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Abstract:  Mobile mapping systems have been widely applied for acquiring spatial 

information in applications such as spatial information systems and 3D city models. 

Nowadays the most common technologies used for positioning and orientation of a mobile 

mapping system include a Global Positioning System (GPS) as the major positioning 

sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the 

classical approach, the limitations of the Kalman Filter (KF) method and the overall price 

of multi-sensor systems have limited the popularization of most land-based mobile 

mapping applications. Although intelligent sensor positioning and orientation schemes 

consisting of Multi -layer Feed-forward Neural Networks (MFNNs), one of the most 

famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in 

order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) 

INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy 

as initially expected. Therefore, this study not only addresses the problems of insufficient 

automation in the conventional methodology that has been applied in MFNN-KF/smoother 

algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits 

and analyzes the idea of developing alternative intelligent sensor positioning and 

orientation schemes that integrate various sensors in more automatic ways. The proposed 

schemes are implemented using one of the most famous constructive neural networksïïthe 

Cascade Correlation Neural Network (CCNNs)ïïto overcome the limitations of 

conventional techniques based on KF/smoother algorithms as well as previously developed  
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MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible 

topology compared to MFNNs. Based on the experimental data utilized the preliminary 

results presented in this article illustrate the effectiveness of the proposed schemes 

compared to smoother algorithms as well as the MFNN-smoother schemes. 

Keywords: GPS/INS; sensor integration; mobile mapping systems; constructive  

neural networks 

 

1. Introduct ion 

The development of land based mobile mapping systems was initiated by two research groups in 

North America, The Center for Mapping at Ohio State University, USA, and the Department of 

Geomatics Engineering at the University of Calgary, Canada [1,2]. Starting in the early 2000s, a 

number of land based mobile mapping systems have been utilized in commercial applications [2-9]. 

The process of mobile mapping is basically executed by producing more than one image that includes 

the same object from different positions, and then the 3D positions of the same object with respect to 

the camera frame can be measured [1]. 

Since the early nineties, advances in satellite and inertial technology made it possible to think about 

mobile mapping in a new way. Instead of using ground control points as references for orienting the 

images in space, the trajectory and orientation of the imager platform can now be determined  

directly [3]. Cameras, along with positioning and orientation sensors, are integrated and mounted on a 

land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from 

images that have been georeferenced using positioning and orientation sensors [10]. An example of 

land based mobile mapping system is illustrated in Figure 1.  

Figure 1. An example of a land based mobile mapping system. 
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Figure 1a gives an overall view of the sensors onboard the land based mobile mapping system from 

different perspectives, and Figure 1b depicts an overall view of the mobile mapping van. In addition, 

Figure 1c illustrates an example of direct geo-referencing the corner of interest shown in green dots 

from two geo-referenced images. This procedure is accomplished through the use of precise 

positioning and orientation techniques. 

An INS is a self-contained navigation technique in which measurements provided by 

accelerometers and gyroscopes are used to track the position and orientation of an object relative to a 

known starting point, orientation and velocity [11]. In addition, GPS is a universal, all-weather,  

world-wide positioning system that provides time, position and velocity data. Both systems can be 

used as stand-alone navigation tools or in conjunction with other sensors for various purposes. 

Moreover, the integration of GPS and INS can overcome problems with environments like urban 

canyons, forests and indoor settings where GPS alone cannot provide service; for more information  

see [12-15]. In order to attain reasonable accuracies of position and orientation solutions, a tactical grade 

or higher quality INS along with GPS has been applied as the primary position and orientation system for 

current commercial systems [1]. However, the cost of such systems is still at such a high level that the 

popularity of mobile mapping systems remains limited, especially due to the price of the Inertial 

Measurement Unit (IMU). However, advances in MEMS technology have enabled the development of 

complete IMUs composed of multiple MEMS-based accelerometers and gyroscopes [16,17]. In addition 

to their compact and portable size, the price of MEMS-based systems is far less than those of high 

quality IMUs.  

In the classical approach, the KF is applied in real-time applications to fuse different data from 

various sensors while optimal smoothing is applied in the post-mission mode. The basic idea of using 

the KF in INS/GPS integration is to fuse independent and redundant sources of navigation information 

with a reference navigation solution to obtain an optimal estimate of navigation states, such as 

position, velocity and orientation. However, the limitations of the KF have been reported by several 

researchers [12-15]. The major inadequacy related to the utilization of the KF for INS/GPS integration 

is the need for a predefined accurate stochastic model for each of the sensor errors [14]. Furthermore, 

prior information about the covariance values of both INS and GPS data as well as the statistical 

properties (i.e., the variance and the correlation time) of each sensor system has to be accurately 

known [13-15]. Furthermore, for INS/GPS integration applications where the process and 

measurement models are nonlinear, the Extended KF (EKF) also work for nonlinear dynamic systems 

with a non-Gaussian distribution, except for heavily skewed nonlinear dynamic systems, where EKF 

may experience problems [18]. As indicated in [18], the EKF simply applies the first order term of the 

Taylor series expansion for the approximation of a nonlinear system and the probability density 

function is approximated by a Gaussian distribution [14,19]. Only small errors are allowed during 

estimation and the presence of nonlinear error behavior might violate the assumption thus generates 

biased solutions [19]. As indicated in [20], second order filters are able to compensate the bias term 

mentioned above but the computation burden of hessian (second order derivatives) is high. 

These limitations, in turn, may result in sub-optimal performance or even filter divergence if the 

assumption of local linearity is violated [18-20]. Each of these limiting factors contributes to a certain 

amount of positional error accumulation during GPS outages, as shown in Figure 2. In fact, the error 

behavior of orientation parameters during GPS outages is similar to the positional error shown in  
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Figure 2 [11-13]. The scale of the maximum positional drift shown in Figure 2 is given based on the 

average value of the MEMS IMU applied in this study. Unfortunately, in modern urban canyons GPS 

signal blockages occur frequently. The magnitudes of the positional and orientation errors depend on 

the quality of the inertial sensors, the length of GPS outage, the dynamics of vehicle and the 

effectiveness of the algorithms applied. In other words, proper modification of inertial sensors or 

sensor fusion algorithms can reduce the magnitude of accumulated positional and orientation error 

during frequent GPS outages. Therefore, the goal of developing an alternative INS/GPS integration 

scheme is to reduce the impact of remaining limiting factors of KF and improve the positioning 

accuracy during GPS outages, which is critical for land-based mobile mapping applications. 

