is basic probability assignment or mass assignment. 

Basic probability assignment, represented by m, is a basic measure representing the support for, or 

confidence in, a hypothesis. If   is the frame of discernment, then the mapping: 

]1,0[2: m  

is called basic probability assignment (BPA), if and only if it satisfies: 












 2

1)(

0)(

H

Hm

m
 (1) 

where Φ is empty hypothesis, i.e., nothing is happening; H is a hypothesis. 

 

It should be emphasized that the BPA is not in general a Bayesian probability. BPA m(H) is an 

expression of the level of confidence exactly in a specific hypothesis H. It does not include the 

confidence in any particular subset of that hypothesis. For example, in a four-hypothesis frame of 
discernment },,,,{ 4321   statement 8.0)( 31 m describes only the amount of confidence in 

that either the hypothesis 1 or hypothesis 3 is true; it does not imply any specific support measure 

value for 1 or 3 alone.  

For typical Bayesian approaches, an assignment of probability to a specific hypothesis implies the 

amount of probability assigned to its negation, i.e.: 

If qHpthenqHp  1)(,)(
__

 (2)

Whereas for Dempster-Shafer approaches, the commitment of a BPA mass to a hypothesis does not 

imply commitment to the remaining mass to its negation, i.e.: 

qHm )(  doesnot imply qHm  1)(
__

 (3)
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The elements of the power set can be taken to represent propositions that one might be interested in, 

by containing all and only the states in which this proposition is true. 

2.2. Rules for the Combination of Evidence—Dempster’s Rule 

The purpose of aggregation of information is to meaningfully summarize and simplify a corpus of 

data whether the data is coming from a single source or multiple sources. Familiar examples of 

aggregation techniques include arithmetic averages, geometric averages, harmonic averages, maximum 

values, and minimum values. Combination rules are the special types of aggregation methods for data 

obtained from multiple sources. These multiple sources provide different assessments for the same 

frame of discernment. Dempster-Shafer theory is based on the assumption that these sources are 

independent. 

Dempster-Shafer theory gives a rule for calculating the confidence measure of each state, based on 

data from different evidences. Dempster’s rule of combination has been used as sensor fusion strategy, 

as given in equations (4) and (5). 

 

For two sensors: 

k

BmAm

Cm CCBA





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1
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21

2,1  (4)

For three sensors: 
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3,2,1  (5)

where 



BA

BmAmk )()( 21  for two sensors and 



CBA

CmBmAmk )()()( 321  for three sensors; k 

represents basic probability mass associated with conflict, which is determined by summarising the 

products of the BPA’s of all sets where the intersection is null. C is the intersection of states A and B 

in Equation (4), and D is the intersection of states A, B and C in Equation (5); )(2,1 Cm  is the new 

evidence updated by the evidence sources )(1 Am from sensor 1 and )(2 Bm  from sensor 2; and 

)(3,2,1 Dm  is the new evidence updated by the evidence sources )(1 Am from sensor 1, )(2 Bm  from 

sensor 2 and )(3 Cm  from sensor 3. 

Unlike Bayes theory, Dempster-Shafer theory explicitly allows for an undecided state of 

knowledge. It can sometimes be far safer to be undecided about what a target is, than to decide 

wrongly and act accordingly with what might be disastrous consequences. 

2.3. Support and Plausibility 

Dempster-Shafer theory contains two new ideas that are foreign to Bayes theory. These are the 

notions of support and plausibility as described in equations (6) and (7) below. 





ABB

BmAspt
|
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(7)

The support for the target “A”, spt(A), is defined as the total mass of all states implying the “A” 

state. Plausibility, pls(A), is defined as the total mass of all states that don’t contradict the “A” state. 

The quantity spt(A) can be interpreted as a global measure of one’s belief that hypothesis A is true, 

while pls(A) can be viewed as the amount of belief that could potentially be placed in A, if further 

information became available. The support is a kind of loose lower limit to the uncertainty. On the 

other hand, a loose upper limit to the uncertainty is the plausibility. 

In addition to deriving these measures from the basic probability assignment (m), these two 

measures can be derived from each other. For example, plausibility can be derived from support in the 

following way: 

)(1)(
___

AsptApls   (8)

where 
___

A  is the classical complement of A. This definition of plausibility in terms of belief comes 

from the fact that all basic assignments must sum up to 1. 

3. Cloud Presence Prediction Using Dempster-Shafer Evidence Theory 

This section will focus on Dempster-Shafer evidence theory applications in multiple sensor 

environments and present our implementation for the cloud presence prediction.  
Let },{ sunshinecloud  be the set of local elements that can be observed by each sensor. The 

power set of   denoted as 2 is the set of all possible sub-sets of , including the empty set : 

}}{},{},{,{2 unknowsunshinecloud  (9)

where }{}{}{ sunshinecloudunknown  . 

