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Abstract: Mobile mapping system$iave beenwidely applied for acquiring spatial
information in applications such aspatial information systesnand 3D city model
Nowadayshe most common technologies usedgdositioning andrientationof a mobile
mapping systemnclude a Global Positioning SysteniGPS) as the major positioimg
sensorand an Inertial Navigation System(INS) as the major orientation sensdn the
classical approach, the limitatioof the Kalman Filter (KF)methodand theoverall price
of multi-sensor system have limited the popularization of most land-based mobile
mapping applications Although intelligent sensor positioning andorientation schems
consisting of Multi-layer Feeeforward Neural Networks MFNNs), one of the most
famousArtificial Neural Networks ANNS), and KHsmoothes, have been proposed
order toenhance the perforence of low cosMicro Electro Mechanical SystegMEMS)
INS/GPSintegratedsystens, the automation othe MFNN appliedhasnot provenaseasy
as initialy expeced Therefore, his studynot onlyaddressethe problers of insufficient
automationin the conventionalmethodologythathas been applied iMFNN-KF/smoother
algorithis for INS/GPS integratd systens proposed in previous studjdsut alsoexploits
and analyzes the idea of developing alternatimtelligent sensor positioning and
orientationschenes that integratevarious sensorsn more automaic ways. The proposed
schems areimplemented usingne of the most famous constructive nemetivorks i the
Cascade Correlation NeuraNetwork (CCNN9gi to overcome the limitations of
conventional techniques based liR/smootherlgorithmsas well as previously developed
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MFNN-smootherschemesThe CCNNs appliechlsohavethe advantage o moreflexible
topology compared to MFN&N Based on the experimental data utilizbe preliminary
results presented in this article illustrate the effectivenessh@fproposed schemes
compared t@mootheralgorithms as well athe MFNN-smoothelschemes.

Keywords: GPSINS; sensor integration mobile mapping systemsconstructive
neuralnetworks

1. Introduct ion

The developmenbf land basedmobile mappingsystems wasnitiated by two research groups in
North America, The Center for Mapping at Ohio State University, U&# the Department of
Geomatics Engineering dhe Universityof Calgary, Canad4l,2]. Starting inthe early 2000s, a
number ofland basedmobile mapping systems have baéilized in commercial applications {9].
The process ainobile mappings basicallyexecutedoy producing rore than one image that incliede
the same object from different positiormsd therthe 3D positions of the same object with respect to
the camera frame can be measuydgd

Sincethe early nineties, advances in satellite and inertial technology made it possible to think about
mobile majping in anew way. Instead of using ground contmintsas referencefor orienting the
images in spacethe trajectory and orientation of the imager platforcan now be determined
directly [3]. Camerasalong withpositioningandorientationsensorsareintegrated and mounted on a
land vehicle formapping purposes. Objeatd interestcan be directly measured and mapped from
images that have been georeferenasihg positioningand orientationsensorg10]. An example of
land basedmobile mappingsystemis illustratedin Figurel.

Figure 1. An example ofilandbasedmnobile mapping system




Sensor01Q 10 9254

Figure la gives an overall view of the sensmboardthe land based mobile mapping system from
different perspectivesand Figure 1b depicts an overall view of the mobile mapping van. In addition,
Figure 1c illustrates an example of direct geterencing thecornerof interestshown in green det
from two geereferenced images. This procedure ascomplishedthrough the useof precise
positioning and orientation techniques.

An INS is a seHcontained navigation technique in which measurements provided by
accelerometers and gyroscopes are used to track the position and orientation of an object relative to
known starting poif) orientation and velocity [11]. In addition, GPS isumniversa) all-weather,
world-wide positioning system that provides time, position aalbcity data. Bothsystemscan be
used as standlone navigationtools or in conjunction with other sensors fearious purposes.
Moreover, the integration of GPS and INS can overcome problems with environments like urban
canyons, forests and indoor settings where GPS alaneotprovide servicefor more information
see [1215]. In order to attain reasonable acadesof position andrientationsolutions,atactical grade
or higherquality INS along with GPS haseen applied as th@imary sition andorientationsystem for
current commerciasystemg1]. However, the cost gfuchsystens is still at such a high levehatthe
popularity of mobilemapping systems remains limitedespeciallydue tothe price of thelnertial
Measurement UnitliMU). However,advances in MEMS technology have enabled the development of
completelMUs composed of mtible MEMS-based accelerometers and gyroscof647]. In addition
to their compact and portable size, the price of MEbASed systems is far less than those of high
guality IMUs.

In the classical approachthe KF is appliedin reattime applicatios to fuse different data from
various sensorghile optimal smoothing igppliedin the postmission modeThe basic idea of using
theKF in INS/GPSintegration is to fuse independent and redundant sources of navigation information
with a reference navigatn solution to obtain an optimal estimate of navigation staesh as
position, velocity andrientation However the limitations of the KF have been reported by several
researcherfl2-15]. The major inadequacy related to the utilizationha&fKF for INS/GPS integration
is theneed fora predefined accurate stochastic model for each of the sensor &djofsufthermore,
prior information about the covariance values of both INS and GPS data as well as the statistical
properties i(e., the variace and the correlation time) of each sensor system has to be accurately
known [13-15]. Furthermore, for INS/GPS integration applicationswhere the process and
measurement modelseanonlinear the ExtendedKF (EKF) also work for nonlinear dynamic systems
with a nonGaussian distribution, except for heavily skewed nonlinear dynsystems, where EKF
may experienceroblemg[18]. As indicated in18], the EKF simply applies the first order term of the
Taylor seres expansion for the approximation afnonlinearsystem andhe probability density
function is approximated by &aussiandistribution [L4,19]. Only small errors are alloweduring
estimationand the presence of nonlinearor behaviormight violate theassumption thugenerate
biased solution§19]. As indicatedin [20], second order filters are able to compensate the bias term
mentioned abovbut the computation burden of hessian (second alel@vatives)s high.