Figure 2. The impact of KFôs limiting factors on positional error during GPS signal blockage. 

 

In addition to these limitations, the problem of poor observation of inertial error states becomes the 

most critical issue, especially when integrating a low cost MEMS IMU with GPS [20,21]. Poor 

observation prevents the separation of the linear errors induced by accelerometers from angular errors 

induced by the gyroscopes and alignment errors due to the lack of motion dynamics [20]. This is a 

typical problem for low-cost IMUs as the motion dynamics are generally insufficient to separate linear 

and angular error terms during the correlation time of low-cost sensors [20]. 

Optimal smoothing algorithms, also known as smoothers, have been applied for the purpose of 

accurate positioning and orientation parameter determination through post-processing for most of 

surveying and mobile mapping applications with integrated sensors [13,14]. In contrast to the KF, the 

smoothing is implemented after all KF estimates have been solved by the use of past, present and 

future data. As shown in Figure 2, the magnitudes of positional and orientation errors during GPS 

outage can be improved significantly after applying one of these optimal smoothing algorithms. 

However, the magnitude of residual error shown with blue line also depends on the quality of the 

inertial sensors, the dynamics of vehicle and the length of GPS signal outage [13,22]. Therefore, the 

reduction of remaining positional and orientation errors becomes critical when integrating a low cost 

MEMS IMU with GPS for land based mobile mapping applications. 

  

Beginning of 

GPS outage

End of GPS 

outage

Residual errors of Kalman filter

Residual errors of smoothing

Improvement achieved by 

smoothing

Improvement needed to be achieved 

30
s

30m

5m

Improvement achieved by 

smoothing 

Improvement to be achieved 

Residual errors of Kalman filter 

Residual errors of smoothing 

P
o
s
it
io

n
a

l 
e

rr
o
r

TimeBeginning of 

GPS outage

End of GPS 

outage

0s



Sensors 2010, 10              

 

 

9256 

2. Problem Statements 

As mentioned in the previous section, the accuracies of the KF solutions sometimes cannot fulfill  

the requirements of mobile mapping applications. An integrated system has to predict state parameters 

such as position, velocity and orientation using KF when GPS signal blockages appear [13]. But in 

such situations, the navigation solutions errors increase rapidly until the GPS signal is recovered to 

provide a measurement update, as shown in Figure 2. This problem becomes more critical when a low 

cost MEMS IMU is used. However, due to their noisy measurements and poor stability, the 

performance of current MEMS IMUs does not meet the accuracy requirements of mobile mapping 

applications [22].  

In order to achieve high accuracy for positioning and orientation determination in mobile mapping 

applications, the data is processed in post-mission mode with an optimal smoothing algorithm. Most of 

the commercial mobile mapping systems use an optimal smoothing algorithm to provide accurate 

information on position and orientation for direct geo-referencing [10,22]. However, commercial 

INS/GPS integrated systems use tactical grade IMUs or above to provide accurate solutions for general 

mobile mapping applications. Therefore, upgrading the hardware (e.g., IMU) can be considered as an 

effective solution to improve the accuracies of position and orientation parameters when a low cost 

MEMS IMU is used. Still, this improvement is rather limited, as the availability of high grade 

(navigation) IMU is regulated by the government regulations of certain countries where those units  

are produced.  

Another effective way to improve the accuracies of low cost MEMS INS/GPS integrated solutions 

is through the improvement of sensor fusion algorithms. Compared to the hardware perspective 

mentioned above, the software perspective can be considered as a cost effective solution to develop a 

low cost sensor fusion solution for certain mobile mapping applications. Figure 3 illustrates the loosely 

coupled INS/GPS integration scheme commonly applied by most of the commercial mobile mapping 

systems [12,13].  

The process of the KF is divided into two groups, those for prediction and updating [12,13]. The 

time prediction equations are responsible for the forward time transition of the current epoch (k-1) 

states to the next epoch (k) states. The measurement update equations utilize new measurements into 

the prior state estimation to obtain a state estimation a posteriori. The updated KF engine is triggered 

at every GPS measurement using the difference between GPS and INS solutions as input. Hence, the 

KF generates an updated estimate for reducing the INS errors using measurement update equations. 

Whenever GPS measurements are not available, the KF works in the time prediction mode to estimate 

the error state vector. The optimal smoothing is performed after the filtering stage and thus it relies on 

the previously filtered solutions. Consequently, an accurate filtering procedure is required for accurate 

smoothing process [13,14]. A fixed-interval smoother, the Rauch-Tung-Striebel backward smoother is 

implemented in this study. In fixed-interval smoothing, the initial and final time epochs of the whole 

period of measurements (i.e., 0 and N) are fixed. Compared to other fixed-interval smoothers, the 

Rauch-Tung-Striebel backward smoother has the advantage of being the simplest to implement [13,14]. 

It consists of a forward sweep and a backward sweep. The forward sweep is the common KF with all 

predicted and updated estimates and corresponding covariances saved at each epoch of the whole 
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mission. The backward sweep begins at the end of the forward filter (i.e., at epoch N), see [13,14]  

for details. 

Figure 3. A loosely coupled INS/GPS integration architecture (closed loop). 

 

The smoothed estimates at any epoch k are computed as a linear combination of the filtered 

estimate at that epoch and the smoothed estimate at the heading epoch k + 1. Thus, these smoothed 

estimates can be considered as updating the forward filtered solution to obtain improved estimates. The 

computation of the smoothed estimates at each epoch requires the storage of the KF predicted and 

updated (filtered) estimates and their corresponding covariances at each epoch [13,14]. This is the case 

in INS/GPS integrated solutions when uninterrupted GPS data streams are available. During GPS 

outages, only predicted estimates and covariances are available, a post-mission smoother can 

significantly remove the residual errors of KF [10,22]; however, some residual errors still remain, as 

shown in Figure 2. Therefore, the error behavior shown in Figure 2 has motivated various studies 

concerning the development of alternative multi-sensor fusion algorithms to reduce the magnitude of 

accumulated positional and orientation errors during frequent GPS outages in land applications. 

