
Sensors 2010, 10, 292-312; doi:10.3390/s100100292

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors
Article

PIYAS-Proceeding to Intelligent Service Oriented Memory
Allocation for Flash Based Data Centric Sensor Devices in
Wireless Sensor Networks

Sanam Shahla Rizvi * and Tae-Sun Chung

Information and Computer Engineering, Ajou University, San 5 Woncheon-dong Yeongtong-gu,
Suwon 443-749, Korea; E-Mail: tschung@ajou.ac.kr

* Author to whom correspondence should be addressed; E-Mail: sanam@ajou.ac.kr;
Tel.: +82-(0)11-9952-3352; Fax: +82-(0)31-219-1614.

Received: 11 November 2009; in revised form: 12 December 2009 / Accepted: 20 December 2009 /
Published: 30 December 2009

Abstract: Flash memory has become a more widespread storage medium for modern
wireless devices because of its effective characteristics like non-volatility, small size, light
weight, fast access speed, shock resistance, high reliability and low power consumption.
Sensor nodes are highly resource constrained in terms of limited processing speed, runtime
memory, persistent storage, communication bandwidth and finite energy. Therefore, for
wireless sensor networks supporting sense, store, merge and send schemes, an efficient and
reliable file system is highly required with consideration of sensor node constraints. In this
paper, we propose a novel log structured external NAND flash memory based file system,
called Proceeding to Intelligent service oriented memorY Allocation for flash based data
centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of
our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve
instant mounting and reduced SRAM space by keeping memory mapping information to a
very low size of and to provide high query response throughput by allocation of memory
to the sensor data by network business rules. The scheme intelligently samples and stores
the raw data and provides high in-network data availability by keeping the aggregate data
for a longer period of time than any other scheme has done before. We propose effective
garbage collection and wear-leveling schemes as well. The experimental results show that
PIYAS is an optimized memory management scheme allowing high performance for
wireless sensor networks.

OPEN ACCESS

Sensors 2010, 10

293

Keywords: wireless sensor networks; intelligent techniques; data organization; query
processing; memory management

1. Introduction

The continuous improvement in hardware design and advances in wireless communication have
enabled the deployment of various wireless applications. Wireless sensor network (WSN) applications
become essential tools for monitoring the activity and evolution of our surrounding environment. The
examples of WSN applications include environmental and habitat monitoring, seismic and structural
monitoring, surveillance, target tracking, ecological observation, and a large number of
other applications.

In WSNs, monitoring can be deployed by the following three techniques: first, each sensor node
transmits its generated data to a sink node immediately [2]. This approach is referred as Sense and
Send. Second, every sensor node aggregates its own generated data and data coming from its children
nodes and then sends to its parent node [3]. This scheme is called Sense, Merge and Send. Third, each
sensor node stores its own generated data in its local memory. The data aggregate and are sent to the
sink node when it is queried [4]. This approach is called Sense, Store, Merge and Send.

Currently the advanced applications follow the third approach mentioned above. They store the
sensor data in local on-chip and/or off-chip flash memory and perform in-network computation when
required [1,5,6]. Such in-network storage approach significantly diminishes the energy and
communication costs, and prolongs the lifetime of sensor networks. As a result, many techniques in the
areas of data centric storage, in-network aggregation and query processing in WSNs have
been proposed.

We compare our current research PIYAS with previous schemes as shown in Table 1. Matchbox [7],
the first file system for sensor nodes, provides only the append operation and does not allow the
random access of data for modification. It does not offer built-in features for device life efficiency in
terms of wear-leveling. It has small size code and occupies reduced footprints that rely on the number
of open files. ELF [8] claims to outperform the Matchbox by higher read throughput and random
access of data by timestamps. Like Matchbox and ELF, Capsule [9] is also a limited internal memory
technique. It claims to outperform ELF in terms of energy efficiency. MicroHash [10] is an external
large memory-centric approach. It appends the data in time series and uses the hash index structure for
answering queries. It suffers from the need for extra I/O operations to maintain the huge metadata.
However, neither of the four previously discussed approaches consider the data life efficiency in terms
of in-network data persistence as they simply erase the data to provide space for new data when the is
memory exhausted. Storage efficiency in terms of optimal memory bandwidth utilization is also not
guaranteed in the previous schemes as a small amount of data consumes a complete memory page
where remaining bytes remain un-used. Therefore, our proposed PIYA and PIYAS schemes provide
long-term in-network data availability by retaining data in form of raw and aggregate data, and provide
optimal utilization of memory space by gathering data in main memory buffers. The data flush in the
flash memory when the data of one complete page becomes available, except in exceptional cases

Sensors 2010, 10

294

where the sensor stops sensing and switches to its sleep mode. Plus, we offer high throughput with
various natures of queries. Furthermore, our current research PIYAS prolongs device life in terms of
wear-leveling, plus offers higher energy efficiency.

Table 1. Comparison of PIYAS with previous schemes.

Technique Storage
Device

Storage
Location

Data Life
Efficient

Device Life
Efficient

Energy
Efficient

Storage
Efficient

Matchbox NOR Internal No No No No
ELF NOR Internal No Yes No No
Capsule NOR/NAND Internal No Yes Yes No
MicroHash NAND External No Yes Yes No
PIYA NAND External Yes Yes Yes Yes
PIYAS NAND External Yes Yes Yes Yes

Even though a recent study [11] shows that flash storage is two orders of magnitude cheaper than

communication and comparable in cost to computation plus the fact that flash memory offers many
other advantages in terms of large size and reliable storage, its special hardware read, write and erase
characteristics impose design challenges on storage systems [12] (discussed in detail in Section 2.2).
To overcome the problems of flash memory, the storage management techniques developed for disks
may not be appropriate for flash. Therefore, to make flash media useful for sensor environments and to
efficiently satisfy the network business goals and requirements relevant to sensor data storage, an
efficient and reliable data management scheme is highly required.

In this paper, we propose the log-structured external large NAND flash memory based file system
called Proceeding to Intelligent service-oriented memorY Allocation for flash based data centric
Sensor devices in wireless sensor networks (PIYAS). This is the enhanced version of PIYA [1]. We
highlight three main problems and we aim to achieve their solutions accordingly.

