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Abstract: The presence and concentration of oxygen in biological systems has a large 

impact on the behavior and viability of many types of cells, including the differentiation of 

stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors 

within cell culture environments presents a powerful tool for quantifying the effects of 

oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because 

microfluidic cell culture environments are a promising alternative to traditional cell culture 

platforms, there is recent interest in integrating oxygen-sensing mechanisms with 

microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in 

particular, show great promise in their ability to be integrated with microfluidics and cell 

culture systems. These sensors can be highly sensitive and do not consume oxygen or 

generate toxic byproducts in their sensing process. This paper presents a review of 

previously proposed optical oxygen sensor types, materials and formats most applicable to 

microfluidic cell culture, and analyzes their suitability for this and other in vitro 

applications.  

Keywords: optical oxygen sensors; luminescence; microfluidics; cell culture;  
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1. Introduction 

1.1. Oxygen and Cells 

Oxygen is an immensely important species in biological systems. Molecular oxygen plays a crucial 

role in the behavior and viability of many types of cells as well as the properties of human tissues [1]. 

Although the atmospheric oxygen level in air is 21%, the normal level in the human alveoli is 14%. 

This level decreases away from the blood vessels and forms an oxygen gradient in many tissues, with 

normal levels varying from organ to organ [2]. Hypoxia, or inadequate oxygen levels, has a large effect 

on cells and tissues, including inducing vasodilation [3] and changing metabolic processes to reduce 

oxygen consumption [4]. Tissue hypoxia in cancerous tumors has been linked with resistance to 

radiation therapy and many anticancer drugs [5], as well as increased likelihood of metastasis and 

decreased likelihood of patient survival and treatability [6,7]. Oxygen levels in tumors are often 

significantly lower than those in normal tissues [5,6], leading to the development of hypoxia-activated 

anticancer drugs designed to specifically target the hypoxic tumor tissues [6].  

Oxygen level has also been identified as an important parameter in stem cell cultivation and 

differentiation. Stem cell proliferation can be enhanced and apoptosis reduced in cultivation conditions 

with oxygen levels lower than the standard 20% [8]. Changes in stem cell cultivation environment 

oxygen concentration can also be used to simulate in vitro the effects of disease [8]. Stem cell 

differentiation patterns are also highly dependent on oxygen levels [8,9]. Embryonic development 

often occurs in low-oxygen environments, and oxygen has been found to be an important signal 

molecule to regulate stem cell differentiation. As such, carefully controlling the oxygen concentrations 

in stem cell populations in vitro is essential for controlling the cells’ differentiation and maintaining 

undifferentiated populations [9]. In regenerative medicine, the transplantation of new stem cells may 

be used to replace cells which have been lost through disease or injury. Understanding the dynamic 

oxygen conditions during normal tissue development will be necessary to control differentiation or 

apoptosis of stem cells. Oligodendrocyte progenitor cells, which may be used for the treatment of 

demyelinating diseases, should be initially cultured in 5% O2 and then differentiated in 20% O2 for 

increased cell production [10]. These conditions should be reproduced in the production of cells for 

replacement therapies. 

Because of the profound effect oxygen has on biological systems, controlling and monitoring 

oxygen concentrations is useful in many cell culture applications. Consequently, there has been much 

interest in the development of inexpensive oxygen sensors and control mechanisms that can be easily 

integrated with cell culture environments. In addition to the simple oxygen-sensing application, 

oxygen sensors can also be adapted for the measurement of glucose concentrations through the 

addition of glucose oxidase, which allows glucose levels to be determined from oxygen levels because 

an amount of oxygen dependent on the glucose concentration is consumed in the oxidation of glucose 

by glucose oxidase [11-14]; this further increases the applicability of oxygen sensors.  

1.2. Microfluidics for Cell Culture and Cell-Based Studies 

Microfluidics involves sub-millimeter-scale fluidic channels and their application to a wide variety 

of problems in biology, chemistry, and other areas. The small size-scale of microfluidic channels 
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yields a number of advantages over the traditional methods used in these areas. The small fluidic 

volumes lead to lower reagent costs [15]. Furthermore, the microfluidic chips themselves are often 

fabricated from inexpensive polymers [16,17] and can also be mass-produced. The small fluidic 

volumes also reduce the time it takes for reactions to be carried out and afford reduced heat transfer 

times [18]. 

The application of microfluidics to cell-based research appears to be particularly promising. 

Microtechnology has been used to fabricate structures for almost every step in the cell research 

process: cell acquisition; cell culture, trapping, and sorting; cell treatment; and finally analysis [19,20]. 

Microfabrication and microfluidics are ideal for working with cells as the structures present within 

them are on the same size scale as the cells themselves [19]. This size compatibility facilitates greater 

control over the cells’ position and the cell culture environment. In addition, microstructures present in 

microfluidic devices can provide a 3-D cell culture environment which more closely emulates the 

natural cell growth conditions than traditional 2-D cell culture environments [21]. Moreover, 

microfluidics can be used to create biomolecular gradients, which are important for guiding cell 

growth, migration, and differentiation within tissues. Microflow control permits precise routing of 

fluids in order to create predictable and reproducible gradients at the microscale, allowing us to better 

study these biological phenomena. Microfluidic gradient generators have been used to create gradients 

in signaling proteins for the study of chemotaxis, immune response, cell differentiation, and  

cancer [22]. Finally, microscale devices are ideal for studies involving small cell populations, such as 

primary cancer cells obtained from needle biopsies, or stem cells. 

A number of interesting reviews summarize the progress made in the application of microfluidics to 

biology [15] and more specifically, cell-based research and cell culture [19-21,23,24]. In many cases, 

the eventual goal for microfluidic systems is to create “lab-on-a-chip”-type microfluidic devices, 

which integrate all of the necessary steps for analysis onto a single chip [25,26]. Lab-on-a-chip 

systems also promise to have a large impact in cell-based drug testing and drug discovery [18]. For 

high-throughput screening in cell-based assays, microflow control can give high precision in fluid 

handling, leading to high pipetting reliability and good cell seeding uniformity over large numbers of 

wells [27]. This is important for cell-based assays since the readout depends on the cellular response. 

The increased automation possible with microfluidic systems allows reagents and nutrients needed for 

cell growth to be supplied and the cells’ waste products to be removed in a more controlled and 

reproducible manner than that often found in traditional cell culture technologies [18,19,21]. One of 

the ways in which “lab-on-a-chip” devices aim to integrate a whole lab’s worth of functionality into a 

microfluidic device is by including sensing functionality in the chip itself. 