3. Recent Development of Alternative Multi -Sensor Integration Algorithms 

Three approaches concerning the development of alternative multi-sensor integration algorithms to 

improve the ability of analysis and prediction of complicated kinematic and nonlinear models to reduce 

the magnitude of accumulated positional and orientation errors during frequent GPS outages in land 

applications have been identified [22]. The first approach is known as sampling filter approach, such as 

particle filters [18,23-25] and unscented Kalman filter [22] while the second approach is known as 

artificial intelligence approach, such as the use of ANNs [26-28] or adaptive neural fuzzy information 

systems [29]. In addition, the third approach is known as the hybrid approach that combines 

conventional EKF or smoother based approaches with artificial intelligence approach [30,31]. 

The advantage of the sampling based approach is that the computation of derivatives is not  

applied [22]. Particle filters, also known as Sequential Monte Carlo filters, have been developed for 
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nonlinear/non-Gaussian processes based on Bayesian filtering theory [32,33]. Gordon et al. [18] 

indicated that particle filters have a number of advantages that make them attractive for navigation 

applications; they are non-parametric, they can cope with nonlinearities and non-Gaussian noises, and 

are relatively easy to implement. Furthermore, the particle filter implementation does not require any 

assumption about the form of the posterior distributions [24]. Particle filters give an approximate 

solution to an exact model, rather than the optimal solution to an approximate model which is the basic 

for KF [34]. 

Bergman [23] applied a particle filter for INS/GPS integrated terrain navigation application and 

provided superior estimation accuracy than other methods applied because it does not make any 

assumption on the probability density function. Van Der Merwe et al. [35] proposed extended/ 

unscented particle filters to incorporate the latest observation into a basic particle filter. The extended 

particle filter increases the processing time 2ï5 fold, as compared to the EKF [36]. Moreover the 

performance of extended particle filter is highly dependent on the placement of the GPS outages. The 

extended particle filter performed 5ï19% better during GPS outages in high dynamics areas, when 

compared with low dynamics GPS outages [36]. 

Aggarwal [24] proposed a hybrid extended particle filter as an estimation technique for integrating 

GPS and low cost inertial sensors. The performances are compared to those of the commonly used 

EKF using INS/GPS land-vehicle data set collected for low cost MEMS IMUs. The results show that 

both hybrid extended particle filter and EKF provide comparable navigation results during periods 

without GPS outages. However in cases when 60 second GPS outages are simulated, the hybrid 

extended particle filter performed much better than the EKF, especially when simulated outages lie in 

high vehicle dynamic areas; see [24] for a detailed numerical comparison.  

According to Kubo and Wang [25], the Gaussian sum filter is also considered as a candidate for 

INS/GPS integration applications. The Gaussian sum filter is a nonlinear filter where its predictive a 

priori  density is assumed to be the sum of several normal distributions. However the first order Taylor 

series approximation is applied for updating each distribution similarly to the EKF. Therefore, it 

suffers the impact of high nonlinearity similarly to the classic EKF. Kubu and Wang [25] proposed a 

strategy to combine the Gaussian sum filter and particle filter. It was developed based on the similar 

concept of the Gaussian sum filter, but updates its Gaussian sum expressions by using the particles 

instead of the linear approximations. The performance was compared with other filters in numerical 

simulations. From the simulation results, it is found that the Gaussian sum particle filter has the ability 

to improve the navigation performance when the initial estimates are provided with large uncertainty, 

see [25] for detailed numerical comparison of Gaussian sum particle filter and other filters.  

To overcome the limitations of EKF instabilities and Jacobian evaluations, Julier and  

Uhlmann [37] proposed the unscented KF which deterministically generates a fixed number of 

minimal points, known as sigma points, from the Gaussian distribution, which estimate the true mean 

and covariance of Gaussian distribution. These sigma points are then individually propagated through 

the nonlinear system, to capture posterior mean and covariance accurately. Generally speaking, it is 

based on the hypothesis that it is easier to approximate a Gaussian distribution than to approximate an 

arbitrary nonlinear function [37]. Van der Merwe et al. [35] applied the unscented KF to improve the 

performance of the particle filter for an INS/GPS integrated system for unmanned aerial vehicle 

applications. As indicated in [22], the distinction between the unscented KF and particle filters is that 
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the former takes samples deterministically while the later select samples randomly. Shin [22] also 

compared numerical performances between EKF/smoother and unscented KF/smoother with the use of 

various INS/GPS integrated systems in land applications. 

Generally speaking, the results shown in [22-25] illustrate that the sampling filter approach and 

EKF based approach provide comparable navigation results during periods without GPS outages. 

However in cases when GPS outages are simulated, sampling filter approaches perform much better 

than the EKF, especially when simulated GPS outages lie in high vehicle dynamic areas [22,24]. The 

error behavior summarized from various sampling filters presented in [22-25] is shown in Figure 4. 

The positional errors of sampling filters, shown in red solid line, and the smoothers implemented with 

these sampling filters, shown in green solid line, resemble those of EKF and smoother, shown in dark 

and light gray lines, but with a reduced scale. It means that these sampling filters and their smoothers 

can reduce the positional and orientation error during GPS outages compared to conventional EKF and 

smoother, see [22-25] for details about their numerical ratios of improvement. Shin [22] indicated that 

the unscented Kalman smoother is able to provide 20%~30% improvement in terms of positional and 

orientation accuracies during GPS outages compared to the smoother implemented with EKF. The 

scale of the maximum positional drift shown in Figure 4 is given based on the average value of the 

MEMS IMU applied in this study [22-25]. 

Figure 4. The error behaviors of sampling filters and smoothers during GPS outages. 

 

The artificial intelligence approach distinguishes itself from other types of estimation approaches by 

using inexplicit models, known as black box, to approximate the nonlinear relationships between system 

dynamics and measurements [22]. Chiang et al. [26] proposed a multi-sensor integration approach for 

fusing data from an INS and Differential GPS (DGPS) utilizing MFNNs for land applications. In 

addition, it addressed the impact of NN parameters and random noise on positioning accuracy of the 

integrated system especially during GPS outages. The experimental results demonstrate the advantages 

of new approach in terms of performance and computational efficiency. The field tests clearly show that 

once the architecture proposed in [26] is trained for about 1,800 seconds and becomes stable, position 

errors of less than 3 meters can be achieved, even beyond a GPS signal blockage of 200 seconds (i.e., 
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IMU stand-alone mode). These results are well beyond the performance characteristics expected from 

the IMU used in the NovAtel BDS GPS/IMU system. 