• First, when flash space becomes exhausted and there is no space remaining for further data
storage, the system selects the victim block for garbage collection and the data in the victim
block is simply erased and then the future queries cannot access this data as in [6-10]. This
generates a data failure for user applications. Therefore, to address this issue, an effective data
organization policy is required to provide long term in-network data availability.

• Second, the system initialization time and size of mapping structure increases with the size of
stored data and flash media as in [7,10], but size of SRAM does not follow the trend of
increasing size of flash memory. Thus, for instant mounting, a reliable and small size mapping
structure is necessary with consideration of limited SRAM constraints of sensor nodes.

• Third, to entertain the read intensive conditions, reading of the entire media at the time of query
responses becomes a big overhead with the increasing size of data and flash capacity as in [10].
Hence, an efficient query processing framework is desired to effectively satisfy the business
needs.

In this paper, beside above given goals, we aim to achieve the following additional objectives to
optimize our idea:

Sensors 2010, 10

295

• Minimize reads, writes and erases to secure energy,
• Effective garbage collection, and
• Reliable wear-leveling scheme.

The remainder of this paper is organized as follows. We review the background of system
architecture of sensor node plus flash memory characteristics are explained in Section 2. Section 3
describes the proposed PIYAS scheme. Experimental results are discussed in Section 4. Finally,
Section 5 presents the conclusions.

2. Background

2.1. System Architecture of Sensor Node

The architecture of the wireless sensor node consists of a microcontroller unit (MCU) that
interconnects a data transceiver, sensors, along with analog-to-digital converters (ADCs), an energy
source, and an external flash memory, see Figure 1. The MCU includes a processor, a static RAM
(SRAM), and on-chip flash memory. The processor increases efficiency by reducing power
consumption. It runs at low frequency (~4–58 MHz) and further saves energy while the node is in
standby or sleep mode. The low power microcontrollers have limited storage, typically less than
10 KB of SRAM, mainly for code execution. However in latest generation of sensors [5], it also uses it
for in-memory buffering. The limited amount of on-chip flash memory provides a small non-volatile
storage area (~32–512 KB). It is used for storing executable codes and accumulated values for a small
period of time. However, it consumes most of the chip area and much of the power budget. Therefore,
a larger amount of extra flash memory, perhaps more than a megabyte, is used on a separate chip to
support the enhanced network functionality. The required amount of power can be obtained from many
sources. Most sensors deploy a set of AA batteries and/or solar panels [13]. However, in most cases
the choice of correct energy source is application specific.

Figure 1. Sensor node architecture.

External Flash
Memory

Power Source
(AA, Solar)

Sensor

ADC

Sensor

Transceiver

On-Chip Flash
~32KB - 512KB

SRAM
~ 8KB - 64KB

Processor
~ 4 - 58MHz

MCU

External Flash
Memory

Power Source
(AA, Solar)

Sensor

ADC

Sensor

Transceiver

On-Chip Flash
~32KB - 512KB

SRAM
~ 8KB - 64KB

Processor
~ 4 - 58MHz

MCU

Sensors 2010, 10

296

2.2. Overview of Flash Memory

Flash memory is a non-volatile solid state memory which has many attractive features such as small
size, light weight, fast access speed, shock resistance, high reliability, and low power consumption.
Because of these attractive features and decreasing price and increasing capacity, flash memory is
becoming ideal storage media for mobile and wireless devices [14].

Flash memory array is partitioned into equal size erase units called blocks and each block is
composed of a fixed number of read/write units called pages (Figure 2). Every page has two sections,
data area and spare area. Spare area stores metadata like logical block number (LBN), logical page
number (LPN), erase count number (ECN), error correction code (ECC), cleaning flag for indicating
garbage collection process in block, used/free flag to show page is used or still free, and information of
being valid/obsolete about data in data area. The sizes of pages and blocks differ
by product.

Figure 2. Flash memory (32 MB) architecture.

Data area
(512B)

Spare area
(16B) Valid/Obsolete Flag

Cleaning Flag
Used/Free Flag

ECC

LBN
LPN
ECN

Reserved

Block 0

Block 1
Block 2

Block 2047
…

.

Flash Array
Page 0

Page 1
Page 2

Page 31

…
.

Block Page
Spare Area

Data area
(512B)

Spare area
(16B) Valid/Obsolete Flag

Cleaning Flag
Used/Free Flag

ECC

LBN
LPN
ECN

Reserved

Block 0

Block 1
Block 2

Block 2047
…

.

Flash Array
Page 0

Page 1
Page 2

Page 31

…
.

Block Page
Spare Area

Flash memory has three kinds of operations: page read, page write, and block erase. The
performance of three kinds of operations is summarized based on memory access time and required
energy at maximum values as shown in Table 2 [15].

Table 2. Performance of NAND flash memory.

Operation Time (µsec) Energy (mA) (Current 3.3 V)
Page Read (512 + 16) B 15 20
Page Write (512 + 16) B 500 25

Block Erase (16K + 512) B 3,000 25

Even though flash memory has many attractive features, its special hardware characteristics impose

design challenges on storage systems. It has two main drawbacks:

First Drawback: An inefficiency of in-place-update operation. When we modify data, we cannot
update data directly at the same address due to the physical erase-before-write characteristics of flash
memory. Therefore, updating even one byte data in any page requires an expensive erase operation on
the corresponding block before the new data can be rewritten. To address this problem, the system
software called flash translation layer (FTL) was introduced, as in [16-18]. FTL uses a non-in-place-

Sensors 2010, 10

297

update mechanism to avoid having to erase on every data update by using logical-to-physical address
mapping table maintained in main memory. Under this mechanism, the FTL remaps each update
request to different empty location and then the mapping table updates due to newly changed logical-
to-physical addresses. This protects one block from being erased per overwrite. The obsolete data
flagged as garbage which a software cleaning process later reclaims. This process is called garbage
collection, as in [19-21].

Second Drawback: The number of erase operations allowed to each block is limited like10,000 to
1,000,000 times and the single worn-out block affects the usefulness of the entire flash memory device.
Therefore, data must be written evenly to all blocks. This operation is named as wear-leveling, as
in [22,23]. These drawbacks represent hurdles for developing a reliable flash memory based sensor
storage systems.