Integrating sensors and detectors within microfluidic channels reduces the need for external 

infrastructure such as analyte vessels to take measurements from the device [25]. More importantly, 

incorporating sensors inside the microfluidic channel permits direct in situ measurements, as the data is 

recorded at the time of interest rather than after the fluid has exited the channel. As it is often desirable 

to accurately monitor various parameters in the cell culture environment, there has been an effort to 

integrate many types of sensors into microfluidic channels for cell culture, including dissolved oxygen 

and carbon dioxide [28], pH [29,30], and temperature [31,32]. Dissolved oxygen sensing in particular 

has generated much interest, and as such will be the focus of this review. 
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1.3. Oxygen Sensors 

Much of the early work on oxygen sensors focused on Clark-type electrode sensors [33], which 

detect a current flow caused by reduction of oxygen. Such sensors have been miniaturized and 

integrated with microfluidic devices to monitor the oxygen consumption of bacteria [34]. The 

miniaturization of such devices requires microscale electrodes, and this type of sensor consumes 

oxygen (and thus requires sample stirring for accurate measurements), is easily contaminated by 

sample contents, and requires electrical connection between the sensor electrodes and the measurement 

infrastructure [35]. These factors present several significant disadvantages for microfluidic cell  

culture systems.  

Consequently, there has been much interest in the integration of optical oxygen sensors with 

microfluidic systems. These optical sensors present the advantages that they are easily miniaturized, 

are not easily contaminated, do not require physical contact between the sensor and optical detector, 

and do not consume oxygen [12,35-39]. Most optical oxygen sensors operate on the principle of 

reversible luminescence quenching of the intensity or excited-state lifetime ([40], as cited in [41]) of a 

luminescent indicator dye or luminophore. This process occurs when the excited state energy of a 

fluorescent or phosphorescent indicator molecule is transferred to another molecule such as oxygen 

rather than being emitted in the form of a luminescence photon [42]. The quenching behavior can be 

modeled by the Stern-Volmer equation [43]: 

0




I0

I
1 kQ0 pO2  (1) 

where pO2 is the partial pressure of oxygen, kQ is the quenching rate constant, 0  and I0  are the 

excited-state lifetime and luminescence intensity in the absence of oxygen, respectively, and   and I 

are the excited state lifetime and luminescence intensity at the pressure of interest, respectively. The 

Stern-Volmer equation may also be written in terms of the dissolved oxygen concentration [O2] rather 

than pO2, requiring different units for kQ. 

There are several excellent reviews of optical oxygen sensors [37,44], as well as more general 

optical sensors [14,45] and oxygen sensors [35]. This paper aims to both present relevant work on 

optical oxygen sensors and analyze the methods’ compatibility with microfluidic cell culture. 

There are many ways in which to classify the previous work on optical oxygen sensors, and a great 

many sensor designs have been proposed. In Section 2 of this paper, the two main optical  

oxygen-sensing methods (based on the luminescence intensity and excited-state lifetime as in the 

Stern-Volmer equation) will be discussed. Section 3 will present some of the commonly used indicator 

molecules and summarize some of the work in which they have been used. In addition to these two 

factors, the sensing molecule is often encapsulated in an immobilization material to prevent its 

unwanted interaction with the sensing environment (for example, inducing toxicity or becoming less 

sensitive to oxygen as a result of interaction with the environment or biological materials). Section 4 

will summarize some of these immobilization materials previously used for optical oxygen sensing, 

while Section 5 will discuss the different formats previously used for optical oxygen sensors. Section 6 

will present the optical measurement systems used to supply the excitation light and detect the 

luminescence. In addition to presenting the previous work in each of these areas, each section will 

evaluate the different methods’ suitability for microfluidic systems. Finally, Section 7 will present 
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some of the previous work integrating optical oxygen sensors with microfluidic cell culture and 

Section 8 will conclude the review with a summary and description of future outlook in this field. 

2. Optical Oxygen Sensing Methods 

Optical, luminescence-based oxygen sensing is based on the phenomenon of luminescence 

quenching by oxygen. As oxygen quenches both the luminescence intensity and excited-state lifetime, 

there are inherently two different methods of measuring oxygen concentrations or pressures with 

luminescent probes. This section will present some of the previous work performed using each 

method, outline the methods’ advantages and disadvantages, and evaluate their compatibility with 

microfluidic systems. 

2.1. Detection of Luminescence Intensity 

Intensity-based oxygen sensing involves only the detection of the luminescence intensity, and as a 

result is generally easier to implement than lifetime-based detection methods. An example setup for 

intensity-based detection is presented in Figure 1. 

Figure 1. Simplified example setup for intensity-based optical oxygen sensing. 

 
 

The luminophore is excited by light from an excitation source, which passes through an excitation 

filter to select the wavelengths best matched to the excitation spectrum of the luminophore. The 

emitted luminescence intensity is detected after passing through an emission filter to remove any 

extraneous light not part of the emission spectrum. A detector array such as a Charge-Coupled Device 

(CCD) can easily be used to detect the emitted luminescence, allowing 2-D oxygen concentration 

gradients to be determined. The simplified setup depicted in Figure 1 does not include any imaging 

optics, but lenses [46] and even complete fluorescence microscopy setups [39,47,48] can be easily 

integrated into the intensity imaging setup. 

Intensity-based sensing suffers from several disadvantages, including susceptibility to 

photobleaching, leaching, and intensity variations caused by inhomogeneities in the detector pixels (if 

a 2-D detector is used); dependence on detection optics, sample absorption or scattering, excitation 

light, and dye layer concentration and film thickness [38]. Nevertheless, intensity-based imaging has 

been successfully used for in vivo sensing applications [47,49], gaseous oxygen sensing [50], inter- and 

intra-cellular measurements [51,52], and microfluidic oxygen sensing [48,53-55]. 
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Intensity-based measurements are particularly attractive for microfluidic cell culture because of 

their inherent compatibility with standard fluorescence microscopy setups often already in place and 

because of the simplicity of the measurement method. Several methods have also been proposed to 

help overcome the disadvantages of intensity-based sensing. The best-investigated method has been 

ratiometric sensing [39,51,56,57], wherein the sensing layer contains both the oxygen-sensitive dye 

and an oxygen-insensitive dye, with the two dyes having different emission spectra. Both dyes are 

excited by the excitation source and the sum of the two emission spectra is detected by a detection 

spectrometer, but only the emission intensity of the oxygen-sensitive dye is quenched by the presence 

of oxygen. The oxygen levels are thus determined by measuring the ratio between the emission 

intensities of the two dyes. This method helps reduce the effect of excitation light, dye layer, detection 

optics, detector sensitivity, and sample inhomogeneities, as the emission intensity of the oxygen-

insensitive dye is also affected by these factors. Other methods used to improve the accuracy of 

intensity-based sensing have included the formulation of complex calibration functions incorporating 

photobleaching and leaching effects and pixel-by-pixel calibration techniques [47] requiring no sample 

movement between calibration and sensor use. 

Despite these efforts to improve intensity-based luminescent oxygen sensing methods, several 

groups have concluded that lifetime-based optical oxygen measurements (discussed below) are 

superior to and more robust than intensity-based measurements [38,58-61] using the same probe 

molecules. Detection methods based on phosphorescence lifetime also yield improved contrast and 

suppression of background signal [46]. As such, much of the recent work on luminescent oxygen 

sensors has focused on lifetime-based sensing methods.  
 

Figure 2. Simplified example setup for lifetime-based optical oxygen sensing. Example 

excitation modulation and emission waveforms are also shown. 