Chiang et al. [38] introduced a window-based weight updating method and its use in ANNs for 

integrating GPS and INS in vehicular navigation applications. It was developed utilizing the stored 

weights and GPS signal window concept to overcome the limitations of traditional weight updating 

methods. Combing the latest GPS window signals, the stored weights can be adaptively updated to 

follow the latest motion dynamics and INS error characteristics. Hence it improves prediction accuracy 

during GPS outages. In addition to the significant improvement in positioning accuracy, the results 

demonstrate that the training time was far less than a GPS window length with the utilization of stored 

weights. Generally speaking, the INS/GPS ANN-based integration architectures proposed in [38] have 

provided positioning accuracies far better than those obtained through the use of conventional Kalman 

filtering integration. 

Wang et al. [27] presented an ANNs-aided adaptive Kalman filter based on covariance matching 

technique for integrated INS/GPS systems. Instead of using a limited window for estimation as 

conventional adaptive KF, all the previous samples are counted in according to their character using 

ANNs. The covariance matching is conducted then its relation with the corresponding character is 

mapped with the ANNs. The adjustment of the adaptive KF is based on both the ANN training result 

and the updated covariance matching result. The test results show that the ANNs aided adaptive KF 

method can improve the navigation solutions. The ANNs applied after training can make reasonable 

predictions and is useful to improve the adaptive KF predictions.  

Sharaf and Noureldin [28] introduced a new method for real-time INS and GPS integration in 

vehicular navigation utilizing radial basis function neural networks. This architecture is based on 

predicting the INS position error and continuously removing it from its corresponding INS position. 

This technique was employed in real time using special windowing technique. Results show the ability 

of their module to reduce the INS position error and prevent its growth even in the long term. In 

addition, it is able to accurately predict the INS position errors during GPS outages.  

El-Sheimy et al. [29] developed a new design model for navigation applications using adaptive 

neuro-fuzzy inference systems to bridge periods of GPS signal blockage. This model uses neuro-fuzzy 

networks and the input/output patterns to train the fuzzy network during the availability of GPS 

solutions (which are used as a reference trajectory). During GPS signal blockage, the trained fuzzy 

model is implemented to predict the error drift of the standalone MEMS-INS estimated position. The 

performance of suggested model was compared to that of the traditional KF particularly during a 

number of simulated GPS outages. The test results indicate that the proposed neuro-fuzzy model can 

efficiently predict the INS errors during GPS outages. 

Although artificial intelligence approaches are easier to design and implement, there are also 

limitations to these types of approaches [22]. Most of the approaches mentioned do not apply any 

statistical information during training process and they do not provide the statistics associated with the 

solutions produced by them. In other words, they lack the ability to provide proper accuracy measures 

concerning the navigation solutions provided by these artificial intelligent models. An ANN with the 

optimal topology is expected to provide the best approximation accuracy to the unknown model using 
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the most appropriate number of hidden neurons and hidden layers. The empirical training for guessing 

the most appropriate topology is time consuming.  

In addition, if the dynamics experienced by the vehicle exceeds the ranges of training data 

significantly, the performance of these approaches tends to deteriorate accordingly. Therefore, a  

frequent re-training procedure is required to guarantee the performance of these approaches.  

Chiang et al. [38] proposed the idea of navigation database and proper training strategy for the training 

procedure. Similar procedure was implemented in [28] for real time processing, including online 

weight updating. However, the accumulation and evolution of navigation knowledge require large 

amount of training data and they are time consuming [38]. In addition, these models require relatively 

large storage space compared to other estimation approaches.  

The navigation parameters provided by these artificial intelligent models are limited to positional 

parameters only because they rely on GPS solutions to provide training target and the use of a GPS 

receiver is unable to provide any reliable orientation parameters. Therefore, all of these artificial 

intelligent models are implemented to provide 2-D or 3-D positional parameters and bridge the gaps 

during GPS outages for land vehicular navigation applications [26-29,38]. However, it is not enough 

for mobile mapping applications because they require positional and orientation parameters 

simultaneously. Figure 5 illustrate the error behaviors of artificial intelligent models during GPS 

outages summarized from [26-29,38]. For short period of GPS outage, such as less than 10 seconds 

with the use of a MEMS IMU, the EKF is able to outperform artificial intelligent models. However, as 

the period of GPS outage extends to more than 30 seconds, artificial intelligent models outperform the 

EKF significantly [26-29]. On the other hand, unexpected vehicle dynamics result in the rapid growth 

of positional and orientation errors, as shown in Figure 5. The scale of the maximum positional drift 

shown in Figure 5 is given based on the average value of the MEMS IMU applied in this study [26-29]. 

Figure 5. The error behavior of artificial intelligent models during GPS outages. 
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orientation parameters estimated by KF and Smoother during GPS outages. Goodall et al. [30] 

proposed a hybrid architecture that consists of ANNs and EKF to predict the error functions in a more 

optimal manner than one of the individual approaches. It is able to learn from its past errors and adapt 

to its application using radial basis functions networks, but retains the short-term estimation accuracy 

with aid of an EKF. Such an integrated approach has the capability of estimating all navigation states, 

using the advantages of ANN techniques for practical solutions. However, the accuracy requirements 

of general mobile mapping applications canôt be achieved easily even by the use of ANN-KF scheme. 

Therefore, Chiang et al. [31] proposed an intelligent position and orientation determination scheme 

that embeds MFNN with conventional smoother to improve the overall accuracy of a MEMS INS/GPS 

integrated system in post-mission mode. For the low cost MEMS system with the proposed  

ANN-smoother compensation, the positional and orientation parameters estimated by smoother can be 

improved to the level of using a medium tactical grade inertial system. Figure 6 illustrates the error 

behaviors of hybrid models during GPS outages summarized from [30,31]. The use of MFNN -KF 

schemes is able to improve the positioning and orientation accuracies to the level of the conventional 

smoother and the use of MFNN-smoother scheme is able to improve the positioning and orientation 

accuracies by 50% in average compared to the conventional smoother based on the experiment data 

provided in [30,31]. The scale of the maximum positional drift shown in Figure 6 is given based on the 

average value of the MEMS IMU applied in this study. 