These limitations, in turn, may result in saptimal performance or even filter divergence if the
assumption of local linearity igolated[18-20]. Each of these limiting factors contributes to aaier
amount of positional error accumulatidaring GPSoutagesas shown in Figur&. In fact, the error
behavior of orientation parameters during GPS outages is simildetoositional error shown in
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Figure2 [11-13]. The scale of the maximum positional drift shown in Figure 2 is given based on the
average value of the MEMS IMU applied in this studynfortunately,in modern urban canysrGPS

signal blockage occurfrequently The magnitudeof the positionabnd orientatiorerrors dependon

the quality of the inertial sensorghe length of GPSutage the dynamics of vehicland the
effectiveness of the algorithms applied. In other words, proper modification of inertial sensor
sensor fusion algorithencan reduce the magnitude of accumulated positianalorientatiorerror
during frequent GB outages. Therefore, the goal of developing an alternative INS/GPS integration
schene is to reduce the impacif remaininglimiting factors of KF and improve the positioning
accuracy during GPS outageghich is critical foland-based mobile mapping ajpgdtions.

Figure 2. The impact oKF& limiting factorson positional error during GPS signal blockage
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In addition to tlese limitations, the problem of poobserv#éion of inertial error states becomes the
most critical issugespeciallywhen integratinga low costMEMS IMU with GPS[20,21]. Poor
observéion prevents theseparatiorof the linear errors induced by accelerometers fammularerrors
induced bythe gyroscopesand alignment errors due to the lack of motdymamic [20]. This isa
typical problem for lowcost IMUs as the motion dynarsiaregenerally insufficient to separate linear
and angular error terms during the correlation time ofdostsensorg20].

Optimal snoothingalgorithns, also known as smootisthave been applied for the purpose of
accurate positioning and orientatigrarameterdetermination through pogtrocessing for most of
surveyingand mobile mappingpplicationswith integratedsensors 13,14]. In contrast to the KF, the
smoothing is implementedfter all KF estimates have been solved by the use of past, present and
future data As shown in Figure, the magnituds of positionaland orientatiorerrors during GPS
outage can bemproved significantly after applyingone of these optimal smoothing ajorithims.
However, the magnitude ogsidualerror shown with blue line also depenals the quality of the
inertial sensorsthe dynamics of vehicland the length of GPS signailitage 13,22]. Therefore the
reduction of remainingositionaland orientatiorerrois becomes criticalvhenintegratinga low cost
MEMS IMU with GPSfor land basednobile mapping applications.
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2. Problem Statements

As mentioned inthe previoussection the accuraces of the KF solutions sometirseannotfulfill
the requirements ahobile mappingpplicationsAn integrated system has to predict state parameters
such as position, velocity aratientationusing KF whenGPS signal blockags appear{13]. But in
such situationsthe navigationsolutionserrors increase rapidly untithe GPS signals recovered to
providea measuremenipdate as shown in Figur2. This problem beconsanorecritical when alow
cost MEMS IMU is used However, due to their noisy measurements and poor stability, the
performance of current MEMS IMUs does not meet the accuracy requienfemiobile mapping
applications 22].

In order to achievéigh accuracy for positiong andorientationdeterminationin mobile mapping
applicationsthe datas processeth postmission mode with an optimal smoothing algoritivtost of
the commercial mobile mapping systems use an optimal smoothing algorithm to provide accurate
information onposition and orientation fo direct geereferencing 10,22]. However, commercial
INS/GPS integratedystemausetacticalgrade IMUs or above to provide accurate solutions for general
mobile mappingapplications. Therefore, upgrading the hardware (e.g., IMU) can be considered as an
effective solution to improve the accuiias of position and orientation parametevien a low cost
MEMS IMU is used.Still, this improvement is rather limitedas theavalability of high grade
(navigation)IMU is regulated by the government regulations of certain countries whase whits
are produced.

Another effetive way to improve the accurias of low cost MEMS INS/GPS integrated solution
is through the improvement afensor fusionalgorithnms. Compaed to the hardware perspective
mentioned above, the softwgserspectivecan be considered ascost effective solution tdevelopa
low costsensor fusiosolutionfor certainmobile mappingpplicationsFigure3 illustratesthe loosely
coupled INS/GPS integration scheme commonly applied by most abthenercial mobile mapping
systemg12,13].

The proces of the KFis divided into two groupsthose forprediction and updatg [12,13]. The
time prediction equations are responsible for the forward time transition of the current efdgch (k
states to the next epoch (k) stafEse measurement update equations utilize new measurements into
the prior state estimian to obtaina stateestimaion a posteriori The updatd KF engine is triggered
at every GPS measurement using the difference between GPS and INS solutions as input. Hence, th
KF generates an updated estimate for reducing the INS errors using measurement update equation
Whenever GPS measurements are not available, the KF wattkstime prediction mode to estimate
the error state vectorhe optimal smoothing is performed after the filtering stage thus it reliesn
the previouslyfiltered solutiors. Consequentlyan accurate filteringoroceduras required for accurate
smoothingprocesq13,14]. A fixed-interval smootherthe RauchTungStriebel backward smoother is
implemented in this studyn fixed-interval smoothing, the initial and final time epochs of the whole
period of measurements.¢., 0 and N) are fixedCompared to other fixeshterval smoothers, the
RauchTungStriebel backward smoother has the advantddpeingthe simplesto implement [L3,14].
It consists of a forward sweep and a backward sweep.ortvard sweep is the common KF with all
predicted and updated estimates and corresponding covarsened at each epoch of the whole
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mission. The backward sweep begins at the end of the forward fileey 4t epoch N) see [1314]
for details

Figure 3. A loosely coupled INS/BSintegration architecture (closed loop)
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The smoothed estimaet any epoch kare computed as a linear combination of the filtered
estimate at that epoch and the smoothed estimate at the heading epacikus,thesesmoothed
estimats can be considered as updating the forward filtered soltdiobtain improved estimates. The
computation of the smoothed estingatd each epoch requires the storage of the KF predicted and
updated (filtered) estimates and their coroggpng covarianceat eachepoch[13,14]. This is the case
in INS/GPS integrated solutions when uninterrup@eS data streams are availabBuring GPS
outages, only predicted estimates and covarmrare available,a postmission smoothercan
significartly remove the residual errors KF [10,22]; however, some residual errors still remain
shown in Figure2. Therefore the errorbehavia shown in Figure2 has motivatal various studies
concerningthe development of alternative muliensorfusion algorithms to reducéhe magnitude of
accumulated positional and orientation esiuring frequent GPS outageslandapplications

3. Recent Development oAlternative Multi -Sensor Integration Algorithms

Threeapproachegoncerning thelevelopment of alternative muliensor integration algorithms to
improve the ability of analysis and prediction of complicated kinematic and nonlinear models to reduce
the magnitude of accumulated positional and orientatiwors during frequent GP&utages in land
applications have been identifie2l?]. The first approach is known as sampling filter approach, such as
particle filters L823-25 and unscented Kalmaiilter [22] while the second approach is known as
artificial intelligence approachsiwch asthe use ofANNSs [26-28] or adaptive neural fuzzy information
systems 29. In addition, the third approach is known as thgbrid approach that combines
conventionaEKF or smoother basepproachewith artificial intelligenceapproach 30,31].