3. PIYAS: Proposed Memory Management Scheme

In this section, we discuss the key approaches of our present research. First, we discuss the sensor
data accumulation and buffering in main memory and then data organization in flash memory blocks.
Second, we structure the small mapping information by considering the limited SRAM constraints in
write intensive conditions. Third, we show how to process the query to access the data from flash in
read intensive conditions. Further, we present the garbage collection and wear-leveling policies.

3.1. Data Organization Framework

Sensor network storage workload may be highly write-intensive in different scenarios [11]. Data
may add more frequently to than it is read from flash memory. We aim to provide an efficient data
storage method by sampling data while buffering data in SRAM. Then flash space allocates based on
sensor data forms as raw data and aggregate data.

3.1.1. Data Buffers Management

SRAM provides the opportunity to reserve the data buffers to put together the currently
accumulated sensor readings from environment and then data store in a sensor’s local memory. Data
buffering saves the flash space and reduces the write overhead. We reserve the data buffers by the
number of business rules where every buffer size is of one read/write unit of flash memory. When data
arrives in the range of any rule, the main memory space assigns dynamically chunks of bytes as buffer.
Data of a complete buffer flush in flash memory when the buffer becomes full.

Business Rules: Every network has business rules to achieve some business goals. To achieve services
in sensor networks, business rules are an effective method for programming a file system for sensor
nodes. Rules are logically linked as chain where the structure of rules represents the simple business
logic in a compact and efficient way. For example, the business goal says to collect the temperature
readings in discrete range from 1F to 80F. In that case, we can split the range in set of rules like
(A: [1–20]), (B: [21–40]), (C: [41–60]), (D: [61–80]). The formulation of set of rules highly depends

Sensors 2010, 10

298

on the probability of type of data accumulation from environment and location for implementation of
sensors. Since the sensor nodes assist the real life processes, the variation in set of rules is expected to
address the monitoring of service parameters. Therefore, we assume that the set of rules is available to
sensor nodes from the network applications.

Example: We explain our data sampling scheme by an example. In Figure 3, the randomly taken sensor
values are continuously coming and buffering with corresponding rules. The trigger option with every
data buffer is a fixed threshold to define the gap of the number of times between every value of data.
For instance, if the latest value is kept in one buffer then the next value adds in same rule buffer after
the number of times of a threshold. Here we set the trigger threshold value as 3. Initially the trigger
value is zero. See Rule-A, when the first three values 8, 1, 2 arrive, they only increase the trigger value
but are not stored (×) in buffer. However, when a fourth value 1 comes in same Rule-A, the value
stores (√) in buffer and the trigger resets to zero again. In the same way, further values 2, 11, 12 are
discarded and 9 stores in the buffer. This process repeats until the data buffer becomes full and flushes
in flash memory. Data is stored in data buffers for all other rules in the same way.

Figure 3. Data buff.ers management in SRAM.

31,37 1Rule B: [21-40]
Data Buffer Trigger

23 3132 26 212937 2528

√ × × ×√ × × ××

Sensor data

1,9 0

2 111 1 829 12

√ × × ×√ × × ×

Rule A: [1-20]
Data Buffer Trigger

Sensor data

42,59 2Rule C: [41-60]
Data Buffer Trigger

48 4257 47 445259 5842

√ × × ×√ × × ××

Sensor data 45

×

62,79 3Rule D: [61-80]
Data Buffer Trigger

78 6265 64 617279 6872

√ × × ×√ × × ××

Sensor data 66

×

62

×

31,37 1Rule B: [21-40]
Data Buffer Trigger

23 3132 26 212937 2528

√ × × ×√ × × ××

Sensor data

1,9 0

2 111 1 829 12

√ × × ×√ × × ×

Rule A: [1-20]
Data Buffer Trigger

Sensor data

42,59 2Rule C: [41-60]
Data Buffer Trigger

48 4257 47 445259 5842

√ × × ×√ × × ××

Sensor data 45

×

62,79 3Rule D: [61-80]
Data Buffer Trigger

78 6265 64 617279 6872

√ × × ×√ × × ××

Sensor data 66

×

62

×

The main idea behind this sampling approach is to minimize the write overhead in flash when data
repeats for same range of values in same period of time, and buffering minimizes the read overhead as
well against the single value storage in a single page of memory. The sampling approach also protects
against the repeated erases in cases when memory becomes frequently exhausted. The value of
sampling threshold may be set higher if user demands more abstract data, otherwise the data can be
made concrete by using fine threshold values.

Sensors 2010, 10

299

3.1.2. Memory Block Organization

After sampling and buffering the data, we propose to store the sensor data in flash memory in two
most user demanding forms as raw data and aggregate data. The raw data are the readings the sensor
collects periodically from the environment at regular incremental intervals of time or when some event
occurs. Therefore, the raw data blocks (RDBs) individually assign to every rule in the form of a chain.
When flash space becomes exhausted, the system selects the victim block for garbage collection from
RDBs based on the long chain of blocks and the age of data (see Section 3.4). In conventional
schemes, data are simply erased and then the future queries cannot access such data, as in [6-10]. This
generates a data failure for the network application. In this paper, instead of permanently discarding
data from victim block, the data has second chance to be used for applications. The data from victim
RDB aggregate on the most user demanding parameters and are stored in an aggregate data block
(ADB).

Data Aggregation: We congregate the values of the victim block from the flash erase unit to a
read/write unit where every erase unit is composed of multiple read/write units. It means that the
number of pages of victim block aggregate based on user defined parameters like MIN, MAX,
AVERAGE, COUNT, etc. on single page size. Therefore, every page on the ADB represents the major
information of data of one complete previously erased RDB.

Example: We define our scheme of data organization in memory blocks by an example. Figure 4
shows two sections, our previous scheme PIYA and our current enhanced scheme PIYAS. We assume
that in this example every block consists of four pages.

Figure 4. Flash memory block organization.