 
 

2.2. Detection of Luminescence Lifetime 

Lifetime-based sensing mechanisms involve the detection of the luminescence lifetime in either the 

time domain or the frequency domain. Time domain detection generally involves the direct detection 

of the lifetime itself, while frequency domain detection generally involves determining the 
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luminescence lifetime via a lifetime-dependent phase lag between the excitation and emission light 

intensity waveforms. For both lifetime-based sensing mechanisms the excitation illumination must be 

modulated. A simplified example setup for lifetime-based oxygen sensing is shown in Figure 2. Also 

included in Figure 2 are example excitation light modulation and their corresponding emission 

waveforms. The sinusoidal excitation modulation waveform likely corresponds to a phase-based 

detection method, wherein the fluorescence lifetime affects the phase shift between excitation and 

emission sinusoids. Conversely, the square-wave excitation modulation waveform corresponds to a 

time-domain detection mechanism. 

The most common time-domain lifetime detection scheme is the “pulse-and-gate” method [28,62-68], 

as illustrated in Figure 3. In this method, the excitation light is modulated (generally by a square-wave 

pulse indicated by the thick blue line) and the detector is gated such that it acquires windows of 

emission intensity data (indicated by the colored regions), generally during the luminescence decay 

period. The dashed red line represents the intensity of the emitted light. 

Figure 3. Illustration of “pulse-and-gate” time-domain luminescence lifetime detection. 

The transparent colored boxes indicate the windows of data acquisition; the decay constant 

and luminescence lifetime can be determined from the data acquired in these windows 

(figure adapted from [28]). 

 
 

Two acquisition windows are sufficient to characterize a monoexponential decay and are commonly 

used [28,62,63], although three-window and even five-window methods have been used for improved 

accuracy [46,66]. The ratio of the integrated data collected during the two windows can be used to 

determine the decay constant of the signal and thus the luminescence lifetime of the indicator, via 

Equation 2 [65]: 

 
t2  t1

ln
A1

A2

 
(2) 

With the “pulse-and-gate” method, it is possible to remove the effects of short-lived background 

luminescence and any residual, decaying source light after the nominal shutoff time. This is usually 

accomplished by adding a short delay (~100–500 ns) between the end of the excitation pulse and the 

beginning of the first gated window [28,63]. It is much more difficult to separate background 
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luminescence with long lifetimes or similar lifetimes to that of the indicator of interest [46]. The 

“pulse-and-gate” method of lifetime detection has been successfully used with oxygen-sensitive 

indicators and gated detectors to obtain two-dimensional oxygen distribution images in micro-titer 

plates [28], engineered tissue, living cells, and in vivo samples [62,66,69,70], coral sediment, lichen, 

and foraminifer samples [63], microfluidic bioreactors [70,71], and biofilm growth flow 

chambers [72]. As long as the detector only detects the luminescence signal while the excitation lamp 

is not emitting and the effects of ambient light are insignificant, the emission filter shown in Figure 2 is 

not necessary for time-domain lifetime detection. For other methods such as phase-based lifetime 

detection, however, it is necessary to include the filter. 

Another time-domain method of measuring luminescence lifetime involves taking the ratio of gated 

detection windows different from those illustrated in Figure 3 [38]. This method utilizes one window 

during the excitation pulse and another after the pulse, and the ratio of these windows (after subtracting 

any effects of dark current) may be used to determine the luminescence lifetime. This detection 

scheme has been compared to the “pulse-and-gate” method, and found to have a higher signal-to-noise 

ratio and faster calculation time [46] due to the longer windows and increased optical power during 

each window. Its disadvantages include its inability to separate out background luminescence and the 

need for an emission filter. 

The frequency-domain method of determining luminescence lifetime (phase fluorometry or 

luminometry) measures the phase shift between the excitation light intensity and emitted light intensity 

waveforms. If the luminescence decay is modeled as single-exponential, the luminescence lifetime τ 

may be obtained from the phase shift φ using Equation 3 [73]: 

tan()   (3) 

where ω is the angular frequency of modulation. The optimal modulation frequency for  

frequency-domain lifetime measurements may be found from τ1 and τ2, the lifetimes (i.e., quenched 

and un-quenched) of interest, using Equation 4 [59]: 

opt 
1

12

 (4) 

Frequency-domain methods of lifetime detection require detection mechanisms capable of detecting 

phase differences, but separation of luminophores with close lifetimes is easier than with time-domain 

methods [46]. Phase fluorometry or luminometry was first used with simple point detectors such as 

photodiodes and photomultiplier tubes (PMTs) [74-76] but has also been expanded to use  

two-dimensional detectors to obtain two-dimensional images of oxygen distributions [77]. Phase-based 

optical oxygen sensing with photodiode detectors has also been successfully integrated into 

microfluidic channels and bioreactors [78-80] and even multi-chamber microfluidic cell culture analog 

systems [81]. 

3. Oxygen-Sensitive Luminescent Materials 

The sensitivity and other properties of optical oxygen sensors are dependent on a number of factors, 

most importantly the luminophore, or luminescent indicator. There are several properties to be 

considered when choosing the optimal indicator for a certain application. One of the most important 
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properties of a luminescent indicator is how readily its emission is quenched by oxygen. This factor is 

dependent on the efficiency of the quenching process itself as well as the excited-state lifetime of the 

indicator, as the probability of the indicator interacting with oxygen increases when electrons are in the 

excited state for a longer time period [37]. For the sensor to be usable over long time periods and even 

be reusable, the indicator should be stable against photobleaching and leaching into the tested sample. 

The absorption and emission spectra of the dye are also often considered in the selection of 

luminescent indicators. It is often desirable for these spectra to be compatible with inexpensive and 

readily available excitation sources, detectors, and filters. Additionally, some materials (such as human 

plasma [56] and mammalian cells [82]) autofluoresce and this confounding signal can be removed 

either by the use of an emission filter or a lifetime detection method with good lifetime selectivity 

(such as frequency domain lifetime detection) after selection of materials/indicators with a sufficiently 

different emission spectrum or luminescence lifetime. Alternatively, materials with different excitation 

spectra from those of the autofluorescent materials may be selected to overcome this problem. 

Various oxygen-sensitive indicators have been identified and used for various applications. Many  

of these indicator compounds fall into two main groups: ruthenium-based molecules or  

metallo- porphyrin-type molecules. Other, less commonly used, oxygen-sensitive compounds include 

fluorescein compounds [83], polycyclic aromatic hydrocarbons [42], and other organic  

compounds [44]. 

The following sections will introduce some of the most commonly-used oxygen-sensing 

compounds and discuss their applicability to microfluidic cell culture. More general reviews of 

oxygen-sensing compounds may be found in [44], and a review of various phosphorescent  

metallo-porphyrin complexes and their applications (not limited to oxygen sensing) is presented 

in [84]. 

3.1. Ruthenium-based 

Several fluorescent, ruthenium-based compounds have been applied to optical oxygen sensing. 