The advantageof the sampling based approach is th#te computation of derivatives isot
applied[22]. Particle filters, also known as Sequential Monte Carlo filters, have been developed for



Sensor01Q 10 925¢

nonlinear/norGaussian processes based on Bayesian filtering wH&&33]. Gordon et al [18]
indicated thatparticle filtershave a number ohdvantageshat make them attractivier navigation
applicationstheyare nomparametricthey cancope withnonlinearitiesand norGaussian noises, and
arerelatively easy to implement. Furthermotiee particlefilter implementation does not require any
assumption abouthe form of the posterior distributiorj24]. Particle filtersgive anapproximate
solution to an exact model, rather than apéimal solution to an approximate model which is Haesic
for KF [34].

Bergman 3] applied a particle filter for INS/GPS integrated terrain navigation application and
provided superior estimation accuracy than other methods applied because it does not make an
assumption on the probability densitynction. Van Der Merwe et al [35 proposedextended/
unscentedarticle filters to incorporate the latesbservation inta basic particle filterThe extended
particle filter increases the processing times5Zold, as compared to the EKR6]. Moreover the
performance oéxtendedparticlefilter is highly dependa on the placement of the GPS outagéke
extendedparticle filter performed 519% better during GPS outages in high dynamics areas, when
compared wh low dynamics GPS outagE35].

Aggarwal[24] proposed dybrid extendedparticle filter as an egnation technique for integrag
GPS and lowcostinertial sensors The performances are compared to those ottimmonly used
EKF using INS/GPSandvehicle data set collected for low cost MEMS IBIOhe results show that
both hybrid extendedparticle filter and EKF providecomparable navigation results during periods
without GPS otiages. However in cases when §8condGPS outagesre simulatedthe hybrid
extendedparticlefilter performed much better than tB&F, especially when simulated outages lie in
high vehicle dynamic areasee[24] for adetailed numericatomparison.

According to KuboandWang 5], the Gaussiansum filter is also considereds a candidate for
INS/GPS integratiompplications The Gaussiarsum filter is a nonlinear filtewhere its predictivex
priori density is assumed to be thiem of several normal distributions. However the firster Taylor
series approximation is applied for updating each distribution similarly to the EKeétefore, it
suffers the impact afigh nonlinearitysimilarly to theclassicEKF. Kubu andWang R5] proposeda
strategyto combinethe Gaussiansum filter and particlefilter. It wasdevelopedbased on the similar
concept of theGaussiarsum filter, but updates its Gaussianm expressions by using the particles
instead of thdinear approximations. The performaneas comparedwith other filters innumerical
simulations. From theimulation results, it is found that tl@&aussiarsum particle flter hasthe ability
to improve the navigation performance when the initial estimateprovided with large uncertainty
see [25] fordetailed numericadomparisorof Gaussiarsum particle flter and other filters

To overcome the limitations of EKF instabilitieand Jacobian evaluatignsulier and
Uhlmann B7] proposed the unscentaédF which deterministically generatesa fixed number of
minimal points,known assigma points, from the Gaussidistribution, which estimate the true mean
and covariancef Gaussian distribution. These sigma points are tha@inidually propagated through
the nonlinear system, tcapture posterior mean and covariaaceurately.Generally speakingt is
based on the hypothesis that it is easier to approxim@geuasian distribution than to approximate an
arbitrarynonlinear functiof37]. Van der Merweet al.[35] applied theunscentedKF to improve the
performance of the particle filter for aiNS/GPS integrated system fonmanned aerial vehicle
applications As indicatedin [22], the distinction beteen the unscented K&nd particle filters is that



Sensor01Q 10 925¢

the former takes samplateterministicallywhile the later select samples randontBhin [23 also
compared numerical performances between EKF/smoother and unsd€ergetbothemwith the use of
various INS/GPS integrated systems in lapglications

Generally speakinghe resuls show in [22-25] illustrate that the samplingfilter approach and
EKF based approachrovide comparable navigation results during periods withGIS outages.
However in cases when GPS outages simulatedsamplingfilter approacks performmuch better
than theEKF, especially when simulatg8PSoutages lie in higlvehicle dynamiareag22,24]. The
error behaviorsummarizedrom varioussamplingfilters presented if22-25] is shown in Figured.
The positionalerrors ofsamplingfilters, shown in red solid line, and the smootherplementedvith
thesesamplingfilters, shown in green solid linegsemblehose of EKF and smoother, shown in dark
and light gray lines, but with a reduced scale. It means that shesgglingfilters and their smoothers
can reduce the positional and orientation error during @R&esomparedd conventional EKF and
smoother, se R2-25] for details about their numerical ratios of improvem&fiin [22] indicatedthat
the unscentedalmansmoothetlis able to provide 20%~30% improvement in terms of positional and
orientationaccuracieduring GPS outages compared to the smoother implemented with HKE.
scale of the maximum positional drift shown in Figure 4 is given based on the average vakie of th
MEMS IMU applied in this study [225].