1

Raw Data Blocks Aggregate Data Blocks ∑ Aggregation Symbol

PIYA

∑

PBN7 PBN8

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

1

2

3

PIYAS

∑

PBN7 PBN9

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

∑∑

PBN8 2
3

1

Raw Data Blocks Aggregate Data Blocks ∑ Aggregation SymbolRaw Data BlocksRaw Data Blocks Aggregate Data BlocksAggregate Data Blocks ∑ Aggregation Symbol∑ Aggregation Symbol

PIYA

∑∑

PBN7 PBN8

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

1

2

3

PIYAS

∑

PBN7 PBN9

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

∑∑

PBN8

∑∑

PBN7PBN7 PBN9PBN9

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

PBN1 PBN2 PBN3 PBN4 PBN5 PBN6

Rule A Rule B Rule C

∑∑∑∑

PBN8PBN8 2
3

In the figure, there are three rules: Rule-A, Rule-B and Rule-C, and every rule has separate RDBs
allocated. As Rule-A keeps three blocks, physical block number 1 (PBN1, PBN2 and PBN3), Rule-B
acquires one block PBN4, and two blocks PBN5 and PBN6 are allotted to Rule-C. Our previous

Sensors 2010, 10

300

scheme PIYA [1] proposed that whenever some RDB selects a victim to erase as there are three blocks
they are erased in sequence, first PBN1, second PBN5 and third PBN2, than the combined ADBs
PBN7 and PBN8 are used to store the aggregated data from all rules. As in the figure, aggregated data
of PBN1 and PBN5 are stored on the last two available pages of PBN7 where we assume that the first
two pages are already filled and aggregated data of PBN2 are saved on first available page of PBN8. In
that case, search and access of desired data while query responding from ADBs takes long time
because data from all rules are saved together. Therefore, PIYAS enhances the scheme and proposes to
dedicate separate ADBs as PBN7 to Rule-A, PBN8 to Rule-B and PBN9 to Rule-C individually to
provide efficient query responses in read intensive scenarios. Therefore, the data aggregation saves
space and provides a high availability of in-network data for a long period of time. The data from
ADBs is deleted after a user defined time threshold that indicates how long some data should be kept
in memory.

3.2. Mapping Structures Management

Flash memory mapping information stores in flash media in dedicated map blocks for fast
initialization of system. At the time of system startup, the mapping information fetches in SRAM.
Limited SRAM and lengthy initialization time are challenging constraints of sensor resources.
Therefore, we aim to achieve instant mounting with very small size of SRAM footprints. In our
scheme, data is saved sequentially on the first available page of the latest allocated RDB according to
some rule. Therefore, every rule keeps only first available physical page number (PPN) in SRAM
where single page mapping reserves only 2 bytes in main memory for 32 MB of flash memory which
has 162 total number of pages. Therefore, we need only the limited number of pages mapped by the
number of rules.

Example: We define our mapping structure by an example. Table 3 shows the mapping structure in
SRAM. We assign four rules (A, B, C and D) where every rule takes a temperature value in
incremental order. Every rule keeps the first available page number from its latest allocated RDB.
Table 4 shows the metadata of the chain of RDBs and ADBs allocated to rules. It describes that the
PPN1 of Rule-A in Table 3 belongs to newly allocated RDB PBN14 of Rule-A as PBN14 is shown
lastly allotted in chain of blocks of Rule-A in Table 4. The same situation occurs for all other rules. A
new write operates sequentially on the first available page from RDB. As Figure 5 shows the RDBs
allocated to Rule-A and first available free page as PPN1 of PBN14 that increments by one to PPN2
after write operation. Similarly, memory address increments by the number of pages in one
block, automatically.

Table 3. Mapping table in SRAM.

Rule Description PBN (PPN)
A: [1–20] 14(1)
B: [21–40] 15(2)
C: [41–60] 16(3)
D: [61–80] 17(4)

Sensors 2010, 10

301

Table 4. Metadata in flash map blocks.

Rule Description PBN (Raw Data) PBN (Aggregate Data)

A: [1–20] 1,5,9,14 13
B: [21–40] 2,6,10,15 -
C: [41–60] 3,7,11,16 18
D: [61–80] 4,8,12,17 -

Figure 5. Sequential incremental page allocation.

Used page Free page

PPN0
PPN1
PPN2

PPN31

PBN1
PPN0
PPN1
PPN2

PPN31

PBN5
PPN0
PPN1
PPN2

PPN31

PBN9
PPN0
PPN1
PPN2

PPN31

PBN14

.

Rule A

Next available page

Used page Free page

PPN0
PPN1
PPN2

PPN31

PBN1
PPN0
PPN1
PPN2

PPN31

PBN5
PPN0
PPN1
PPN2

PPN31

PBN9
PPN0
PPN1
PPN2

PPN31

PBN14

.

Rule A

Next available page

Used page Free page

PPN0
PPN1
PPN2

PPN31

PBN1
PPN0
PPN1
PPN2

PPN31

PBN5
PPN0
PPN1
PPN2

PPN31

PBN9
PPN0
PPN1
PPN2

PPN31

PBN14

.

Rule A

Next available page

Used page Free page

PPN0
PPN1
PPN2

PPN31

PBN1
PPN0
PPN1
PPN2

PPN31

PBN5
PPN0
PPN1
PPN2

PPN31

PBN9
PPN0
PPN1
PPN2

PPN31

PBN14

.

Rule A

Next available page

The meta-data updates in flash map blocks only when the new block allocates to it or an old block
deletes from the chain of any rule. It saves the write operations in map blocks by the number of pages
in a block minus one.

During initialization, the system reads the last allocated PBNs of RDBs to every rule from the
metadata in map blocks and extracts the first available free page addresses for building the mapping
table in SRAM. Mounting the information of ADBs in a write intensive scenario is not beneficial
because the system needs the information of the ADBs either at the time of garbage collection to save
the aggregated data from victim RDB to ADB or in read intensive conditions. In the first condition, the
system simply reads the PBN of ADB assigned to the victim block rule and stores the aggregated data
on the first available free page. Under the latter condition, the system fetches the complete metadata of
RDBs and ADBs by a single commit read operation to entertain the queries effectively.

3.3. Query Processing Framework

There are two sensor node states: active and sleep. A sensor node sleeps for a long time to preserve
energy and only activates to accumulate data from the environment in predefined time intervals. In this
paper, we filter data in data buffers in main memory assigned to every rule and flush in flash memory
when data buffers become full. Every data buffer is of same size as the read/write unit of the flash
memory so flushing consumes one flash page every time. Every flash memory page has two sections:
data area and spare area. The spare section is used to store the metadata regarding the data in the data
section. To provide efficient query processing, we store rule based data physically and time based
hierarchically. Therefore, while writing data in a data area the related timestamp is also recorded in the
spare area of each page. This results in time units for the number of pages in one block.