3.1. Basic Probability Assignment 

Basic probability assignment is also called basic belief mass. It is the prior knowledge we have for 

the sensors. Currently, the sensor gives radiation output, in which cloud or sunshine information is 

hidden. Radiation outputs from different sensors have different responses to the cloud presence. For 

example, when cloud occurs, some radiation outputs may drop down, some may not, or may drop 

down at different amount. Basic belief masses for each local sensor are defined as follows. 

 

Cloud mass  

 

Cloud mass is defined as correct cloud prediction rate as Equation (10). 

tc
i

cc
i

i

N

K
cm )(  (10)

where )(cmi is cloud belief mass from sensor i; tc
iN is the total number of cloud prediction from 

sensor i; cc
iK  is the number of correct cloud prediction from sensor i. 
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Sunshine mass 

 

Sunshine mass is defined as correct sunshine prediction rate as Equation (11). 

ts
i

sc
i

i

N

K
sm )(  (11)

where )(smi is sunshine belief mass from sensor i; ts
iN is the total number of sunshine prediction from 

sensor i; sc
iK  is the number of correct sunshine prediction from sensor i. 

 

Unknown mass 

 

Unknown mass is defined as wrong cloud and sunshine prediction rate as Equation (12). 
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


)(  (12)

where )(umi is unknown belief mass from sensor i; cw
iK  is the number of wrong cloud prediction 

from sensor i; sw
iK  is the number of wrong sunshine prediction from sensor i.  

In order to satisfy condition of Equation (1), each mass is finally normalized. 

3.2. System Diagram of Dempster-Shafer Data Fusion for Cloud Presence Prediction 

Figure 1 shows a general diagram of our Dempster-Shafer data fusion system for cloud presence 

prediction. The system is consisted of two channels. Sensor 1 firstly generates output y1, which is the 

global shortwave radiation. y1 is sent to predictor to predict the evidence s1, such as cloud or sunshine, 

with a certain belief mass m1.  

Figure 1. General diagram of Dempster-Shafer data fusion for two sensors. 

 
 

At the same time, sensor 2 generates output y2, which is the reflected shortwave radiation. y2 is sent 

to predictor to predict the evidence s2 with a certain belief mass m2. Using Dempster-Shafer rule as 

Equation (4), the fused evidence s1,2 with belief mass m1,2 can be derived. Note the system output is the 

fused evidence which could be either cloud or sunshine with certain belief mass. 

Sensor 1 1 Predictor

y1 

  Sensor 2 Predictor 

y2 

s1, m1 

s2, m2 

Fusion
s1,2, m1,2 
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4. Experiments and Results 

A series of experiments have been designed to validate the performance of the proposed cloud 

presence prediction algorithm. The sensor data used come from the Automatic Weather Station of 

Macquarie University [10]. The data, which are sampled in one minute interval, include sunshine 

duration information indicating cloud presence, and different radiation data, such as global shortwave 

radiation, diffuse shortwave radiation and reflected shortwave radiation, etc. Different radiation data 

have different responses to the cloud presence. Based on each sensor’s output, each state, such as 

cloud or not, can be predicted with a certain amount of confidence. Then Dempster-Shafer fusion is 

used to combine the evidences to generate fused evidence.  

In our experiment, global shortwave radiation data and reflected shortwave radiation data from 

Automatic Weather Station of Macquarie University are used to predict cloud presence. Global 

shortwave radiation is the incident shortwave radiation and comprises the direct and diffuse 

components. It is measured using a Middleton EPO7 Solarimeter. Reflected shortwave radiation is the 

shortwave radiation coming from the surface of the earth. It is related directly to the global shortwave 

radiation and the surface albedo. Reflected radiation is measured using a Middleton EPO7 Solarimeter. 

Sunshine duration data are used as benchmark to test the prediction accuracy. Sunshine duration is a 

measure of the percentage of bright sunshine observed. It is related to the duration and intensity of 

direct solar radiation as opposed to diffuse radiation and gives an indication of the presence of cloud. It 

is measured using a RS-4 Sunshine Duration Detector. 

4.1. Cloud Presence Predictor 

It is observed that some certain intrinsic relationship exists between sunshine presence which is the 

opposite of cloud presence, and the amount of radiations detected by the sensors. Figure 2 shows an 

example of global shortwave radiation and corresponding sunshine duration. In the figure, the amount 

of radiation is measured in gray, which is the absorption of one joule of energy by one kilogram of 

matter in the form of ionizing radiation. From the figure, it can be seen that when sunshine drops 

down, i.e., cloud occurs up in the sky, the strength of global shortwave radiation responds accordingly. 