Figure 4. Theerror behaviors of sampling filters and smoothers during GPS outages
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The artificial intelligence approach distinguishes itself from other types of estimation approaches by
using inexplicitmodels knownas black box, to approximate the nonlinear relationdbgbweernsystem
dynamics andneasurement2p]. Chianget al. [26] proposeda multtsensor integration approach for
fusing data froman INS and DifferentialGPS DGPS) utilizing MFNNs for land applications In
addition, it addressl the impact of NN parameters and random noise on positioning accuracy of the
integrated system especially duri@PS outagesThe experimental results demonsrtite advantages
of new approach in terms of performareel computational efficiency. The field tesksarly show that
once the architectungroposed in [26]s trained for about 1,800esondsand becomes stable, position
errors of less than 3 eterscan be achieveeven beyond &PS signal blockage of 20@=ndg(i.e.,
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IMU standalonemode). These results are well beyond the performahaeacteristics expected from
the IMU used in thé&lovAtel BDS GPS/IMU system

Chianget al. [38] introduced a windovbased weight updatingiethod and its use in ANNs for
integrating GPS and IN$ vehicular navigation applications. It was develop#itizing the stored
weights and GPS signal window conceéptovercome the limitations of traditional weight updating
methods.Combing the latest GPS window signals, the stavedjhts can be adaptively updated to
follow the latest motiomlynamics and INS error characteristics. Hence it imgpvediction accuracy
during GPS outages. In addition to thignificant improvement in positioning accuracy, the results
demonstratéhatthe training time was far less than a GM8dow length with the utilization of stored
weights Generally speakinghe INSGPS ANNbasedntegration architecturgzroposed in [38have

provided positioning accuraciéar better than those obtaingdough the use of conventiortghlman
filtering integration.

Wanget al. [27] presenéd an ANNs-aidedadaptive Kalman filtebased orcovariance matchm
techniquefor integratedINS/GPS systens. Instead of using a limited window for estimatias
conventionaladaptiveKF, all the previous samples areunted in according to their character using
ANNs. The covariance matching is conductbén its relation with the corresponding character is
mapped with theANNs. The adjustment of thadaptiveKF is basecn both theANN training result
and the updated covariano®tching result. The test results show thatAINNs aidedadaptiveKF
method can improve the navigation solutions. AiNNs appliedafter training can make reasonable
predictions and isseful to improve thadaptiveKF predictions.

Sharaf andNoureldin [28] introduced a new method for re@he INS and GPS integratioim
vehicular navigation utilizing radial basis function neural networks. This architectrased on
predicting thelNS position error and continuously removiitgrom its corresponding INS position.

This technique was employ@dreal time using special wilowing technique. Results shdlke ability
of ther module to reduce the INS position er@md prevent its growt even in the long term. In
addition,it is able to accurately predict the INS position erausng GPS outages

El-Sheimyet al. [29] developed anew design model for navigation applications using adaptive
neurcfuzzy inference systems to bridge pesof GPS signal blockage. iShmodel useseurcfuzzy
networks and the input/output patterns to train the fuzzy network during the availability of GPS
solutions (which are used as a reference trajectory). During GPS signal blockage, the trained fuzzy
modéd is implemented to predict the error drift of the standalone MENIS estimated positioriThe
performance ofsuggested model was compared to that of the traditional KF particularly during a
number of simulated GPS outages. The test results indicatdéhptdposed newfnzzy model can
efficiently predict the INS errors during GPS outages.

Although artificial intelligence approaches are easier to design and implement, there are also
limitations to these types @pproachesZ?]. Most of the approaches nmtioned do not apply any
statisticalinformationduringtraining processand they do not provide the statistics associated with the
solutionsproduced by them. In other wordbeylack the ability to provide proper accuratyasures
concerning the navigation solutions provided by thesécial intelligent modelsAn ANN with the
optimal topology is expected to provide the best approximation accuracy to the unknown model using
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the most appropriate number of hidden neurons and hidgters The empiricaltrainingfor guessing
themost appropriatéopology is timeconsuming

In addition, if the dynamicsexperiencedby the vehicle exceeds the rasgof training data
significantly, the performance of these approaches tendieteriorateaccordingly. Thereforea
frequent re-training procedure is required to guarantee the performance of these approaches.
Chianget al.[38] proposed the idea of navigation database and proper training stratéugy ti@ining
procedure.Similar procedure was implemented [&8] for real time processing, including online
weight updating.However, theaccumulationand evolution of navigation knowledge require large
amount oftraining dataand they are timeonsuming 38]. In addition,thesemodels requireelatively
large storage space compared to other estimation approaches.

The navigation parameters provided by these artificial intelligent models are limited to positional
parameters only because they rely on GPS solutions to prvaideng target and the use of a GPS
receiver is unable to provide any relialdentation parametersTherefore all of these artificial
intelligent models arémplementedo provide 2D or 3D positional parameters and bridge the yap
during GPS outage®r land vehiculamavigationapplications 26-29,38]. However, it is not enough
for mobile mapping applications becausethey require positional and orientation parameters
simultaneouly. Figure 5 illustrate the error behaviors of artificial intelligent models during GPS
outagessummarizedrom [26-29,38]. For short period of GPS outage, such as less than 10 seconds
with the use of a MEMS IMU, the EKF is abledatperform artificialintelligent malels.However as
the period of GPS outage extends to more than 30 seconds, artificial intelligent outdetéormthe
EKF significantly [26-29]. On the other handinexpectedehicle dynamics result in the rapid growth
of positionaland orientatiorerras, as shown in Figur®. The scale of the maximum positional drift
shown in Figure 5 is given based on the average value of the MEMS IMU applied in thi2&a28y. [