Sensors 2010, 10

302

In the read intensive scenario, our previous scheme PIYA extracts the timestamps by reading the
spare area of the first page of every block and sets the time between two consecutive RDBs of same
rule chain. Then the table arranges in main memory for fast access of data. When some query comes in
the range of some rule, the system forwards that in the corresponding block according to the desired
time range of the query. The system evaluates the timestamp written in the spare area from the latest
written page. If the page supports the queried value, then the system checks the data items inside the
data section of page, otherwise it moves one page up.

In the case of a large size of space being occupied the scanning by PIYA of the spare area of the first
page of every block to build the mapping table and then finding the exact pages by reading the spare
areas of every page in the corresponding block consumes a long time and high energy. Therefore, in
this paper, PIYAS implements a more energy efficient data access and provides a high throughput for
responses to user queries. We propose to maintain the data storage log in the form of metadata in the
dedicated map blocks separate from the file system mapping information. We store the metadata
regarding the memory assigned to every rule in a particular time interval as shown in Figure 6, where
Rule-A and Rule-B consumes six pages, three for each in their corresponding blocks as PBN11 and
PBN12 in time t1 and at the same time metadata regarding consumed flash pages in time t1 stores in
map block as PBN5 on first available free page as PPN1.

Figure 6. Metadata storage on flash map blocks.

t1

t1.1

Rule A: [1-20]

Rule A: [1-20]

Rule A: [1-20]

Rule B: [21-40]

Rule B: [21-40]

Rule B: [21-40]

Data bufferData buffer

Data buffer

Data buffer

Data buffer

Data buffer

t1.5

t1.9

Main Memory

PBN 11 PBN 12

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PBN 5

Used page Free page

Rule A Rule B Map block

(A,PBN11,PPN0)(B,PBN12,PPN0)
(A,PBN11,PPN1)(B,PBN12,PPN1)
(A,PBN11,PPN2)(B,PBN12,PPN2)

Flash Memory

Metadata t1

t1

t1.1

Rule A: [1-20]

Rule A: [1-20]

Rule A: [1-20]

Rule B: [21-40]

Rule B: [21-40]

Rule B: [21-40]

Data bufferData buffer

Data buffer

Data buffer

Data buffer

Data buffer

t1.5

t1.9

Main Memory

PBN 11 PBN 12

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PPN0

PPN1

PPN2

PPN31

. . .

PBN 5

Used page Free page

Rule A Rule B Map block

(A,PBN11,PPN0)(B,PBN12,PPN0)
(A,PBN11,PPN1)(B,PBN12,PPN1)
(A,PBN11,PPN2)(B,PBN12,PPN2)

Flash Memory

Metadata t1

The system fetches the metadata from map blocks and builds the query processing framework in
main memory for entertaining the read intensive scenarios efficiently. Table 5 presents the logical
framework of memory where all data are sequentially stored in time hierarchy but actually divided in
rules. The table shows the physical addresses accumulated by sensor raw data in every timestamp and
empty spaces show that no data was collected by the sensor for rules in such time frames. We gather

Sensors 2010, 10

303

the metadata like timestamp as from t1 to t6 where t1 is oldest and t6 is latest timestamp and the
assigned PBN and its corresponding PPNs regarding every individual rule.

For addressing the queries on already aggregated data, we keep only PBNs of ADBs in main
memory like PIYA. Therefore, we have advantage that our scheme preserves the energy and takes a
reduced search time for answering any query because we allocate the separate ADBs to individual
rules, see Table 5. Therefore, unlike the PIYA scheme, PIYAS does not have to read the spare areas of
pages of unconcerned rules.

Table 5. Query processing framework.

Rule Description A: [1–20] A: [21–40] A: [41–60] A: [61–80]
Timestamp PBN (PPN) PBN (PPN) PBN (PPN) PBN (PPN)

t1 11 (0,1,2) 12 (0,1,2) - -
t2 - 12 (3,4,5) 13 (0,1,2) -
t3 - - 13 (3,4,5) 14 (0,1,2)
t4 11 (3,4,5) - - 14 (3,4,5)
t5 11 (6,7,8) 12 (6,7,8) - -
t6 - 12 (9,10,11) 13 (6,7,8) -

Aggregate Data Blocks 21 - 22 23

3.3.1. Query on Raw Data Blocks

We explain the time-based, value-based and hybrid queries in detail in the following paragraphs.
However, the comparison and aggregation based queries follow the same way to extract data from
flash media. For better understanding of query processing framework in following examples, we refer
to Table 5.

Time-Based Queries: Time-based or temporal query answers based on the evaluation of timestamps
recorded by every physical address to satisfy a given situation. Queries like: find the five latest records
of maximum temperature? are answered by scanning the latest records of timestamp t4 of Rule-D:
[61-80] because Rule-D keeps the values of the range of maximum temperature. The system reads the
lastly allocated PBN and its corresponding latest written PPNs as 14(3,4,5) and extracts the data
directly from specified physical addresses. It takes only three read operations and protects from
unnecessary reads.

Value-Based Queries: Value-based queries are answered by evaluating the range of data required. A
query like: find the latest records of temperature between 50F-70F? clearly shows the range belongs
to Rule-C: [41-60] and Rule-D: [61-80]. The value answers by scanning the latest readings of both
rules as 13(6,7,8) and 14(3,4,5), respectively. It takes only six read operations to effectively respond to
the query.

Sensors 2010, 10

304

Hybrid Queries: Hybrid queries are combinations of time-based and value-based queries. Queries like:
find five records of temperature between 25F-35F in time t2? are answered by reading the values from
12(3,4,5) of timestamp t2 from Rule-B: [21-40]. It takes only three read operations.

3.3.2. Queries on Aggregate Data Blocks

If the queried time unit is less than the oldest timestamp available in RDBs, the system forwards the
search query on to ADBs. For example, a query like: find five records of max temperature at time
t1-1? denotes that queried time period t1-1 is less than the least timestamp t1 available in raw data,
although t1-1 ∈ ADB as it is available in the range of aggregated data. So the query transfers to the
dedicated ADB of the corresponding rule.

In our previous scheme PIYA that system evaluated both the rule symbol and timestamps written in
the spare area. If the rule supports the queried value then the system checks the data items inside the
data section of page, otherwise it moves one page up. In that case, for answering any query, the system
may have to attempt many read operations unnecessarily as system previously used the combined
ADBs for all rules.