Compounds of ruthenium-tris-4,7-diphenyl-l,l0-phenanthroline ([Ru(dpp)3]
2+) [13,36,41,46,59,60,63, 

77,81,85-90] and ruthenium(II)-tris(l,l0-phenanthroline) ([Ru(phen)3]
2+) [28,38,47,91] are  

commonly-used examples, and they have been modified to be soluble in silicone films for oxygen 

sensing [92]. Other ruthenium compounds used in optical oxygen sensors include  

dichlorotris (1,10-phenanthroline) ruthenium (II) hydrate [93] and ruthenium tris 

(2,2′-dipyridyldichloride)hexahydrate [50,64,66,71,94,95]. 

Oxygen-sensitive, fluorescent ruthenium compounds have been used extensively in optical oxygen 

sensing and have even been previously integrated with microfluidic bioreactors and other  

devices [71,81,94]. While the ruthenium complexes have a high luminescence quantum yield and are 

very photostable, their short excited-state lifetimes (on the order of 100 ns–1 μs [96]) lead to lower 

sensitivity to oxygen than is necessary in certain applications. These applications are in low-oxygen 

environments (e.g., modified-atmosphere food packaging with oxygen partial pressures of 0–2 kPa [90], 

and culture of anaerobic bacteria with dissolved oxygen levels less than 12 ppm [55]), which 

necessitate highly sensitive oxygen sensors, and alternative oxygen-sensitive compounds such as some 

of the metalloporphyrin-type indicators fill this requirement. Most metalloporphyrin-type indicators 
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phosphoresce rather than fluoresce, which leads to a lower luminescence quantum yield but a longer 

excited-state lifetime (on the order of 10 μs–1 ms [37]) and thus a higher sensitivity to oxygen. 

3.2. Metalloporphyrin-based 

Platinum(II)– and palladium(II)– complexes of octaethyl–porphyrin (Pt- and Pd- OEP) [97,98] have 

been used successfully in optical oxygen sensors for in vivo applications [91], engineered tissues [62], 

aquatic sediments [46,59,60,87], microtiter plates [28], intracellular applications [51], and other 

biological applications [52]. They demonstrate a long luminescence lifetime and high quantum yield 

but relatively poor photostability, inhibiting their use in many applications. 

Platinum(II)- and palladium(II)- complexes of octaethyl–porphyrin ketone (Pt- and Pd- OEPK) [61] 

were introduced as another set of potential phosphorescent sensing dyes with improved properties over 

PtOEP and PdOEP including significantly improved photostability (in [61] the absorbance of PtOEPK 

was found to decrease by only 12% after 18 hours of continuous UV illumination, while that of PtOEP 

was found to decrease by 90% under the same conditions), longwave emission, and good compatibility 

with Light-Emitting Diode (LED) excitation sources [99]. PtOEPK in particular has attracted much 

interest as an oxygen-sensitive probe. Its photostability has been found to be significantly (~10 x) 

higher than that of PtOEP [51], making PtOEPK much more useful in intensity-based measurements 

and applications requiring long measurement times. Oxygen sensors using PtOEPK have been used in 

many applications, including glucose biosensors [11], microfluidics and microfluidic cell  

culture [48,54,55,78,100], inter- and intra-cellular measurements [39,51], food packaging [12], and 

other biological applications [56]. 

The aforementioned metalloporphyrin compounds are generally encapsulated in a polymer or  

sol-gel matrix (Section 4 discusses these matrices in more detail). Another class of commonly used 

metalloporphyrin compounds is water-soluble and generally bound to albumin compounds before use. 

These compounds include platinum (Pt) and palladium (Pd)-coproporphyrin [49,83,101,102], 

palladium meso-tetra-(4-carboxyphenyl) porphine [69,102-105] and the polyglutamic phosphorescent 

“Oxyphor” probes [106-120], all of which have mostly been used via intravenous injection for in vivo 

biological oxygen imaging. In addition to the water-soluble metalloporphyrins, there are also  

water-soluble ruthenium complexes, such as ruthenium tris(2,2’-dipyridyl) dichloride hexahydrate 

(RTDP) [71,95]. 

3.3. Summary and Applicability to Microfluidic Cell Culture 

During microfluidic cell culture, the cells may be in contact with the probe molecule and oxygen 

sensor as a whole for extended periods of time, extending from hours to days. It is important that these 

materials be biocompatible, with no cytotoxic effects. O’Riordan et al. investigated indicator leaching 

into various simulated food components and found that the leaching of PtOEPK and Ru(dpp)2+ from 

polymer matrices into most aqueous solutions (with the exception of 95% ethanol) could not be 

detected [90]. No evidence of toxicity of the Oxyphor probes has been presented, with studies using 

Oxyphor R2 in rats at concentrations of up to 6.7 mg/kg body weight (~40 μM in blood) showing no 

evidence of toxicity up to ten days after injection [121]. Dobrucki [122] found that Ru(phen)2+
3 can 

have phototoxic effects. When used as a dye, repeated illumination of a sample caused the plasma 
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membranes of cells to rupture, and the dye was observed to enter the cell nuclei and cytoplasm. This 

toxicity may be due to the generation of singlet oxygen when the Ru(II) complex is illuminated. 

Phototoxic effects were not detected for Ru(bipy)2+
3 in the concentration range of 2  10−4 M. 

Many of the oxygen-sensitive compounds are excitable with blue, green, yellow, or orange  

LEDs [60,61], offering a great advantage for small, ideally low-cost applications such as microfluidics. 

The sensitivities of the various ruthenium or metalloporphyrin compounds dictate the oxygen levels at 

which they are best used (for example, different sensors should likely be used for studying anoxic 

environments than those used for normal cellular environments or atmospheric conditions).  

The water-soluble compounds do not present the same advantages for microfluidic systems as they 

do for in vivo biological imaging, where the possibility of injection of water-based dye solution 

facilitates less invasive imaging and even imaging through skin. In microfluidics, it may be desirable 

to use the microfluidic channel and cell culture setup more than once. In this situation integrating the 

sensor into the channel allows the indicator to be reused as well, potentially lowering the cost of the 

testing setup. For microfluidic cell culture applications, incubation times can be on the order of hours 

or even days, often requiring the circulation of fresh culture media over this time period. This 

application would require significantly more water-soluble luminescent indicator than would be 

required for a device-integrated sensor if all of the circulated solution is to be stained. Furthermore, 

encapsulating the sensor in a polymer or sol-gel matrix reduces the likelihood of unwanted interaction 

with the sample under test. Nevertheless, there are advantages (such as obtaining 3-D maps of oxygen 

distributions) to adding the indicator to the fluid in microfluidic channels, and this use has been 

previously demonstrated using RTDP [71,95]. Table 1 presents a summary of indicators in various 

encapsulation materials along with some of their properties. 

Table 1. Properties of indicator materials in various encapsulation matrices as previously reported.  