Figure 5. Theerror belavior of artificial intelligent models during GPS outages
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The hybrid approach is implemented by combiognventionaEKF or smoother baseapproaches
with artificial intelligent models. These artificial intelligent models are applied to model the error
behaviorsof conventionalEKF or smoother and compensate the errors of thepositional and
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orientation parameters estimated by KF and Smoother during GPS out&geslall et al. [30]
proposed dybrid architecture that consists of ANNs dfldF to predict the error functions in a more
optimal manner than one of thalividual approachks It is able to learn from its past errors and adapt
to its application usingadial basisfunctions networks, but retahe shorterm estimation accuracy
with aid ofan EKF. Such an integrated approagasthe capability of estimating all navigation states,
using the advantages of ANN techniques for practical solutldowever, the accuracy requirements
of general mobile mapping applicatiocand be achievedeasily even by the use BNN-KF scheme
Therefore Chianget al. [31] propo®d an intelligentposition and orientation determination scheme
that embed81FNN with conventionasmootheto improve theoverall accuracy of MEMS INS/GPS
integrated systemn postmission mode For the low cost MEMS system witthe proposed
ANN-smoothercompensationthe positionaland orientatiorparametergstimatedoy smoother can be
improved to the level of using mediumtactical gradeinertial system.Figure 6 illustrates the error
behaviors ofhybrid models during GPS outagesmmarizedrom [3031]. The use of MFNN -KF
schems is able toimprovethe positioning anarientationaccuraciego the level of theconventional
smoother andhe use ofMFNN-smoother scheme is able itaprove the positioning andrientation
accuraciedy 50% in average compared to tt@nventionalsmoother based on the experimdata
provided in[30,31]. The scale of the maximum positional drift shown in Figure 6 is giveadan the
average value of the MEMS IMU applied in this study.

Generally speaking, a MFNN with an optimal topology expected to provide the best
approximation accuracy to the unknown model using the most appropriate number of hidden neurons
and hiddendyers[39,40]. There are many ways to decide the most appropriate number of hidden
neurong39,40]. The common principle indicates that the most appropriate number of hidden neurons
is application dependerand can only be decided empirically during early stages of the topology
design. It is very common to train many different candidate networks that have different numbers of
hidden neurons and then to select the best, in terntsegferformance based cen independent
validation setin the design phase oANN methodology 40]. Oncethe optimal topology is decided,
the only freeparametersgo be adjusted durinthe re-training phasewith the latestacquiredtraining
dat are the weight valuedut the topology remainéixed [41]. However, alternativeschems are
expected to reflect the impact of new information to catch the latest dyamdic sensor error
variationbased on the characterigtiof the INS/GPS integratiompplications In anANN terminology,
this canbe implementedby usinga continuous learningrocesgo adjust the weightwith appropriate
variation of topologyto accumulateknowledge if applicable[41,42]. Therefore,empirical guessing
and fixed topology can besonsideredas the primary limiting factorsf applying MFNNs fodNS/GPS
integrationapplications

To avoid these limitations, several methbdse beemroposedn the last two decadds construct a
neural network successively and automatically during the learning process. These methods are oftel
recognized as constructive networks. The common principle is tdfrstarta small network anthen
add hidden neurons and hidden layers as wkeédeng the learning procedure using special algorithms.

In other words, the networks are able to decide the appropriate topology based on the task given withou
human intervention. An overview of current constructive algorithms can be fojht] irAmong these
algorithms, the CNN algorithmpropo®d by Fahlman and Lebier4Z has attractethemost attention.
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Consequentlythe objectives of this articleere to: (1) developa CCNN-smoother scheme for
precisesensormositioring andorientation (2) verify the performance dhe proposedschemeusing a
low cost MEMS INS/GPS integrated systerand (3) compare the performance with previously
developed MFNNsmootherschemein terms ofthe topology appliedand estimated accuracy during
GPS outages

Figure 6. Theerror behaviors of hybrid model during GPS outages
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4. Artificial Neural Networks

ANN methodologieshave been motivated by the recognition that thenan brainworks in an
entirely different way froma conventional digitatomputer{39]. The simplest form oAn ANN can be
depicted likethe human nervous system. The receptors are used to convert input signals into
appropriate vector thatanbe processed by central networkwhile the effectors are used to transfer
the output vector into eslableresponsg40]. In general, the basic model afneuron contains three
major components: (a) weight link®) an adder for summing the input signidat are weighted by
therespective synapses of the neuron, and (c) an activation fugaifprfor limiting the amplitude of
the neuron output and the final outp@8,40Q). Figure7 illustrates an example of a MFNN composed
of onehidden layer and output layer, respectively. The input vectexpsesse@sx, and the weight
links connectinginput and hidderdayersare given as a weighnatrix, W" . Similarly, the weight
links connectinghidden and outpuayersare given as a weightatrix, W.” .Theactivation functios

applied by hiddemnd ouput neuronsarelabeledast®™ and (i, respectively.
Therefore, the outputs of hidden and output lay2rsind y are given below:

5 () — WD)
hiddery 2 _ (hv:é( é,f) (1)
. =
&8g@ = V\éo) z
tput; 2
oupu:,y:/,(s(o)) @)

where s™ and s representhe outputs of the adders in hidden and output neurons, respectively.
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Figure 7. An example of a MFNN
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Figure8 illustrates the nonlinear mapping relationship between input and output vectors represented
by the MFNN shown in Figuré. To determine theptimalweight valuesW.",W?) one must have a
set of examples of how the outpwsshould relatdo inputvector, X,. The proces®sf obtaining thee
weights from theselesiredexamples is called supervised learnarglit is basically a conventional
estimationor approximationprocess[40]. That is, thee weight valuesare estimated from existing
examples in such a way that the network, according to some nagipigximateshe true relationship
as accurate as possitpg9,40Q].

Figure 8. The nonlinear mapping capability of a MFNN

Figure 9 illustrates the concept @ipervised trainingtrategy whereby the network develops based
on inputs and observed outputs 6 s | i ke a teacher who has knowl
knowledge being represented by a set of wquuput examples. Then the teacher and theaheu
network are both exposed to a training vector drawn from the environments, the teacher is able to
provide the neural network with a desired response. The difference between desired response an
neur al net wor kés out put tacktd thegneunaknetwdrke The metwork s
parameters (weight and bias) are adjusted under the combined influence of the training vector and the
error signal iteratively stepy-stepto minimize the differencebetweendesired response and neural
net wo rpkit@8]. o u

A simplest way to understand how to adjust weight is to use standard backpropagation learning
algorithm whose error function E is giveelow [40]:

Ly g L4 2
E=J Y Fad ¥ ©
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Thentheweight update formatiois given as §0]:
pw = pHEM (4)
W
where/ is learning rat@arameter

Figure 9. Supervised learning for function approximation.
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The primary goal of developing ANBided schemes is to improve the positioning and orientation
accuracies during frequent GPS outages, which are crucial for land mobile mapping applications. As
shown in Figure?, the general error behaveoof the EKF grows systematically with time and that of
smoother grows systematically first then decreases r&aehing the peak, which usually takes place
in the middle of GPS outage. These behaviors are coupled with vehicle dynamics, inertial sensor errors
the length of GPS outage and the quality of the system and measurement model applied. However
these errobehaviors are too complicated to describe through proper mathematical a&jekhe
general idea of ANNSs is to build up the nonlinear mapping relationship between inputs and outputs and
learns for examples and generalizes for applications.