In this paper, we assign separate ADBs to every rule, which minimizes the read overhead for
accessing the required data. We adopt the same procedure to respond to any query but it becomes more
simple and efficient to forward a query direct to the exact ADB of the queried range rule. As above the
query is answered by scanning the records of ADB as PBN23 in Table 5 of Rule-D: [61-80] because
Rule-D stores the values of the range of maximum temperature. The system evaluates the timestamp
written in the spare area from the latest written page for answering temporal queries. If a page supports
the queried value, it extracts the data items inside the data section of page otherwise it moves one
page up.

3.4. Garbage Collection

Under real workload conditions, thousands of readings are stored in flash memory and accessed in
different situations. All data is stored sequentially and may be accessed randomly depending on user
demand. Data has its user defined in-network life and after a predefined time threshold data becomes
dead and the block keeping dead data is marked obsolete. To make space for new data, the reclamation
takes place either in the background when the system is idle or on-demand when the amount of free
space drops below some predetermined threshold.

In this paper, the first priority for erasure is for already obsolete blocks. We achieve reduced erase
operations as well as efficient wear-leveling by not erasing blocks immediately after they become
obsolete. Blocks are collected in dirty blocks pool and when system triggers the cleaner for free space,
the block with the least erase count number (ECN) is selected for erasure and then provided for new
data. The ECN is the meta-information used to keep the erase record of a block. In another case, if
there is no obsolete block available, the victim block selection is applied by following steps:

Step 1: Select rule(s) with long chain of raw and aggregate data blocks. Every time, for cleaning the
system evaluates two blocks from the long chain of blocks, one from RDBs and other from ADBs. The
system selects the blocks by a first-in-first-out policy. It means the block with the oldest timestamp is

Sensors 2010, 10

305

always selected for erasure. RDB and ADB can be selected by the same or different rules, depending
on the long chain of blocks in any rule.

Step 2: Evaluate selected ADB. The system evaluates the timestamp of the last written page of the
oldest ADB. If the data is dead, meaning the timestamp crossed the threshold of allowed in-network
data sustainability, then the system marks the whole block as obsolete. As the last written page of
every block represents the latest data within the block, if the last written page data becomes dead, then
by default the data in all the previous pages become dead too. Then the block is erased and made
available for new data. In the other case, if a block is still alive then the system goes to step three.

Step 3: Evaluate selected RDB. The system evaluates the timestamp of the last written page of the
oldest RDB. If the data exceeds the life limit then the system erases the block and provides it for new
data. In the other case, the system evaluates the timestamps recorded in the spare areas of every page
according to the time threshold of in-network data sustainability. The pages from the block under
observation that are still alive aggregate on the user provided aggregation parameters. The system
aggregates the data from the block size to page size and rewrites the aggregated data in the first
available free page of ADB dedicated to the corresponding rule. Finally, the victim block is erased and
becomes available for new data.

Step 4: Perform cross checking for data sustainability periodically. The system evaluates the last
written pages of the oldest blocks from the rules those have not participated in cleaning operations for
a long time because they may not have long chains of blocks. The system considers both raw and
aggregate data blocks. If the data is still alive, the system retains them or else blocks are marked
obsolete and considered part of the dirty blocks pool. The system erases such blocks when idle.

3.5. Wear Leveling

A good wear-leveling policy evenly distributes the erase cycles on all blocks to prolong the life
time of flash media. Thus the effectiveness of a wear-leveling policy could be evaluated in terms of the
standard variation of erase counts of all blocks and the earliest appearance time of the first worn-out
block. To evenly wear down the flash media, we allocate free blocks by their ECN. We assign low
ECN free blocks for RDBs and high ECN free blocks for ADBs. It is because the ADBs experience
comparatively more stay time in flash media than RDBs. As the data in RDBs aggregate and are saved
on ADBs therefore they have more probability to be selected as victims for cleaning than blocks
holding aggregate data. On the other hand, the blocks with aggregate data hold the data for long time
intervals as each and every page of ADB represents the timestamp of a previous complete RDB.
Therefore, they live long in memory and can only be marked obsolete when the data on all pages of the
ADB becomes dead.

Sensors 2010, 10

306

4. Performance Evaluation

4.1. Simulation Methodology

To demonstrate the performance effectiveness of our proposed PIYAS scheme, we performed a trace
based simulation. We compare PIYAS with previous schemes such as PIYA [1] and MicroHash [10].
Evaluation focuses on four parameters:

i. Space Management: This shows the flash memory allocation against the thousands of
continuous sensor readings and main memory consumption for maintaining the data buffers
and metadata.

ii. Search Performance: This shows the number of pages required to be read for responding to a
query.

iii. Throughput Performance: This shows the response of number of queries in a unit of time.
iv. Energy Consumption: This shows the energy consumption while data writes to and data is read

from sensor local flash memory.

We have built a simulator with 32 Megabytes of flash space that is divided into erase blocks of
equal size. Each block size is 16 kilobytes and every block is composed of 32 pages as read/write
units. Every page size is 512 bytes with 16 bytes spare area. We extracted the trace file from
COAGMET [24]. The two years raw data were extracted on an hourly basis from January 01-2007 to
December 31-2008 from the Willington climate station. The trace file contains a total of 279,968
sensor readings and it is a combination of all known data formats like negative, positive and decimal
values. To prove the enhancement of our idea for large size of sensor data centric applications, we
experimented with a broad range of rule values. Rules are adopted as directory buckets in the case of
MicroHash. The rules are given in Table 6.

Table 6. Rules description for simulation.

Rule Symbol Rule Range (Temperature)
A -99–0
B 1–100
C 101–200
D 201–300
E 301–400
F 401–500
G 501–600

The total elapsed time is calculated by Equation (1) for effective comparison between schemes.

Time required for read in unit of page from flash memory to data register is calculated by Equation (2).
Time required for read a byte unit from the data register to main memory is calculated by Equation (3).
Time required for computation in main memory for building the mapping structure and the query
processing framework is calculated by Equation (4). Time required to write data from the main
memory to flash media is calculated by Equation (5). For better understanding of experimental results
in terms of time and energy, we refer to Table 2.