Indicator 
Encapsulation 

Matrix 

Unquenched 

Lifetime (μs) 

Quantum 

Yield 

Reported 

Sensitivity * 

Excitation 

Peaks (nm) 

Emission 

Peaks (nm) 
[Refs] 

([Ru(dpp)3]
2+ Polystyrene 5 NR 

22%  
signal decrease 
from N2 to air 

450 600 [60] 

([Ru(dpp)3]
2+ 

Plasticized 
PVC 

5 NR 
50%  
signal decrease 
from N2 to air

450 600 [60] 

([Ru(dpp)3]
2+ None  

6.3 at 23 °C 
(silicone-soluble 
ion pair in 2-
butanone ) 

0.3  
(in water/ 
 ethanol) 

0.35 
(silicone-
soluble ion 
pair in 2-
butanone )

kQ(dissolved O2) 
= 2.5 (109dm−3 

mol−1s−1)  
(in methanol) 

460 613, 627 [37,92] 

([Ru(phen)3]
2+ None  

0.74 at 23 °C 
(silicone-soluble 
ion pair in 2-
butanone ) 

0.08  
(silicone-
soluble ion 
pair in 2-
butanone )

kQ(dissolved 

O2)=4.2  
(109dm−3 mol-

1s−1) 

447,421 605, 625 [37,92] 

[Ru(Ph2phen)3]
2

+ 
Sol-gel silica 5.8 NR τ N2/τO2 = 5 NR NR [123] 
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Table 1. Cont. 

([Ru(bpy)3]
2+ None  0.6 0.042 

kQ(dissolved 

O2)=3.3 
(109dm-3 mol-

1s-1)  

423, 452 613, 627 [37,83] 

([Ru(bpy)3]
2+ Sol-gel silica 1.26 NR τ N2/τO2 = 2 NR NR [123] 

Indicator 
Encapsulation 

Matrix 

Unquenched 

Lifetime (μs) 

Quantum 

Yield 

Reported 

Sensitivity * 

Excitation 

Peaks (nm) 

Emission 

Peaks (nm) 
[Refs] 

PtOEPK Polystyrene 61.4 at 22°C 0.12 High 398, 592 759 [61] 

PtOEPK PDMA NR NR QDO = 97.5% NR 754 [56] 

PdOEPK Polystyrene 480 at 22°C 0.01 Very high 410, 602 790 [61] 

PtOEP Polystyrene 94.7 at 20°C NR τ0/τair = 3.60 383, 535 647 [60,98] 

Pd-
coproporphyrin 

None  
(aqueous solution) 

530 (no BSA), 

1200 (BSA) 
0.2 

kQ = 195 

mmHg−1s−1 
393. 545 667 [83,124] 

Pt-
coproporphyrin 

None  
(aqueous solution) 100 0.4 NR 380, 535 650 [124] 

Pd-meso-tetra-(4-
carboxy- phenyl) 
tetrabenzoporphyri
n-dendrimer 

(Oxyphor G2) 

None  
(BSA solution at 
pH 6.8, 23.5 °C) 

276  0.12 
kQ = 195 

mmHg−1s−1 
442, 632 800 [106,109] 

Pd-meso-tetra-(4-
carboxyphenyl) 
porphyrin-
dendrimer  

(Oxyphor R2) 

None  
(BSA solution at 
pH 6.8, 23.5 °C) 

738  0.1 
kQ = 270 

mmHg−1s−1 
415, 524 700 [109] 

Pd-meso-tetra (4- 
Carboxyphenyl) 
Porphine 

(Oxyphor R0) 

None  
(albumin solution 
at pH 6.8, 23 °C) 

705  0.06 
kQ = 246 

mmHg−1s−1 
416, 523 687 [106] 

NR: Not Reported. 
* Different measures of sensitivity were reported in different papers, and the values quoted in this table were those reported 

in the reference.  

4. Indicator Encapsulation Media 

As mentioned previously, the luminescent indicator compound is often immobilized and 

encapsulated in a polymer or sol-gel matrix to improve sensor properties and reduce unwanted 

interaction with the sample under test. The encapsulation matrix can be patterned and holds the 

luminophore in place on the substrate. The encapsulation matrix has been found to greatly affect many 

of the properties of the oxygen sensor, such as its sensitivity and Stern-Volmer calibration  

function [125]. In particular, the oxygen diffusion constant of the polymer matrix is a very important 

parameter; it controls how easily the oxygen in the sample can migrate to the indicator compound and 

as a result greatly affects the sensitivity and response time of the sensor [37]. This section introduces 

some of the commonly used immobilization matrices and discuss their applications and potential for 

use in microfluidic cell culture. Further detail on encapsulation matrices in general can be found  

in [44,125-127]. 
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4.1. Polymers 

Several criteria need to be taken into consideration when choosing a polymer matrix for a 

luminescent oxygen-sensitive indicator. Aside from the aforementioned permeability to oxygen, the 

matrix’s mechanical stability is an important property in applications such as aquatic sediment 

mapping, however in microfluidic cell culture this property is often less important. If the sensor is 

patterned on the channel surface, the adhesion of the sensor and thus the polymer matrix to the channel 

should be sufficient such that microfluidic flow does not detach or damage the sensor. If the sensor is 

to be reused, the polymer matrix needs to be able to withstand whatever cleaning process is necessary. 

For microfluidic cell culture, the polymer matrix must be biocompatible. Finally, the chosen indicator 

needs to have good solubility in the matrix material in order to form homogeneous sensor films. 

Commonly used polymers and corresponding references for their use in optical oxygen sensors 

include: polystyrene for [Ru(dpp)3]
2+, PtOEPK, PdOEPK, and PtOEP indicators [11,12,28,38,46,48, 

52,54,55,59-61,78,90,91,100,125,128,129]; polymethyl methacrylate (PMMA) for PtOEP [60];  

poly- decyl methacrylate (PDMA) for PtOEPK [56], polyvinyl chloride (PVC) for PtOEPK, PdOEPK, 

and [Ru(dpp)3]
2+ [39,60,125]; ethyl cellulose for [Ru(dpp)3]

2+ [38]; and silicones for PtOEP, 

[Ru(dpp)3]
2+, and to encapsulate dye-adsorbed silica beads [38,47,53,62,130]. Additionally, working 

sensors have been created using [Ru(phen)3]
2+ in photopatternable silicone [93]. 

Although the addition of plasticizers to polymer matrices such as PVC allow sensor properties such 

as response time and sensitivity to be optimized for applications of interest, their use can lead to 

significant changes from the ideally linear Stern-Volmer calibration equation of the resultant oxygen 

sensors [125]. 

4.2. Silica, Ormosil, and Sol-gel 

Indicators such as [Ru(phen)3]
2+ have been adsorbed to silica microbeads [38,47,130] and then 

either used as-is or encapsulated in silicone films. Organically modified silica (ormosil) and sol-gel 

particles and layers have also been developed and optimized in an effort to improve the properties of 

optical oxygen sensors [126]. Ormosils and sol-gels are very promising as encapsulation matrices, 

showing excellent optical and physical properties and good porosity/permeability to oxygen as well as 

the ability for the layer properties to be customized to various sensor applications [126,127]. Oxygen 

sensors using them have been developed [46,77,88,131-133] and used in various applications, 

including aquatic sediments [41,87]. 