Therefore the inputs applied in this study incligositional and orientation states estimated by the
EKF and smoother along with time information while the outputs include the errors of those estimated
states during GPS outages. In other words, the proposed dgpaalizes the nonlinear mapping
relationships between system dynamics, the length of GPS outage and the error behaviors of the EKI
and smoother durinGPSoutages. Througbsingproper training strategy with sufficient training data,
the proposed schemis able to generalize the nonlinear mapping relationships between system
dynamics, the length of GPS outage and the error behaviors of the EKF and smoother during outages.

In this studyone ofthe constructive ANN, the CCNNjs implemented to learn ambmpensate for
the residual errors of the KF and smoother, reypaly, to improve the accuress of the positioral
and orientationparameters The proposed scheme is capable of learning how the state vector
(i.e., position ororientationerrors) behaweunder the influences afynamics of the platforpithe error
characteristics of the inertial sensors being ws®tithe length of GPS outage applidd mentioned
previously the residial error compensation scheievelopednvolves a seof complicated no-linear
function approximations to adapt to thefluence of thevariations of vehicle dynamicand sensor
errorson KF andsmootherduring GPSutageg26,28].
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Two key ideasn implementingthe CCNN algorithm includ@a cascade architecture and unique
learning algorithm forautomaticallytraining and installing new hidden neurf2]. The optimal
values of weight are computed during the training process.

The CCNN architecture starts with a minimal topology, consistihgnly the input and output
neurons. The optimal values of the direct inputput weight links are computed during the training
procedure andthe training continugwith a minimal topology for the entire training data set until no
further improvement eabe achievedas shown in FigurelO. During this process, there is no need to
back propagate the output error through hidden neufamg.conventional training algorithm faa
single layer feed forward neural netwdekg, the standard gradient descelgioaithm) can be applied.

Figure 10. The initialization of a CCNN
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To recruita new hidden neurorg pool of candidate neurons that have different sets of randomly
initialized weight valuesis applied. All these candidate neuronaithin the poolreceive the trainable
input connections from the external inputs. In additibey receivethe same residual error for each
training patternsentfrom the output neuronshrough the pseudo connections shown in Figure 1la
Thus, the recruitment of the firsidden neuron can be completed in a-step process.

During the first step of recruitment, each candidate neuron is connected to eackeohphe
neurons, but is not connected to the output neufdms primary task of pseudo connections shown in
Figure 11las to deliverresidual errofor each training pattern to these candidate hidden neurbes.
weight links connecting the input and candidate neurons are adjusted to maximize the correlation
between the output of each candidate neuron and $idued error at the output neuron, ®wnin
Figurella Meanwhile the weight links connecting input and output neurons remain fiedimber
of passes over the training data are executed andvéiights connecting to thaputs of these
candidate newns are adjusted after each padse weights betweethe candidate layers, input layer
are adjusted to maximize the correlation between the output of each candidate neuron and the residu:
error at the output neurdd2]. The Quickprop algorithm is apptleo adjust incoming weights until
thereisno mor e I mprovement i n e ale2 Theeanddtlatadearonewithm e ur
thehighest correlatiois recruitedin thetopologyas a new hidden layesshown in Figurel1b.
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Figure 11. Therecruitment and installation of the fitsiddenneuron
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The secondstepof recruitmentprocess initializesfter the neuron withthe highest correlations
installedin thetopologyas a new hidden layednly onelayer of weightds trainedduring thesecond
step of recruitmentprocess shown in Figurglb. The incoming weights of the wimyg candidate
neuron are frozen anitl is recruitedandtheninserted into the active network in the second step of
recruitment. The nely addedhidden neuron is theroonected to the output neurons and the weights
connection become adjustabl@ll connections to the output neurons are trajnad shown in
Figure 11b In other words, th&rozenweightlinks thatconnecthe inputandoutput neuronshown in
Figure llaare trained again using the Quickprop algoriti2], asillustratedin Figure 11b In
contrast, the weightlinks connecting theecruitedfirst hiddenneuronand output neurons are trained
for the first time.The recruitment and installation of the seddmddenneuron initializes when the
traininggoal cannotbe met with current topology composed one hidden neuron.

The second hidden neuron is then recruited using the prsleess in Figurel2. Similarly, each
candidate neurofiom the poolis connected to each tifeseinput neurons, but is not connected to the
output neuronsduring the first step of recruitment. The weights connecting the input neurons
prerecruitedhidden neurongsnd candidate neurons are adjusted to maximize the c¢mmelgetween
the output of each candidate neuron and the residual error at the outpuat assihewnin Figurel2a
These candidate neuronsceive input signals from both input neurons #melpreviousy recruited
hidden neuron. All weights connectirie inputs, prerequitedand candidate hidden neurons are
adjusted to recruit the second hidden neuron.ngwon withthe highest correlatioms recruitedin the
topologyas the second hidden layasshown in Figurel2b. The values of theeeweightsconnecting
to theseinputs and prerecruitedhiddenneuronsare then frozen as soon as seeonchidden neuron is
added to the active networks. All geeconnections to the output neurons are then established and
trained. As shown in Figurel2b, all of these preecruited hidden neurons can be regarded as
additional input neurons during the trainingtloé single layer of weightalues
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Figure 12. The recruitment and installation of the secaitienneuron
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The process of recruiting new neus, trainingtheir weights and training all connections to the
output neurons, is continued until the esroeach thetraining goal or the maximum number of
iteratiors or epochgas defined by the usér According to[39], an epoch isdefined when the
presentation of the entire training set to the neural net(asrkidden units) is reached. The finalized
CCNN topology shown in Figur&3b becomes a modifiedersionof original MFNN topologyshown
in Figure13awith n hidden neurons anahidden layersin other words, each hidden layer corsadt
only one hidden neurdd2].