Sensors 2010, 10

307

RFRRFR TWTTRTRtimeTotal +++= α (1)

))((timereadpagecountreadTRFR ×= (2)

))((timereadbytecountreadTRRR ×= (3)

RAMinnComputatioforTimeT =α (4)

))((timewritepagecountwriteTWRF ×= (5)

4.2. Experimental Results

Figure 7 shows the consumption of flash memory in number of erase blocks for number of sensor
readings attempted by every rule. The trigger with every individual rule buffer (TgRule) is used in
SRAM for sampling the sensor readings. We show the fine granularity of data arrival in buffer of
every rule by taking a small value of threshold as TgRule = 3 for PIYA and PIYAS schemes and as
MicroHash does not sample the data so we show the consumption of media for MicroHash by keeping
the trigger unset as TgRule = 0. In the figure, the flash blocks are individually allocated as chains to
every rule for saving the sensor data corresponding to a trigger threshold where thousands of readings
are stored in a very small flash memory space by both the PIYA and PIYAS schemes. MicroHash stores
data in linear sequential order. Therefore, we calculated the blocks consumed by MicroHash by
counting the number of pages allotted to every bucket. In this result, we only show the space
consumed by data pages and space assigned to metadata is not added. However, results clearly show
the effectiveness of our memory management scheme. Our proposed schemes outperform the
MicroHash for efficient media utilization.

Figure 7. Flash memory consumption in number of erase units.

Figure 8 shows the consumption of SRAM space in kilobyte units while the sensor filters and

buffers the accumulated readings. Results show that the proposed PIYAS scheme clearly outperforms
both the PIYA and MicroHash schemes. This is because unlike PIYA and MicroHash, PIYAS does not
allocate static buffers but buffers are alloted dynamically in chunks of bytes whenever some sensor

Sensors 2010, 10

308

reading arrives in the data buffer of some rule. Therefore, even though in a very write intensive
scenario, PIYAS optimizes main memory space accumulation by 71.4% and 79.2% more than PIYA
and MicroHash, respectively.

Figure 8. SRAM consumption in KBs for buffering sensor readings.

In a read intensive scenario, the PIYAS scheme requires 3.57 and 7.56 times more space in SRAM
and 56.7% and 6.9% more time while building the query processing framework, compared to PIYA
and MicroHash, respectively, but PIYAS greatly outperforms both the previous schemes in time
required for query responses. Figures 9 and 10 show the time based and value based query throughput
by the average number of queries responded per second time unit from raw and aggregate data blocks,
respectively. We did not experience any erase operations on RDBs. It is because we set the threshold
of free space at two blocks. This means that the first erase operation is performed when the memory is
completely filled and only two blocks remain free. Therefore, for evaluating the ADBs we aggregated
the raw data and composed three pages for each rule.

Figure 9. Data throughput per second from RDBs.

Sensors 2010, 10

309

Figure 10. Data throughput per second from ADBs.

Results in Figures 9 and 10 show the effectiveness of our enhanced memory management scheme.
PIYAS gives a highly improved throughput compares to both previous schemes. Results observed from
ADBs are particularly encouraging. This is because PIYAS does not need to read the unnecessary
pages of unconcerned rules from ADBs to answer a query as PIYA does. Figure 10 only presents the
results from the PIYA and PIYAS schemes, and MicroHash is not included because when memory
exhausts MicroHash simply erases the data and then network applications cannot access such data for
future queries, which results the data failure. However, the PIYA and PIYAS schemes effectively
aggregate such data and store it in ADBs for long-term in-network data availability.

For our simulation, we composed sensor values in seven rules, see Table 6. At system initialization
time, for building the mapping table, we extract the mapping information from map blocks to the main
memory. The metadata in map blocks holds the definition of rules and the PBNs assigned to every
rule. The definition of every rule takes 20-Bytes of space and every rule requires an address of one
page for mapping information in main memory, where every page is mapped by 2-Bytes for 32 MB
flash memory which thus has 216 total pages. We obtain a fast mounting in 136.75 µs; it consumes
0.396 J and 154-Bytes in SRAM. Therefore, both the PIYA and PIYAS schemes use the same time and
number of bytes while mounting the mapping structure in main memory and for saving the mapping
information back to the map blocks.

Table 7 shows the resources optimization by the PIYAS scheme compared to both previous
schemes. This information is calculated by obtaining the results of average number of pages system
reads on every request from network applications while searching the queried data in a very read
intensive environment by all three schemes. For better understanding the results in terms of time and
energy, we refer to Table 2. The experimental results show that compared to PIYA, PIYAS saves
216.4 µs time plus 0.95 J energy and 120.9 µs time plus 0.53 J energy for time based queries, 487.2 µs
time plus 2.14 J energy and 150.5 µs time plus 0.66 J energy for value based queries from RDBs and
ADBs, respectively. Compared to MicroHash, PIYAS saves 406 µs time plus 1.79 J energy for time

Sensors 2010, 10

310

based queries and 3897.6 µs time plus 17.15 J energy for value based queries from RDBs. MicroHash
does not support aggregate data so the results are not applicable (N/A) from ADBs for MicroHash.

Table 7. Resources (Time and Energy) preservation by PIYAS. Comparison to PIYA and MicroHash.

 PIYA MicroHash

RDBs
Time based queries

Time 216.4 µs 406 µs
Energy 0.95 J 1.79 J

Value based queries
Time 487.2 µs 3897.6 µs

Energy 2.14 J 17.15 J

ADBs
Time based queries

Time 120.9 µs N/A
Energy 0.53 J N/A

Value based queries
Time 150.5 µs N/A

Energy 0.66 J N/A

Table 8. Throughput per Second Optimization by PIYAS. Comparison to PIYA and MicroHash:

 PIYA MicroHash

RDBs
Time based queries 72.7% 83.3%
Value based queries 75% 96%

ADBs
Time based queries 68.7% N/A
Value based queries 74.6% N/A

Table 8 shows the throughput optimization by PIYAS scheme. Compared to PIYA, PIYAS achieves

72.7% and 68.7% time based, 75% and 74.6% value based more queries per second throughput from
raw and aggregate data blocks, respectively. Compared to MicroHash, PIYAS obtains 83.3% time
based and 96% value based more queries per second throughput from RDBs.

In our experiment, although we did not experience any erase operation, since our proposed garbage
collection and wear-leveling schemes are particularly well designed for sensor relevant memory
management environment they should definitely perform well.