However, the exact relationship between sunshine presence and the strength of the radiation is not 

clear—the amount of radiation changes may vary even for the same amount of sunshine strength. How 

to find out such intrinsic relationship and predict the cloud presence from the radiation sensor data is 

the essential task to be discussed. To investigate the performance of various approaches, three 

predictors were designed and tested in the cloud presence prediction system as depicted in Figure 1. 

These predictors are described in this section. 

 

Predictor 1 

The cloud and sunshine is predicted by a simple threshold as Equation (13): 

 /),
)(

min()(
maxX

tX
tS   (13)

where )(tX  is the output of sensor at time t; maxX is the maximum of )(tX ;  is prediction threshold. 

Cloud is predicted when 1)( tS , sunshine is predicted when 1)( tS .  
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Figure 2. Relationship between sunshine presence and the amount of global shortwave 

radiation. Top: the amount of global shortwave radiation along the time. Bottom: the 

sunshine strength along the time. 
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Predictor 2 

Using time information in predicting cloud occurrence, the cloud is predicted only when both the 

original and the shifted data are less than the threshold. The prediction is expressed as Equation (14):  







 
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




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

 /),
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min(/),
)(

min()(
maxmax X

tX

X

tX
tS  (14)

where )( tX  is the )(tX  with time-shifting of -τ. Cloud is predicted when 1)( tS , sunshine is 

predicted when 1)( tS .  

 

Predictor 3 

The prediction is expressed as Equation (15): 
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where )( tX  and )( tX are the )(tX  with time-shifting of -τ and τ respectively. Cloud is predicted 

when 1)( tS , sunshine is predicted when 1)( tS . 

 

4.2. Learning of Basic Belief Mass 
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The data used for basic belief mass learning is sunshine duration data, global shortwave radiation 

and reflected shortwave radiation from date 15th to 18th of April 2008. Basic belief mass is learned as 

equations (10), (11) and (12). 

4.3. Dempster-Shafer Fusion 

Consider two sensor inputs, of which the class set includes (c, s, u), representing cloud, sunshine 

and unknown state respectively. Suppose the first and second sensors provide basic belief mass as 

follows: m1(c) = 0.2, m1(s) = 0.6, m2(c) = 0.5, m2(s) = 0.4 and their unknown mass is m1(u) = 0.2,  

m2(u) = 0.1. Table 1 shows the set intersections of all hypotheses specified for this case, along with 

their corresponding basic belief mass products. 

Table 1. Intersections and products of two sensor’s basic belief mass. 

Sensor 1 
Sensor 2 

{c} = 0.2 {s} = 0.6 {u} = 0.2 

{c} = 0.5 {c} = 0.1 { } = 0.3 {c} = 0.1 
{s} = 0.4 { } = 0.08 {s}= 0.24 {s} = 0.08 
{u} = 0.1 {c} = 0.02 {s} = 0.06 {u} = 0.02 

 

In Table 1, the empty intersection is shown in bold numbers, cloud intersection is shown in bold 

italic numbers, sunshine intersection is shown in normal numbers and unknown or ignorance is shown 

in underlined bold numbers. Based on Dempster’s combination rule expressed as Equation (4), the 

fused belief mass for cloud, sunshine and unknown can be derived as equations (16-18) respectively. 

In these equations, the fused cloud belief mass m1,2(c) will sum the terms in Table 1 in bold italic 

numbers and then divide by one minus the sum of the terms in bold number as shown in Equation (16). 

The fused sunshine belief mass m1,2(s) will sum the terms in Table 1 in normal numbers and then 

divide by one minus the sum of the terms in bold number as shown in Equation (17). The fused 

unknown mass m1,2(u) will sum the terms in Table 1 in underlined bold numbers and then divided by 

one minus the sum of the terms in bold number as shown in Equation (18): 

355.0
)08.03.0(1

02.01.01.0
)(2,1 




cm  (16)

613.0
)08.03.0(1

06.008.024.0
)(2,1 




sm  
(17)

032.0
)08.03.0(1

02.0
)(2,1 


um  

(18)

4.4. Results of Dempster-Shafer Fusion 

The test sensor data used for cloud prediction is sunshine duration data, global shortwave radiation 

and reflected shortwave radiation on 13th, 14th, 29th, and 30th of April, 2008. The data are exclusive 

from the learning data. Time shifting parameter  is set to 2 minutes for predictor 2 and 1 minute for 

predictor 3. 
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Experiments are designed to compare the cloud prediction performance of the sensors without data 

fusion with that of the sensors with data fusion. Tables 2 shows the correct rate of cloud prediction 

(Cc) and unknown rate (U) for individual sensors without data fusion, under different predictors. 

Whereas, tables 3 shows the correct rate of cloud prediction and unknown rate for the sensors with  

Dempster-Shafer data fusion. 

Table 2. Correct rate of cloud prediction (Cc) and unknown rate (U) for individual sensors 

with different predictors. 