Generally speaking, a MFNN with an optimal topology is expected to provide the best 

approximation accuracy to the unknown model using the most appropriate number of hidden neurons 

and hidden layers [39,40]. There are many ways to decide the most appropriate number of hidden 

neurons [39,40]. The common principle indicates that the most appropriate number of hidden neurons 

is application dependent and can only be decided empirically during early stages of the topology 

design. It is very common to train many different candidate networks that have different numbers of 

hidden neurons and then to select the best, in terms of the performance based on an independent 

validation set in the design phase of ANN methodology [40]. Once the optimal topology is decided, 

the only free parameters to be adjusted during the re-training phase with the latest acquired training 

data are the weight values, but the topology remains fixed [41]. However, alternative schemes are 

expected to reflect the impact of new information to catch the latest dynamics and sensor error 

variation based on the characteristics of the INS/GPS integration applications. In an ANN terminology, 

this can be implemented by using a continuous learning process to adjust the weights with appropriate 

variation of topology to accumulate knowledge, if applicable [41,42]. Therefore, empirical guessing 

and fixed topology can be considered as the primary limiting factors of applying MFNNs for INS/GPS 

integration applications. 

To avoid these limitations, several methods have been proposed in the last two decades to construct a 

neural network successively and automatically during the learning process. These methods are often 

recognized as constructive networks. The common principle is to start from a small network and then 

add hidden neurons and hidden layers as needed during the learning procedure using special algorithms. 

In other words, the networks are able to decide the appropriate topology based on the task given without 

human intervention. An overview of current constructive algorithms can be found in [41]. Among these 

algorithms, the CCNN algorithm proposed by Fahlman and Lebiere [42] has attracted the most attention.  
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Consequently, the objectives of this article were to: (1) develop a CCNN-smoother scheme for 

precise sensor positioning and orientation, (2) verify the performance of the proposed scheme using a 

low cost MEMS INS/GPS integrated system and (3) compare the performance with previously 

developed MFNN-smoother scheme in terms of the topology applied and estimated accuracy during 

GPS outages. 

Figure 6. The error behaviors of hybrid model during GPS outages. 

 

4. Artificial Neural Networks  

ANN methodologies have been motivated by the recognition that the human brain works in an 

entirely different way from a conventional digital computer [39]. The simplest form of an ANN can be 

depicted like the human nervous system. The receptors are used to convert input signals into 

appropriate vector that can be processed by a central network, while the effectors are used to transfer 

the output vector into readable response [40]. In general, the basic model of a neuron contains three 

major components: (a) weight links, (b) an adder for summing the input signals that are weighted by 

the respective synapses of the neuron, and (c) an activation function )(¶j  for limiting the amplitude of 

the neuron output and the final output [39,40]. Figure 7 illustrates an example of a MFNN composed 

of one hidden layer and output layer, respectively. The input vector is expressed as xa and the weight 

links connecting input and hidden layers are given as a weight matrix, 
( )h

aW . Similarly, the weight 

links connecting hidden and output layers are given as a weight matrix, 
( )o

aW .The activation functions 

applied by hidden and output neurons are labeled as ű
(h)

 and ű
(o)

, respectively.  

Therefore, the outputs of hidden and output layers, aZ and y, are given below: 

( ) ( )

( ) ( )( )

h h
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h h
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s W x
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z sj
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ì
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      (1) 

( ) ( )
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y sj
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       (2) 

where 
( )hs and 

( )os represent the outputs of the adders in hidden and output neurons, respectively. 
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Figure 7. An example of a MFNN. 

 

Figure 8 illustrates the nonlinear mapping relationship between input and output vectors represented 

by the MFNN shown in Figure 7. To determine the optimal weight values 
( ) ( )( , )h o

a aW W one must have a 

set of examples of how the outputs, y should relate to input vector, xa. The process of obtaining these 

weights from these desired examples is called supervised learning and it is basically a conventional 

estimation or approximation process [40]. That is, these weight values are estimated from existing 

examples in such a way that the network, according to some metric, approximates the true relationship 

as accurate as possible [39,40].  

Figure 8. The nonlinear mapping capability of a MFNN. 

 

Figure 9 illustrates the concept of supervised training strategy whereby the network develops based 

on inputs and observed outputs. Itôs like a teacher who has knowledge of the environment, with that 

knowledge being represented by a set of input-output examples. Then the teacher and the neural 

network are both exposed to a training vector drawn from the environments, the teacher is able to 

provide the neural network with a desired response. The difference between desired response and 

neural networkôs output will generate error signal and fed back to the neural network. The network 

parameters (weight and bias) are adjusted under the combined influence of the training vector and the 

error signal iteratively step-by-step to minimize the difference between desired response and neural 

networkôs output [40]. 

A simplest way to understand how to adjust weight is to use standard backpropagation learning 

algorithm whose error function E is given below [40]: 
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Then the weight update formation is given as [40]:  

( )E w
w

w
h
µ

D =-
µ

       (4) 

where h is learning rate parameter 

Figure 9. Supervised learning for function approximation. 

 

The primary goal of developing ANN-aided schemes is to improve the positioning and orientation 

accuracies during frequent GPS outages, which are crucial for land mobile mapping applications. As 

shown in Figure 2, the general error behaviors of the EKF grows systematically with time and that of 

smoother grows systematically first then decreases after reaching the peak, which usually takes place 

in the middle of GPS outage. These behaviors are coupled with vehicle dynamics, inertial sensor errors, 

the length of GPS outage and the quality of the system and measurement model applied. However, 

these error behaviors are too complicated to describe through proper mathematical models [28]. The 

general idea of ANNs is to build up the nonlinear mapping relationship between inputs and outputs and 

learns for examples and generalizes for applications.  