Figure 13. The comparisobetweerfinalized CCNN and MFNN topologies
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Accordingto [43], theuseof CCNNs for developin@nalternative INS/GPS integration schelraes
several advantages over MFAEINFirst, the best topology can be decided automatically based on the
complexity of the applicationandthere is no need to perform extensive empirical trials to determine
the size and depth of the netwdrle., the number diidden neurons and hidden layers, respectively)
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Moreover, the learning speed of CCNN is fg&]. As indicated in Figur®lla and 12asince only
onelayer of weightvaluesaretrained due to the fact that the recruited hidden neurons are treated as
addtional input neurons the residual error signal can be delivered to all hidden neurons at the same
time [42]. In addition, CCMW methodologiesare useful for incremental learning, in which new
information is added to a netwotkat has beemreviouslytrained [41,42] They canthus reflect
variationin the model complexity by adjusting their weighaluesand topology automatically with
additionalinformation. In contrast, MFN8Ican only alter the weightaluesto track the variatiosin
model complexity39,40].

Based on the training data applied in this study, the topologies pfdbesedschemes are shown
in Table 1.It can be seen th@roposedCCNN KF/smoother schemes use fewer hiddearors than
MFNN KF/smoother schemes. In additidhe inputs and outputs of MFNN based scheme are exactly
the same athoseof CCNN based schermeHowever, the number of hidden neurons and lagktke
MFNN based schemes atecided empiricallyln contrastthe topologesof the CCNN based scherae
grow aubmatically online. Al thesehidden neuronspplied by both schemes amenlinear (e.g.a
hyperbolic tangent sigmoidand # these outputheuronsapplied by them are lineaFigure 14
illustrates thecomparisorof the learning behaviok® CCNN-KF and MANN-KF based schemes based
on the training data applieid this study The red line represents the error produced by the GRNN
scheme during the first step of the procedure (correlation optimization) aiggete line represents
the errorproduced by theCCNN-KF scheme aftecompletingthe recruitmentof a hidden neuron.
Therefore, thirtytwo learning patterns can be observed, as the procedure is repeated automatically for
thirty-two times. In contrast, the blue line represdahtserror of MFNN-KF scheme. As shown in
Figurel4, when a new neuron is inserted into the CCKid\residwal error reduces effectively.

As indicated in Figure 14he CCNNKF scheme convergdaster than the MFNNKF scheme with
the same training data set andriiag goal.Table 1 also indicates theaining speed of CCNN based
schemes is faster than MFNN based scheme by 100% in aveeapehieden layer of the CCNKF
scheme only consists ohehidden neuronpandthus thé final topologybemmes deeper than tt ofthe
MFNN-KF schemdi.e., they have more hidden layerBased on theesultspresented in Figure 14, the
CCNN-KF scheme is able to reach the same training goal with less training time sintpler
architecturecompaed to the MFNN-KF scheme. In addition, proposed CCNN based schemes are
distinguished from MFNN based schemes as they can decide their latest tdjpoldggf | vy 0 b as ec
the dynamic variations and inertial sensor errors if new training data is provided. As shiaintel 1,
the learning time of MFNN based schemes is around 10 minutes when the numbers of hidden neuron:
equal to 60 and 65. However, during the empirical training process, the number of hidden neurons hac
been validated from 5 to 100 and this procesk tmore than 3 hours to choose the appropriate
numbers, which are 60 and 65, respectively. In fact, the increments of adding the number of hidden
neurons to the new candidate neural networks was 5 thus the training processes were repeated fc
training 20 andidate neural networks. In other words, with identical training samples, the MFNN
based schemes applied in this study are decided by the designer after extensive training process for
least 3 hours when the CCNbhsed schemes applied in this study tos their topologies
autonomously without human intervention within 6 to 8 minutes.
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Table 1. The topology comparison of CCNN and MFNN based sckeme

Topology CCNN-KF CCNN-smoother MFENN -KF MFNN -smoother
P: position P A P A P A P A
A: orientation
Input neurons 7 7 7 7 I 7 7 7
Hidden layemeuron | 32/32 | 35/35 34/34 35/35 1/60 1/65 1/60 1/65
Output neurons 6 6 6 6 6 6 6 6
Training time(s) 355 378 359 366 583 645 586 650

Figure 14. Thecomparisorof the learning behaviord CCNN-KF and MFNNKF basedscheme.
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5. SystemArchitecture

The EKF applied in this study has &hteswhich are given a®llows:
[0pe; 8 Al Bis Bas Sass§.F

As shown in Figurd5, the EKF andsmootherare utilized to optimally estimatede states and to
compensatdor their effecs in realtime andthe postmission modes, respectively. In fact, either
approach can provide optimally estimatede navigation parameters. In addition, sensor biabgs,(

and b,;;) and scalefactors (S,;; and S;;;) can be estimated and fedzhck to the INS

mechanization to correct tberaw measurements provided agIMU. The scope of il study is to
improve the accuracies gfositional and orienteon parametersduring GPS outagesonly the
components concerning teparameters are shown in Figur® This meanghatthe sensoerrors are
notincludedin theinputsto ANN schemes, as shown in Figure
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Figure 15. An ANN trainingarchitecturgadopted from[31]).

Training errors

Reference

IMU
Raw
data ini
raining
inputs
Mech. (East,North,Up,Roll,

Pitch,Heading,time )

. =-+=-=Simulated GPS outage

The errors of positional and orientation parameters estimatéded$F and smootheduring GPS
outagesare used as the desired ougput target values during theaining process oWvariousproposed
ANN architecturesincluding MFNNs and CCNM. The positional and orientation parameters estimated
by the KF and smoother along with the time information in each scenario are used as the inputs of the
proposed architectures. The goal tbé proposed schemes is to compensate for therseiof the
positional and orientation parameters estimatethbXF and smoother during GR#itage430,31]. A
superior IMU is applied as the reference systergetigerataeference solutions computed by the post
mission process (e,ggmoother) with thdull availability of GPS. The target values areg@errors of
KF and smoother with intentionally added GPS outagesparedo referenceolutions[30,31].