 

 

Date 

Predictor 1 Predictor 2 Predictor 3 

Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 1 Sensor 2 

Cc &U (%) Cc & U (%) Cc & U (%) Cc & U (%) Cc & U (%) Cc & U (%) 

13th 37.8 & 58.4 38 & 58 39.2 & 55.1 39.4 & 54.5 39.8 & 53.7 40.1 & 52.9 

14th 61.2 & 36.6 61.2 & 36.6 62.5 & 34.7 62.5 & 34.7 62.4 & 35 62.4 & 35 

28th  32.7& 56.7  34.5 & 52.3  35.3 & 50.5 37.6 & 45.7  35.4 & 49.7  38 & 44.6  

29th 4.4 & 47.6 5.8 & 36 4.4 & 47.2 5.9 & 35.3 4.4 & 47.3 5.9 & 35.3 

Table 3. Correct rate of cloud prediction (Cc) and unknown rate (U) for fused sensors with 

different predictors. 

 

 

Date 

Fusion 

Predictor 1 Predictor 2 Predictor 3 

Cc(%) & U(%) Cc(%) & U(%) Cc(%) & U(%) 

13th 47.5 & 38.7 53.3 & 31.9 53.9 & 31.1 

14th 71.2 & 23.7 72.1 & 22.6 72.3 & 22.9 

28th 49.4 & 28.2  55 & 23.4  56.1 & 22.7  

29th 8 & 20.1 8.8 & 18.3 10 & 17.6 

 

From the tables it can be seen that Dempster-Shafer data fusion can increase correct rate of cloud 

prediction for all the cases, comparing to the original single sensor prediction. It can also be seen that 

the fusion reduces the unknown rate of cloud prediction as well. For example, for the data on 13th 

April, the improvement of correct rate of cloud prediction is about 10% for cloud predictor 1  

(i.e., 47.5% comparing to 37.8% or 38%), and about 14% for predictors 2 and 3 (i.e., 53.3% comparing 

to 39.2% or 39.4%, and 53.9% comparing to 39.8% or 40.1%). The improvement of unknown rate of 

cloud prediction is about 20% for predictor 1 (i.e., 38.7% comparing to 58.4% or 58%), and about 23% 

for predictors 2 and 3 (i.e., 31.9% comparing to 55.1% or 54.5%, and 31.1% comparing to 53.7% or 

52.9%). Figure 3 gives the comparison of the real cloud presence and the predicted cloud presence in a 

period, along with related sensor data. 

For the data on 14th April, the improvement of correct rate of cloud prediction is about 10% for 

cloud predictor 1 (i.e., 71.2% comparing to 61.2%), and about 10% for predictors 2 and 3 (i.e., 72.1% 

comparing to 62.5%, and 72.3 % comparing to 62.4%). The improvement of unknown rate of cloud 

prediction is about 13% for predictor 1 (i.e., 23.7% comparing to 36.6%), and about 12% for 

predictors 2 and 3 (i.e., 22.6% comparing to 34.7%, and 22.9% comparing to 35%). 
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For the data on 29th of April, Dempster-Shafer data fusion doubles the correct rate of cloud 

prediction and cut the unknown rate of cloud prediction about half, although the total correct rate of 

cloud prediction is still very low. This lack of prediction accuracy comes from the very low occurrence 

of cloud as shown in Figure 4. 

Figure 3. The comparison of the real cloud presence and the predicted cloud presence in a 

period, along with related sensor data on 13th of April.  
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Figure 4. The comparison of the real cloud presence and the predicted cloud presence in a 

period, along with related sensor data on 29th of April. 
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In summary, our experiments have indicated that the proposed data fusion approach has improved 

cloud prediction performance greatly. It is noted that the performance of the data fusion is largely 

affected by the predictor. In particular, among the proposed three predictors, predictor 3 has achieved 

best performance (up to 72.3% correct rate of cloud prediction and as low as 22.9% unknown rate of 

cloud prediction), followed by predictor 2 and 1.  

5. Conclusions  

We have introduced a novel data fusion approach in a multiple radiation sensor environment using 

Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the 

inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The 

potential application areas of the algorithm include renewable power for virtual power station where 

the prediction of cloud presence is the most challenging issue for its photovoltaic output. The 
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algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine 

occurrence data that were recorded as the benchmark. Our experiments have indicated that the 

proposed data fusion approach has improved cloud prediction performance greatly. Comparing to the 

approaches using individual sensors, the proposed data fusion approach can increase correct rate of 

cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three 

percent. The performance of the data fusion is largely affected by the predictor. In particular, among 

the proposed three predictors, predictor 3, which has considered time shifting sensor data, has achieved 

best performance (up to 72.3% correct rate of cloud prediction and as low as 22.9% unknown rate of 

cloud prediction), followed by predictor 2 and 1 where less or none time shifting sensor data have been 

considered. 
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