Therefore, the inputs applied in this study include positional and orientation states estimated by the 

EKF and smoother along with time information while the outputs include the errors of those estimated 

states during GPS outages. In other words, the proposed topology realizes the nonlinear mapping 

relationships between system dynamics, the length of GPS outage and the error behaviors of the EKF 

and smoother during GPS outages. Through using proper training strategy with sufficient training data, 

the proposed scheme is able to generalize the nonlinear mapping relationships between system 

dynamics, the length of GPS outage and the error behaviors of the EKF and smoother during outages.  

In this study, one of the constructive ANNs, the CCNN, is implemented to learn and compensate for 

the residual errors of the KF and smoother, respectively, to improve the accuracies of the positional 

and orientation parameters. The proposed scheme is capable of learning how the state vector  

(i.e., position or orientation errors) behaves under the influences of dynamics of the platform, the error 

characteristics of the inertial sensors being used and the length of GPS outage applied. As mentioned 

previously, the residual error compensation scheme developed involves a set of complicated non-linear 

function approximations to adapt to the influence of the variations of vehicle dynamics and sensor 

errors on KF and smoother during GPS outages [26,28].  
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Two key ideas in implementing the CCNN algorithm include a cascade architecture and unique 

learning algorithm for automatically training and installing new hidden neuron [42]. The optimal 

values of weight are computed during the training process.  

The CCNN architecture starts with a minimal topology, consisting of only the input and output 

neurons. The optimal values of the direct input-output weight links are computed during the training 

procedure, and the training continues with a minimal topology for the entire training data set until no 

further improvement can be achieved, as shown in Figure 10. During this process, there is no need to 

back propagate the output error through hidden neurons. Any conventional training algorithm for a 

single layer feed forward neural network (e.g., the standard gradient descent algorithm) can be applied.  

Figure 10. The initialization of a CCNN. 

 

To recruit a new hidden neuron, a pool of candidate neurons that have different sets of randomly 

initialized weight values is applied. All these candidate neurons within the pool receive the trainable 

input connections from the external inputs. In addition, they receive the same residual error for each 

training pattern sent from the output neurons through the pseudo connections shown in Figure 11a. 

Thus, the recruitment of the first hidden neuron can be completed in a two-step process.  

During the first step of recruitment, each candidate neuron is connected to each of these input 

neurons, but is not connected to the output neurons. The primary task of pseudo connections shown in 

Figure 11a is to deliver residual error for each training pattern to these candidate hidden neurons. The 

weight links connecting the input and candidate neurons are adjusted to maximize the correlation 

between the output of each candidate neuron and the residual error at the output neuron, as shown in 

Figure 11a. Meanwhile, the weight links connecting input and output neurons remain fixed. A number 

of passes over the training data are executed and the weights connecting to the inputs of these 

candidate neurons are adjusted after each pass. The weights between the candidate layers, input layer 

are adjusted to maximize the correlation between the output of each candidate neuron and the residual 

error at the output neuron [42]. The Quickprop algorithm is applied to adjust incoming weights until 

there is no more improvement in each candidate neuronôs correlation [42]. The candidate neuron with 

the highest correlation is recruited in the topology as a new hidden layer, as shown in Figure 11b.  
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Figure 11. The recruitment and installation of the first hidden neuron. 

 

The second step of recruitment process initializes after the neuron with the highest correlation is 

installed in the topology as a new hidden layer. Only one layer of weights is trained during the second 

step of recruitment process shown in Figure 11b. The incoming weights of the winning candidate 

neuron are frozen and it is recruited and then inserted into the active network in the second step of 

recruitment. The newly added hidden neuron is then connected to the output neurons and the weights 

connection become adjustable. All connections to the output neurons are trained, as shown in  

Figure 11b. In other words, the frozen weight links that connect the input and output neurons shown in 

Figure 11a are trained again using the Quickprop algorithm [42], as illustrated in Figure 11b. In 

contrast, the weight links connecting the recruited first hidden neuron and output neurons are trained 

for the first time. The recruitment and installation of the second hidden neuron initializes when the 

training goal cannot be met with current topology composed one hidden neuron.  

The second hidden neuron is then recruited using the process shown in Figure 12. Similarly, each 

candidate neuron from the pool is connected to each of these input neurons, but is not connected to the 

output neurons during the first step of recruitment. The weights connecting the input neurons,  

pre-recruited hidden neurons and candidate neurons are adjusted to maximize the correlation between 

the output of each candidate neuron and the residual error at the output neuron, as shown in Figure 12a. 

These candidate neurons receive input signals from both input neurons and the previously recruited 

hidden neuron. All weights connecting the inputs, pre-requited and candidate hidden neurons are 

adjusted to recruit the second hidden neuron. The neuron with the highest correlation is recruited in the 

topology as the second hidden layer, as shown in Figure 12b. The values of these weights connecting 

to these inputs and pre-recruited hidden neurons are then frozen as soon as the second hidden neuron is 

added to the active networks. All these connections to the output neurons are then established and 

trained. As shown in Figure 12b, all of these pre-recruited hidden neurons can be regarded as 

additional input neurons during the training of the single layer of weight values. 

 

  

CCNN

Output
layer

Input
layer

/ ( )KF RTS tP / ( )KF RTS tA

/ ( )KF RTS tPd / ( )KF RTS tAd

Weights under 
training

Pseudo connection

(a)

t

CCNN

Output
layer

Input
layer

/ ( )KF RTS tP / ( )KF RTS tA

/ ( )KF RTS tPd / ( )KF RTS tAd

(b)

Weights under 
training

Fixed weights
(frozen)

Recruited
First hidden 
neurons

t

Fixed weights (frozen)

Output 

layer

Input 

layer

Output 

layer

Input 

layer

CCNN CCNN

Fixed weights (frozen)

Pseudo connection

Weights under 

training Weights under 

training

Fixed weights 

(frozen)

Recruited

first hidden 

neurons



Sensors 2010, 10              

 

 

9268 

Figure 12. The recruitment and installation of the second hidden neuron. 

 

The process of recruiting new neurons, training their weights and training all connections to the 

output neurons, is continued until the errors reach the training goal or the maximum number of 

iterations or epochs (as defined by the user). According to [39], an epoch is defined when the 

presentation of the entire training set to the neural network (or hidden units) is reached. The finalized 

CCNN topology shown in Figure 13b becomes a modified version of original MFNN topology shown 

in Figure 13a with n hidden neurons and n hidden layers. In other words, each hidden layer consists of 

only one hidden neuron [42]. 