An ANN with optimal topology is expected to provide the best approximation acctoadlye
unknown model using the most appropriate number of hidden neurons and hiddef3@€fsThe
CCNN hasaflexible topology as mentionethefore sothere is no need tesignthese two parameters
through extensive training procesBut with MFNN there are many ways to decide on the most
appropriate number of hidden neuro89,40]. The standardrincipleis to decideit empirically during
the early stages of topology design. Ithsisvery common in the design phase of neural networks to
train manydifferent candidate éetworks that have different numbers of hidden neurons and then to
select the best, in terms of its performance based on an independent valida88d@et [

After being well trained, the proposed ANN compensation scheareaddel to a loosely coupled
INS/GPS integration architecture (closed Ig@s) shown in Figuré6. The intelligent architecture first
receives raw data from an IMU and then use the INS mechanization along 21 states of KF and
smoother to estimate positional anodentation parameters, respectively. Meanwhile, the estimated
positional and orientation parameters are sent to the proposed ANN archstedtung with time
information to generate predicted errors to compensate for the estimated positional andoarientat
parameters provided lile KF and smoother simultaneously. Errorghesepositional and orientation
parameters are predicted with the proposed ANN scheamgithe correction can be completed after
the predicted errors have been removed from theutaitgthe KF and smoother.
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Figure 16. The implemerdtion of ANN embedded KF arsinootheadgtedfrom [31]).
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6. Results andDiscussion

Three field testsvere usedto evaluate the pesfmance of the proposed schemEle tests were
conducted in land vehicle environments using different integrated systems consisting of one tactical
grade IMU, Litton LN200 (1 deg/hr), a loaost MEMS IMU, BEI MotionPak lland two NovATel
OEM-4 receivers. In this study, those IMUs were ampt@ collect inertial measurements in the field
and thenthesealong with carrier phase DGPS solutions were fed into software thanhasrtial
navigation algorithm and EKF to estimate inertial states optimally. The integrated system with LN200
IMU was used as the reference. The measurements and navigation solutions provided by the integratec
system with MotionPak Il were used to verify the performangea@bosed schemesigurel7ashows
the set up ofthesesystemsandillustratesthe trajectories of the field testBhe experimental conditions
are summarized in Tabi

The GPS measurements were processed using GrafNavTM software (Waypoint Consulting Inc.) in
carrier phase DGPS to achieve ten centimeter level accuracy. The cefesectories were generated
by the integrated system with LN 200 IMU. They were determined usirgja?4 EKF and smoother
implemented in the Aided Inertial Navigation Software (AINS) from the Department of Geomatics
Engineering at of the University @falgary. These parameters of EKF and the smoother applied in this
study were well tuned so that they can represent the best achievable navigation accuracy for tactica
grade IMUs.
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Figure 17. The tested systenad experimental trajectories
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Ten GPS outages, markedth circles and each lashg 30 secondswere simulated using the
measurements collected in the third field test, as indicated in Flgiarelhe outputs othe KF and
smoother provided by those systems were applied as the inputs for the proposed archBestenrals
input dimensios were consdered by choosing some die outputsfrom the KF and smoother. In
addition, the outputs dhe KF and smoother with simulated GPS outages were then compared with the
reference trajectory. Eherrors, which can be interpreted as the error behsabrthe KF and
smoother, were then applied as the desired output for training. As shdwgune17d, the dynamis
variations experienced by the vehicle during the simulated outages irsthadlghtline segments,
sharp turns, accelerations and deceleratioms worthnotingthat five simulated outages, markedh
triangles, were used as the independent skettdor cross validation during training process to ensure
generalization capability as well as to avoid possible-tragming problems

In addition atotal sixty four GPS outages, each ha@seconds in length, were simulat@hdomly
in four scenariosusing the measurements collected in the first and second fieklussg the
INS/GPS integrated with tHdotionPak 1l (MEMS)IMU . Both field test dataets are applied to verify
the performance dheproposed schemes.
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Table 2. Thesummaryof the experimental conditiasn

Index

NVS

Speed(m/s)

Date Duration

Min. Max. Avg. Min.

Avg. (seconds)

Tj-1
Tj-2
Tj-3

4 10 7 1.2
4 10 7 1.1
4 10 75 14

PDOP
Max. Avg.
58 2.2
58 21
58 24

7.5 03.17.2005 2,400
8.2 03.17.2005 1,850
7.8 03.16.2005 1,700

NVS: Number of visible satelligg Min.: Minimum, Max.: Maximum, Avg.: Average, Speed:
Horizontal velocity

6.1. Thetraining of the proposedschemes

Figure 18 illustratesthe training results in terms of the errors afmpensategositional and
orientationsolutions. Table3, summarizessarious statisticalindexesincluding Root Mean Squared
(RMS) errors, mediars of errois and 99-Percentileof erross derived from Figurel8. As indicated in
Figure18 and Table3, the proposed AN-KF and ANNsmoother schemes leaaithe error behavior
of the KF and smoother during simulated GPS outagel, especially the heading anglassd height
componentsin addition,the proposed CNN-KF/smoother schemedsolearredthe error behavior of
theKF and smoothewell and providd comparablgerformancéo MFNN-KF/smootheischemes.

As show in Table 3, the RMS errors of CCN¥F/smoother and MFNNKF/smoother based
schemes areeducedby 99%on averagecompared to KF¥mothersolutions. Inaddition the median
values of different errors of Kémothersolutions argeducedoy 100%on averag, which means that
the proposed schemes remove lisesdue to the setting issue between test @afdrencesystems
after training. In other wosj the proposed schemes are able to compensate foratbesdue to the

setting issue between test arfierencesystems automatically as long as these systems are fixed on the

same plate. In addition, thgystematicerror behaviors of positional and orientatiparameters
estimated by smoother during GPS outages, whichcansideredas the total impact ofehicle

dynamics,nertial sensorerrorsand the length of GP&utragesarefully compensated. Therefore, the

median values of these errors producegimposedschemes shown in Table 3 approach to zero.

Figure 18. The samples of compensataskitionaland orientatiorerrors(Trainingscenario)
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