Most of these commonly-used encapsulation media are applicable to microfluidic cell culture, and 

the best choice for a particular application depends on the indicator of interest, the desired level of 

sensitivity, and the desired sensor format. Previous applications in microfluidics have predominantly 

used polymer encapsulation matrices such as polystyrene [48,54,55,78,100] and 

poly(dimethylsiloxane) (PDMS) [53]. 

5. Oxygen Sensor Formats 

For microfluidic cell culture it is possible to use one of several oxygen sensor formats. Thin sensor 

films integrated into the cell culture device or substrate present perhaps the most obvious solution, but 
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it may also be possible to integrate optical fiber-type sensors, micro/nanoparticle sensors, or even 

directly stain cells or the cell culture media with soluble oxygen-sensitive compounds. An illustrative 

overview of some of the sensor formats is presented in Figure 4. This section presents some of the 

previous work performed with these sensor formats and discusses how they may be applied to 

microfluidic cell culture. 

Figure 4. (a) Thin film sensor. (b) Patterned thin-film sensor. (c) Tapered optical fiber 

sensor without and with opaque polymer optical isolation (shown as partially transparent 

for figure clarity). (d) Micro/nanoparticle sensors suspended in aqueous media.  

(e) Micro/nanoparticle sensors suspended in a thin film. (f) Water-soluble sensor 

compound dissolved in aqueous media. 

 

5.1. Thin-film Sensors on Substrate 

Thin-film type sensors are commonly used, and are generally fabricated by either pipetting or 

spinning solutions of the indicator and encapsulation medium onto a substrate of interest such as glass 
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slides, polymers, or polyester foils. This type of sensor has been quite widely used as un-patterned 

films [28,38,46,47,50,62,63,77,91,130]. A similar process has also been used to create patterned layers 

by pipetting only small areas or performing a pipetting and lift-off process [11,12,54,55,61,78,90,125]. 

Fabricated thin layers have been lithographically patterned using PDMS “stamps” as masks in a dry 

etch process [48,100], and using a chromium mask layer [128]. Additionally, Ambekar et al. created 

photolithographically patterned thin-film oxygen sensors utilizing photopatternable silicone [93], 

however some difficulty was encountered with the use of a platinum porphyrin indicator, as it was 

highly absorbing at the wavelengths necessary to expose the photopatternable polymer. 

Thin-film sensors are usually excited with either trans- or epi-illumination, but the excitation light 

has also been provided using optical fiber coupling [90] and evanescent fields from the glass  

substrate [50] or polymer waveguides [94]. 

Thin-film oxygen sensors have been integrated successfully with microfluidics [48,78,100] and 

used for microfluidic cell culture in order to monitor the dissolved oxygen concentrations during the 

culture of three types of bacteria requiring differing oxygen levels as well as mammalian cells [54,55]. 

5.2. Optical Fiber Sensors 

Oxygen-sensitive micro-optodes are another commonly used sensor format, wherein the  

oxygen-sensitive dye and encapsulation matrix are attached to the end of an optical fiber. The optical 

fiber can provide the excitation light, carry the emitted luminescence to the detector, or  

both [36,39,60,86,87]. Layers of black silicone have been used to optically isolate the sensor film from 

its surroundings, and arrays of the sensors have been used to obtain oxygen concentration  

gradients [59]. The optical fiber has been pulled to fabricate tip diameters as small as 5–10 μm, but 

larger (10–40 μm) diameters are usually used to increase signal strength [59,86]. Other research has 

only used the optical fibers as a means of coupling the light to and from the sensor film, where the 

sensor layer is fabricated on a different substrate [90]. 

While the fiber optic platform presents a convenient method for coupling light to and from the 

sensor, integration with microfluidic devices is likely more difficult and inconvenient than that for the 

thin-film sensor platform. Nonetheless, there may be advantages to the fiber optic sensor platform, and 

integration with microfluidic cell culture should be possible. Similar to the fiber optic platform but 

possibly easier integrated with microfluidic cell culture, the ends of on-chip sol-gel waveguides have 

been coated with an Ru(dpp)3
2+ compound encapsulated in sol-gel; this sensor platform was used to 

sense gaseous oxygen concentrations [133]. Although these waveguides are quite large (100 μm by 

100 μm in cross-section), they lie parallel to the substrate and microfluidic cell culture environments 

could potentially be designed to incorporate them and bonded above them. 

5.3. PEBBLE/Microparticle/Nanoparticle Sensors 

The desire to create a versatile sensor platform with both the advantages of indicator encapsulation 

and the possibility of intracellular measurements led to the development of microparticle, nanoparticle, 

and “Probing Explorers for Bioanalysis with Biologically Localized Embedding” [56] or “Probes 

Encapsulated by Biologically Localized Embedding” [51] (PEBBLE) sensors. PEBBLE sensors are 

generally fabricated with the luminescent dye embedded in an ormosil matrix, and ratiometric, 
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intensity-based measurements using these sensors have been used to map oxygen concentrations inside 

cells [51]. Other, PDMA-based ratiometric PEBBLEs have been used to monitor oxygen 

concentrations in human plasma [56]. Reviews of the applications of nano-sized PEBBLE sensors, 

including those for dissolved oxygen measurements, in biological and intracellular applications have 

been presented [134,135], and another review of various sensor technologies for monitoring various 

indicators of metabolic activity (again including dissolved oxygen PEBBLEs) inside cells has been 

written [14]. 

Other microparticle and nanoparticle oxygen sensors have been fabricated by doping polymer or 

silica beads with luminescent indicator dye [47,52,57] or by grinding indicator-doped ormosil [29]. 

These microparticle and nanoparticle sensors have been used directly [52] or embedded in another 

material such as silicone [47] or hydrogel [29] to form thin-film sensors. Microparticle and 

nanoparticle sensors could be integrated in the cell culture area by adding the particles to silicone or 

hydrogel thin-films within the channels.  

5.4. Water-Soluble/Macromolecular Probes 

The final general sensor platform is the dissolved, or macromolecular probe. This format uses 

water-soluble probes, which may be bound to albumin or other molecules to improve sensor 

characteristics. This probe format is versatile as it may be added to aqueous materials, including those 

for microfluidic cell culture. Water-soluble probes have been primarily used for in vivo biological 

imaging [49,52,83,102,103,105,107,108,136], but they could potentially be applied to other aqueous 

environments. 

Water-soluble probes do suffer from several disadvantages. Because they are not encapsulated in a 

solid matrix, they are much more likely to interfere with their environment (e.g., binding to biological 

sample components or changing luminescence properties with changing sample chemical  

composition [52]) and it is more difficult to control the sensor parameters, such as its sensitivity and 

oxygen selectivity. As such, there has been effort to develop water-soluble probes that are 

encapsulated by or bound to other molecules to help overcome these disadvantages; dendritic 

encapsulation, whereby the luminophore is located inside a cage made up of repeatedly branched, large 

molecules (dendrimers) is one of the most promising of these methods [137]. 