Figure 13. The comparison between finalized CCNN and MFNN topologies. 

 

According to [43], the use of CCNNs for developing an alternative INS/GPS integration scheme has 

several advantages over MFNNs. First, the best topology can be decided automatically based on the 

complexity of the applications and there is no need to perform extensive empirical trials to determine 

the size and depth of the network (i.e., the number of hidden neurons and hidden layers, respectively). 
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Moreover, the learning speed of CCNN is fast [42]. As indicated in Figures 11a and 12a, since only 

one layer of weight values are trained due to the fact that the recruited hidden neurons are treated as 

additional input neurons , the residual error signal can be delivered to all hidden neurons at the same 

time [42]. In addition, CCNN methodologies are useful for incremental learning, in which new 

information is added to a network that has been previously trained [41,42]. They can thus reflect 

variation in the model complexity by adjusting their weight values and topology automatically with 

additional information. In contrast, MFNNs can only alter the weight values to track the variations in 

model complexity [39,40]. 

Based on the training data applied in this study, the topologies of the proposed schemes are shown 

in Table 1. It can be seen that proposed CCNN KF/smoother schemes use fewer hidden neurons than 

MFNN KF/smoother schemes. In addition, the inputs and outputs of MFNN based scheme are exactly 

the same as those of CCNN based schemes. However, the number of hidden neurons and layers of the 

MFNN based schemes are decided empirically. In contrast, the topologies of the CCNN based schemes 

grow automatically online. All these hidden neurons applied by both schemes are nonlinear (e.g., a 

hyperbolic tangent sigmoid) and all these output neurons applied by them are linear. Figure 14 

illustrates the comparison of the learning behaviors of CCNN-KF and MFNN-KF based schemes based 

on the training data applied in this study. The red line represents the error produced by the CCNN-KF 

scheme during the first step of the procedure (correlation optimization) and the green line represents 

the error produced by the CCNN-KF scheme after completing the recruitment of a hidden neuron. 

Therefore, thirty-two learning patterns can be observed, as the procedure is repeated automatically for 

thirty-two times. In contrast, the blue line represents the error of MFNN-KF scheme. As shown in 

Figure 14, when a new neuron is inserted into the CCNN, its residual error reduces effectively.  

As indicated in Figure 14, the CCNN-KF scheme converges faster than the MFNN-KF scheme with 

the same training data set and training goal. Table 1 also indicates the training speed of CCNN based 

schemes is faster than MFNN based scheme by 100% in average. Each hidden layer of the CCNN-KF 

scheme only consists of one hidden neuron, and thus their final topology becomes deeper than that of the 

MFNN-KF scheme (i.e., they have more hidden layers). Based on the results presented in Figure 14, the 

CCNN-KF scheme is able to reach the same training goal with less training time and a simpler 

architecture compared to the MFNN-KF scheme. In addition, proposed CCNN based schemes are 

distinguished from MFNN based schemes as they can decide their latest topology ñon the flyò based on 

the dynamic variations and inertial sensor errors if new training data is provided. As shown in Table 1, 

the learning time of MFNN based schemes is around 10 minutes when the numbers of hidden neurons 

equal to 60 and 65. However, during the empirical training process, the number of hidden neurons had 

been validated from 5 to 100 and this process took more than 3 hours to choose the appropriate 

numbers, which are 60 and 65, respectively. In fact, the increments of adding the number of hidden 

neurons to the new candidate neural networks was 5 thus the training processes were repeated for 

training 20 candidate neural networks. In other words, with identical training samples, the MFNN 

based schemes applied in this study are decided by the designer after extensive training process for at 

least 3 hours when the CCNN-based schemes applied in this study construct their topologies 

autonomously without human intervention within 6 to 8 minutes.  
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Table 1. The topology comparison of CCNN and MFNN based schemes. 

Topology CCNN-KF CCNN-smoother MFNN-KF MFNN-smoother 

P: position.  

A: orientation 

P A P A P A P A 

Input neurons 7 7 7 7 7 7 7 7 

Hidden layer/neuron 32/32 35/35 34/34 35/35 1/60 1/65 1/60 1/65 

Output neurons 6 6 6 6 6 6 6 6 

Training time(s) 355 378 359 366 583 645 586 650 

Figure 14. The comparison of the learning behaviors of CCNN-KF and MFNN-KF based schemes. 

 

5. System Architecture  

The EKF applied in this study has 21 states, which are given as follows: 

1 3 1 3 1 3 ,1 3 ,1 3 ,1 3 ,1 3[ ]T

a g a gp v A b b s sd d d³ ³ ³ ³ ³ ³ ³ 

As shown in Figure 15, the EKF and smoother are utilized to optimally estimate these states and to 

compensate for their effects in real-time and the post-mission modes, respectively. In fact, either 

approach can provide optimally estimated nine navigation parameters. In addition, sensor biases (,1 3ab ³  

and ,1 3gb ³ ) and scale factors ( ,1 3aS ³  and ,1 3gS ³ ) can be estimated and feed back to the INS 

mechanization to correct these raw measurements provided by an IMU. The scope of this study is to 

improve the accuracies of positional and orientation parameters during GPS outages, only the 

components concerning these parameters are shown in Figure 15. This means that the sensor errors are 

not included in the inputs to ANN schemes, as shown in Figure 15. 

  

CCNN-KF -------(32)
MFNN-KF-------(65)
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Figure 15. An ANN training architecture (adopted from [31]). 

 

The errors of positional and orientation parameters estimated by the KF and smoother during GPS 

outages are used as the desired outputs or target values during the training process of various proposed 

ANN architectures, including MFNNs and CCNNs. The positional and orientation parameters estimated 

by the KF and smoother along with the time information in each scenario are used as the inputs of the 

proposed architectures. The goal of the proposed schemes is to compensate for the errors of the 

positional and orientation parameters estimated by the KF and smoother during GPS outages [30,31]. A 

superior IMU is applied as the reference system to generate reference solutions computed by the post-

mission process (e.g., smoother) with the full availability of GPS. The target values are these errors of 

KF and smoother with intentionally added GPS outages compared to reference solutions [30,31]. 

An ANN with optimal topology is expected to provide the best approximation accuracy for the 

unknown model using the most appropriate number of hidden neurons and hidden layers [39,40]. The 

CCNN has a flexible topology, as mentioned before; so there is no need to design these two parameters 

through extensive training process. But with MFNN there are many ways to decide on the most 

appropriate number of hidden neurons [39,40]. The standard principle is to decide it empirically during 

the early stages of topology design. It is thus very common in the design phase of neural networks to 

train many different candidatesô networks that have different numbers of hidden neurons and then to 

select the best, in terms of its performance based on an independent validation set [39,40].  

After being well trained, the proposed ANN compensation schemes are added to a loosely coupled 

INS/GPS integration architecture (closed loop), as shown in Figure 16. The intelligent architecture first 

receives raw data from an IMU and then use the INS mechanization along 21 states of KF and 

smoother to estimate positional and orientation parameters, respectively. Meanwhile, the estimated 

positional and orientation parameters are sent to the proposed ANN architectures along with time 

information to generate predicted errors to compensate for the estimated positional and orientation 

parameters provided by the KF and smoother simultaneously. Errors in these positional and orientation 

parameters are predicted with the proposed ANN schemes, and the correction can be completed after 

the predicted errors have been removed from the outputs of the KF and smoother.  
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Figure 16. The implementation of ANN embedded KF and smoother (adopted from [31]). 

 

6. Results and Discussion 

Three field tests were used to evaluate the performance of the proposed schemes. The tests were 

conducted in land vehicle environments using different integrated systems consisting of one tactical 

grade IMU, Litton LN200 (1 deg/hr), a low cost MEMS IMU, BEI MotionPak II and two NovATel 

OEM-4 receivers. In this study, those IMUs were applied to collect inertial measurements in the field 

and then these along with carrier phase DGPS solutions were fed into software that has an inertial 

navigation algorithm and EKF to estimate inertial states optimally. The integrated system with LN200 

IMU was used as the reference. The measurements and navigation solutions provided by the integrated 

system with MotionPak II were used to verify the performance of proposed schemes. Figure 17a shows 

the set up of these systems and illustrates the trajectories of the field tests. The experimental conditions 

are summarized in Table 2. 

The GPS measurements were processed using GrafNavTM software (Waypoint Consulting Inc.) in 

carrier phase DGPS to achieve ten centimeter level accuracy. The reference trajectories were generated 

by the integrated system with LN 200 IMU. They were determined using 21-state EKF and smoother 

implemented in the Aided Inertial Navigation Software (AINS) from the Department of Geomatics 

Engineering at of the University of Calgary. These parameters of EKF and the smoother applied in this 

study were well tuned so that they can represent the best achievable navigation accuracy for tactical 

grade IMUs.  
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Figure 17. The tested systems and experimental trajectories. 

 

(a) The set up of the tested systems.    (b) Test trajectory 1. 

 

(c) Test trajectory 2.      (d) Test trajectory 3. 

Ten GPS outages, marked with circles and each lasting 30 seconds, were simulated using the 

measurements collected in the third field test, as indicated in Figure 17d. The outputs of the KF and 

smoother provided by those systems were applied as the inputs for the proposed architectures. Several 

input dimensions were considered by choosing some of the outputs from the KF and smoother. In 

addition, the outputs of the KF and smoother with simulated GPS outages were then compared with the 

reference trajectory. The errors, which can be interpreted as the error behaviors of the KF and 

smoother, were then applied as the desired output for training. As shown in Figure 17d, the dynamics 

variations experienced by the vehicle during the simulated outages include straight line segments, 

sharp turns, accelerations and decelerations. It is worth noting that five simulated outages, marked with 

triangles, were used as the independent data set for cross validation during training process to ensure 

generalization capability as well as to avoid possible over-training problems. 

In addition, a total sixty four GPS outages, each has 30 seconds in length, were simulated randomly 

in four scenarios using the measurements collected in the first and second field tests using the 

INS/GPS integrated with the MotionPak II (MEMS) IMU. Both field test data sets are applied to verify 

the performance of the proposed schemes. 
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Table 2. The summary of the experimental conditions. 

Index NVS PDOP Speed (m/s) Date Duration 

(seconds) Min.  Max. Avg. Min.  Max. Avg. Min.  Max. Avg. 

Tj -1 4 10 7 1.2 5.8 2.2 0 22 7.5 03.17.2005 2,400 

Tj -2 4 10 7 1.1 5.8 2.1 0 22 8.2 03.17.2005 1,850 

Tj -3 4 10 7.5 1.4 5.8 2.4 0 22 7.8 03.16.2005 1,700 

NVS: Number of visible satellites, Min.: Minimum, Max.: Maximum, Avg.: Average, Speed: 

Horizontal velocity. 

6.1. The training of the proposed schemes 

Figure 18 illustrates the training results in terms of the errors of compensated positional and 

orientation solutions. Table 3, summarizes various statistical indexes including Root Mean Squared 

(RMS) errors, medians of errors and 99-Percentile of errors derived from Figure 18. As indicated in 

Figure 18 and Table 3, the proposed ANN-KF and ANN-smoother schemes learned the error behavior 

of the KF and smoother during simulated GPS outages well, especially the heading angles and height 

components. In addition, the proposed CCNN-KF/smoother schemes also learned the error behavior of 

the KF and smoother well and provided comparable performance to MFNN-KF/smoother schemes. 

As show in Table 3, the RMS errors of CCNN-KF/smoother and MFNN-KF/smoother based 

schemes are reduced by 99% on average compared to KF/smother solutions. In addition, the median 

values of different errors of KF/smother solutions are reduced by 100% on average, which means that 

the proposed schemes remove the biases due to the setting issue between test and reference systems 

after training. In other words, the proposed schemes are able to compensate for the biases due to the 

setting issue between test and reference systems automatically as long as these systems are fixed on the 

same plate. In addition, the systematic error behaviors of positional and orientation parameters 

estimated by smoother during GPS outages, which are considered as the total impact of vehicle 

dynamics, inertial sensor errors and the length of GPS outrages, are fully compensated. Therefore, the 

median values of these errors produced by proposed schemes shown in Table 3 approach to zero.  

Figure 18. The samples of compensated positional and orientation errors (Training scenario). 
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