Water-soluble probes could be used to monitor dissolved oxygen concentrations during microfluidic 

cell culture, as they could be added to the cell culture media to map oxygen concentrations in the 

entirety of the microfluidic channel. Using water-soluble probes could allow techniques such as 

tomographic imaging to map 3-D images of oxygen concentrations within the cell culture area. 

However, it is likely that a greater amount of potentially expensive probe molecules would be required 

for the water-soluble probe platform in comparison with the thin-film method, as the probes would 

need to be added to all of the cell culture solution and reuse may be impractical. Nevertheless, as 

mentioned previously, water-soluble RTDP has been applied to dissolved oxygen monitoring in 

microfluidic channels [71,95]. 
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6. Optical Measurement Systems 

The final main component in the design of optical oxygen sensors is the optical measurement 

system. This system consists of, at the minimum, a light source to excite the luminescent dye and a 

detector to detect the luminescence emission, and may also include an imaging system to increase the 

spatial resolution of oxygen measurements. This section gives an overview of some of the types of 

components previously used for oxygen sensing, with a focus on their usability for microfluidic  

cell culture. 

6.1. Excitation Light Sources 

The excitation light source needs to emit light in a spectrum compatible with the excitation 

spectrum of the luminescent indicator. Furthermore, it should not emit in the emission spectrum of the 

indicator. To prevent this, an excitation optical filter is commonly placed between the excitation source 

and the sensor, as was illustrated in Figure 1 and Figure 2. For lifetime detection the excitation source 

needs to be modulated, requiring the use of either a pulse-able source or an optical chopper. 

Because LED sources are inexpensive and may be pulsed or modulated, they are very commonly 

used as excitation sources for optical oxygen sensors [11,12,28,36,38,46,50,54,55,59,60,62,63,78,87, 

91,107,108,130], and excitation spectra which overlap well with LED emission spectra are considered 

an advantage of many indicator compounds such as Pt- and PdOEPK [61]. For excitation spectrum 

versatility and compatibility with other systems such as fluorescent microscopes, filtered  

broader-spectrum sources such as Xenon flash lamps and mercury-arc lamps have also been  

used [46-51,52,56,83,100-103,105,136]. Finally, laser excitation sources offer a very narrow emission 

spectrum, which often does not require any excitation filter [39,77]. 

Previous microfluidic oxygen sensors have used LED excitation [54,55,78], laser excitation [95], 

and filtered broad-spectrum excitation sources [48,53,71,100], and any of these could also be applied 

to microfluidic cell culture. It is, however often ideal to integrate the luminescent oxygen sensor 

measurement system with a fluorescence microscope or other optical system already in use. As such, 

the filtered broader-spectrum sources already used in fluorescence microscopes are ideal to be used as 

excitation sources, but they may be difficult to modulate. Other sources such as LEDs and lasers could 

potentially be integrated with many microscope systems as well.  

6.2. Detectors 

The detector used in the optical measurement system needs to be compatible with the emission 

spectrum of the luminescent dye and the measurement method (i.e., intensity or lifetime), and a 2-D 

array of detectors can be used to image a spatial gradient in oxygen. Simple point detectors such as 

photodiodes [11,12,54,55,61,78,107] and photomultiplier tubes (PMTs) [36,52,59,60,83,87,101,102,105] 

are often used for emission detection in oxygen sensors due to their simplicity and fast response time, 

which is a particular advantage when used for lifetime detection. 

A detector array is necessary for mapping oxygen concentrations in 2-D, which may be of interest 

in microfluidic cell culture applications. The most commonly used detectors for this application are 
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CCDs [28,38,39,46-48,56,62,63,91,100,103,108,130,136], but phototransistor arrays [77] have also 

been successfully used. 

Any of these detectors could be compatible with microfluidic systems for cell culture. Previous 

work with microfluidic oxygen sensors has mainly used photodiodes [54,55,78] and  

CCDs [48,53,71,95,100]. 

6.3. Imaging Systems 

The final component of the optical measurement setup is the imaging system for 2-D images of 

oxygen distributions. The imaging system increases the flexibility of the oxygen sensing system, as it 

allows the spatial resolution of the oxygen images to be tuned as necessary by changing lenses or 

objectives. Some applications do not require imaging optics [77], but other applications (and likely 

microfluidic cell culture experiments) may require macro lenses or even complete microscope setups. 

As such, the ideal and most flexible solution if 2-D maps of oxygen distributions are required is the 

integration with a microscope or zoom lens. This integration is fairly straightforward and has been 

previously demonstrated with intensity-based sensing [39,47,48] and, while more difficult, has also 

been demonstrated with lifetime-based sensing [103,104,136]. 

7. Optical Oxygen Sensors in Microfluidic Cell Culture and Analysis 

Microfluidic systems for cell culture can be fabricated through the technique of soft lithography, 

which involves casting PDMS structures from a photolithographically defined mold. The resulting 

transparent and biocompatible PDMS structure can form closed microfluidic channels and chambers 

when bonded to another substrate. PDMS is highly permeable to oxygen; the oxygen diffusivity  

(D = 4.1  10−5 cm2/s) and solubility (0.18 cm3 (STP)/cm3) permit passive permeation of oxygen 

through such devices for cell culture [71]. An example enclosed PDMS microfluidic system for cell 

culture with possible designs for integrated oxygen sensors is illustrated in Figure 5. 

Optical oxygen sensors have already been applied to microfluidic cell culture with very promising 

results. Sin et al. reported a three-chamber microfluidic cell culture analog device employing an 

optical dissolved oxygen sensor [81]. The device was used to culture three types of mammalian cells in 

interconnected chambers, forming a compact platform simulating animal testing for chemicals and 

pharmaceuticals. The integrated dissolved oxygen sensor enabled real-time readout of the oxygen 

levels in the circulating culture media. The oxygen sensor used a compound of Ru[dpp]3
2+ 

immobilized onto resin particles, encapsulated in thin-film PDMS sensor patches on the substrate. 

Frequency-domain lifetime sensing was used, employing LED excitation and photodiode detection. 

The device as presented in the original journal paper [81] is presented in Figure 6. This work 

highlights some of the advantages that microfluidic platforms can bring to cell culture systems. The 

design permitted the culture of cells in three interconnected chambers which represented the lung, 

liver, and other tissue compartments in a pharmacokinetic model. Flow characteristics, including liquid 

residence times and shear stress on cells, were controlled to be within physiological values. The ability 

to measure oxygen within the design allowed Sin et al. to monitor gas exchange. By providing more 

realistic models for drug adsorption, distribution, and metabolism kinetics in pharmacological testing, 

further development of such systems can contribute to reducing the need for animal testing. 
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Figure 5. Illustration of enclosed PDMS microfluidic system for cell culture with possible 

designs for integrated optical oxygen sensors. 

 

Figure 6. Photograph of the fabricated three-chamber microfluidic cell culture analog 

device with integrated optical oxygen sensor. Reprinted from [81] with permission from 

John Wiley and Sons. 

 
 

Sud et al. integrated optical dissolved oxygen sensors into microfluidic channels containing C2C12 

mouse myoblasts to monitor the oxygen levels as a function of space and of cell density [95]. From the 

same group, Mehta et al. integrated optical dissolved oxygen sensors into a microfluidic bioreactor and 

took measurements upstream and downstream of adherent cells cultured in the microchannel, finding 

that the downstream oxygen concentration was highly dependent on cell density and fluidic flow  

rate [71]. Both of these works used the water-soluble oxygen indicator RTDP dissolved in the fluid 

pumped through the channels. Both intensity-based measurements and RLD-based lifetime imaging 

modalities were used. Although they used a high concentration of 1 mg/mL (approximately 1.3 mM) 

RTDP in order to obtain useful fluorescence signal with low exposure time, the presence of this dye in 

the culture media contributed to less than 10% of the cell death over the course of 5 hours during this 
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work. However, longer incubation periods exceeding 1 day in this concentrated dye did decrease  

cell viability. 

Mehta et al. [138] have also found that by using a combination of PDMS and rigid polymers in the 

construction of a perfusion cell culture system, lower oxygen tension can be achieved than in devices 

constructed entirely of PDMS. Using RTDP dissolved in solution, they verified that they could achieve 

oxygen concentrations as low as 1% using glycol-modified polyethylene terephthalate (PETG) 

channels bonded to flexible PDMS membranes. The flexible PDMS bottom permitted the use of 

deformation-based on-chip valving and pumping, while the relatively oxygen-impermeable, rigid 

PETG material permitted them to reach the low oxygen conditions which are needed for studies of 

embryonic and stem cell differentiation, ischemia, and cancer. 

Lin et al. integrated several dissolved oxygen and glucose sensors along the length of a cell culture 

microchannel so as to quantify concentration gradients in the cells’ environment along the 

channel [53]. The sensors were fabricated using a ruthenium dye embedded in PDMS, which was used 

to fill microtrenches in the PDMS microchannel walls, and intensity-based measurements were used. 

The work found that both the oxygen and glucose concentrations in the channel were dependent on the 

fluidic flow rate; this was expected because the cultured cells’ oxygen and glucose consumption 

remained relatively constant while the supply of oxygen and glucose was altered by the change in  

flow rate. 

Lam, Kim, and Thorsen have created a microfluidic oxygenator with an array of channels of 

differing oxygen concentrations for cell culture, employing an optical dissolved oxygen sensor 

integrated at the end of each microchannel. The oxygen gradient generator, which was comprised of 

one inlet for O2 and one for N2 gas followed by a network of mixing channels leading to a number of 

parallel outlet channels, yielded different dissolved oxygen concentrations in each outlet microchannel. 

Integrated PtOEPK-polystyrene film sensors permitted in situ measurement of these concentrations 

during cell culture. The device schematic diagram, fabricated device, and microscope image of the 

gradient generator are presented in Figure 7 [54]. Intensity-based imaging employing LED excitation 

and photodiode detection was used. This system has been used to culture mammalian cells as well as 

aerobic and anaerobic bacteria to investigate the effect of dissolved oxygen concentrations on the 

growth patterns of cells of differing oxygen requirements [54,55].  

Oppegard et al. [139] used slides pre-coated with an oxygen-sensitive ruthenium complex (FOXY 

SGS; Ocean Optics) to study breast tumor cell migration. Fluorescence intensity measurements 

employing a fluorescence microscope and CCD detection were used to quantify the oxygen levels in 

the device in order to determine the effects of oxygen levels on tumor cell migration through a porous 

membrane. A parylene C coating on the highly oxygen-permeable PDMS was used to control the 

oxygen diffusion through the device, enabling the study of hypoxic oxygen levels. The study of tumor 

cell migration is of significant interest because it is related to cancer metastasis and studying its 

dependence on oxygen levels may help in the understanding of metastasis and the development of 

cancer treatments. 

Finally, single cell oxygen consumption rates have been measured using optical oxygen sensors 

situated near single-cell traps. Cells trapped in microwell arrays [140] and in SU-8 negative epoxy 

photoresist micro-cups [141] were studied using patterned sensor rings formed from  

PDMS-encapsulated oxygen-sensitive microspheres and photopatternable SU-8-encapsulated platinum 
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porphyrin indicator, respectively. Combining single-cell isolation and analysis with oxygen sensing as 

was accomplished in these works could potentially provide a useful tool for researchers studying cell 

metabolism and other phenomena at a single-cell level. 

Each of these devices demonstrates a different method of integrating optical oxygen sensors with 

microfluidic cell culture or cell analysis, employing point measurements as well as measurements of  

2-D gradients, lifetime and intensity-based measurements, dissolved as well as thin-film sensors, and a 

range of sensor compounds. The integration of optical oxygen sensors into each of these microfluidic 

cell culture devices facilitated real-time and in situ oxygen concentration measurements within 

compact, controllable, and functional microfluidic cell culture setups, which would not otherwise have 

been possible. 

Microfluidic platforms which incorporate hydrogels for three-dimensional cell culture can mimic 

the tumor microenvironment. In future work, the combination of optical oxygen sensors for real-time 

imaging and the ability to pattern tumor cells within a microscale model of microvasculature can help 

identify the factors which contribute to angiogenesis [142,143]. 

Figure 7. (a) Schematic diagram of the microfluidic oxygenator with integrated oxygen 

sensors. (b) Photograph of the fabricated oxygenator device. (c) Microscope image of the 

microfluidic multiplexor and oxygen concentration gradient generator. Reprinted from [55] 

with permission from the American Chemical Society. 
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8. Conclusions 

Microscale techniques for cell biological assays are increasingly becoming validated and applied in 

biological laboratories. Microfluidic devices can give unique functionalities for cell-based assays 

including single-cell analysis, patterned three-dimensional cell cultures, and precise control over the 

culture microenvironment. Microfluidic systems promise to provide a simple, scalable tool to apply 

standardized protocols used in cellular response assays. Device features ranging from tens to hundreds 

of microns will allow tracking and manipulation of tens to hundreds of cells, providing the ability to 

analyze small cell populations which is not possible using current standard techniques. Integration of 

sensing capability will increase their ease of use and the types of readouts that can be obtained. There 

is a very wide range of optical oxygen sensors that are compatible with microfluidic cell culture, and 

certain sensor types have already been successfully applied to this field. Thus, the integration of  

on-chip oxygen sensors with microfluidic cell culture and analysis platforms will provide a powerful 

tool which promises to have a large impact in drug discovery, quantitative biomedical sciences, and the 

development of novel therapeutics. The choices of sensing mechanism, luminescent indicator, 

encapsulation matrix, sensor format, and optical imaging system are highly interdependent and also 

highly dependent on the oxygen levels, measurement requirements, and existing imaging system of the 

chosen application. Future work may see new types of optical oxygen sensors seamlessly integrated 

with existing microfluidic cell culture equipment, allowing for simultaneous measurement of 2-D or 

even 3-D oxygen distributions along with other properties of interest. These measurements may 

facilitate the discovery of new correlations between these properties and oxygen levels.  
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