5. Conclusions

This research proposed a novel log-structured external NAND flash memory based data
management scheme called Proceeding to Intelligent service oriented memorY Allocation for flash
based data centric Sensor devices in wireless sensor networks (PIYAS). We achieved instant mounting
and reduced SRAM footprints by keeping a very low mapping information size. The main memory
required for accumulation of sensor readings is minimized. We optimized storage utilization by
effective data buffering in main memory before writing data to flash media. Data failure is mitigated
by long term in-network data availability. We optimized the throughput of query responses by
allocation of memory blocks individually on the basis of predefined business oriented rules. Fast
access of memory to write data, computation in situ, high query throughput, more energy efficiency
and minimized reads, writes and erases are effectively achieved. Sensor environment oriented garbage
collection and wear-leveling schemes are also employed. We performed trace driven simulations to
explore in detail the effectiveness of our idea. Our comprehensive experimental results with real traces

Sensors 2010, 10

311

from environmental and habitat monitoring show that PIYAS is an optimized memory management
scheme for modern wireless sensor devices.

Acknowledgements

We wish to thank Muneer Ali Shah Rizvi, Greenwich University, Karachi Pakistan and Syed Jamal
Hussain, University of Karachi, Pakistan for their valuable time for reviewing the whole manuscript
and responding with their helpful comments. This work was supported by Defense Acquisition
Program Administration and Agency for Defense Development under the contract (UD060048AD).

References and Notes

1. Rizvi, S.S.; Chung, T.S. PIYA–Proceeding to Intelligent Service Oriented Memory Allocation for
Flash Based Sensor Devices in Wireless Sensor Networks. In Proceedings of the International
Conference on Convergence and Hybrid Information Technology, Busan, Korea, 2008;
pp. 625-630.

2. Considine, J.; Li, F.; Kollios, G.; Byers, J. Approximate Aggregation Techniques for Sensor
Databases. In Proceedings of the International Conference on Data Engineering, Boston, MA,
USA, 2004; pp. 449-460.

3. Madden, S.; Franklin, M.J.; Hellerstein, J.; Hong, W. TAG: a Tiny AGgregation Service for Ad-
Hoc Sensor Networks. In Proceedings of the Symposium on Operating Systems Design and
implementation, Boston, MA, USA, 2002; pp. 131-146.

4. Zeinalipour-Yazti, D.; Neema, S.; Kalogeraki, V.; Gunopulos, D.; Najjar, W. Data Acquisition in
Sensor Networks with Large Memories. In Proceedings of the International Conference on Data
Engineering, Tokyo, Japan, 2005; pp. 1188-1192.

5. Lymberopoulos, D.; Savvides, A. XYZ: A Motion Enabled, Power Aware Sensor Node Platform
for Distributed Sensor Network Applications. In Proceedings of the International Symposium on
Information Processing in Sensor Networks, Los Angeles, CA, USA, 2005; pp. 449-454.

6. Banerjee, A.; Mitra, A.; Najjar, W.; Zeinalipour-Yazti, D.; Kalogeraki, V.; Gunopulos D. RISE
Co-S: High Performance Sensor Storage and Co-Processing Architecture. In Proceedings of the
IEEE Communications Society Conference on Sensor and Ad Hoc Communication and Networks,
Santa Clara, CA, USA, 2005; pp. 1-12.

7. Gay, D. Design of Matchbox: The simple Filing System for Motes. In TinyOS 1.x distribution,
2003. Available online: http://www.tinyos.net/ (accessed on 16 August 2009).

8. Dai, H.; Neufeld, M.; Han, R. ELF: An Efficient Log-Structured Flash File System for Micro
Sensor Nodes. In Proceedings of the International Conference on Embedded Networked Sensor
Systems, Baltimore, MD, USA, 2004; pp. 176-187.

9. Gaurav Mathur, Desnoyers, P.; Ganesan, D.; Shenoy, P.J. Capsule: An Energy-Optimized Object
Storage System for Memory-Constrained Sensor Devices. In Proceedings of the International
Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 2006; pp. 195-208.

10. Zeinalipour-Yazti, D.; Lin, S.; Kalogeraki, V.; Gunopulos, D.; Najjar, W.A. MicroHash: An
Efficient Index Structure for Flash-Based Sensor Devices. In Proceedings of the USENIX
Conference on File and Storage Technology, San Francisco, CA, USA, 2005; pp. 31-44.

Sensors 2010, 10

312

11. Mathur, G.; Desnoyers, P.; Ganesan, D.; Shenoy P. Ultra-low Power Data Storage for Sensor
Networks. In Proceedings of the International Conference on Information Processing in Sensor
Networks, Nashville, TN, USA, 2006; pp. 374-381.

12. Gal, E.; Sivan, T. Algorithms and Data Structures for Flash Memories. ACM Comput. Surv. 2005,
37, 138-163.

13. Zhang, P.; Sadler, C.M.; Lyon, A.S.; Martonosi, M. Hardware Design Experiences in ZebraNet.
In Proceedings of the ACM International Conference on Embedded Networked Sensor Systems,
Baltimore, MD, USA, 2004; pp. 227-238.

14. Dipert, B.; Levy, M. Designing with Flash Memory; Annabooks Publisher: Poway, CA, USA,
1993.

15. Samsung Electronics NAND Flash Memory, K9F5608U0D data book; Samsung Electronics Co.,
Ltd.: Jung-gu Seoul, South Korea, 2009.

16. Chung, T.S.; Park, H.S. STAFF: A Flash Driver Algorithm Minimizing Block Erasures. J. Syst.
Architect. 2007, 53, 889-901.

17. Chung, T.S.; Park, D.J; Park, S.; Lee, D.H.; Lee, S.W.; Song H.J. A survey of Flash Translation
Layer. J. Syst. Architect 2009, 55, 332-343.

18. Kwon, S.J.; Chung, T.S. An Efficient and Advanced Space-management Technique for Flash
Memory Using Reallocation Blocks. IEEE Trans. Consum. Electron. 2008, 54, 631-638.

19. Chung, T.S.; Lee, M.; Ryu, Y.; Lee, K. PORCE: An Efficient Power off Recovery Scheme for
Flash Memory. J. Syst. Architect. 2008, 54, 935-943.

20. Han, L.Z.; Ryu, Y.; Chung, T.S.; Lee, M.; Hong, S. An Intelligent Garbage Collection Algorithm
for Flash Memory Storages. In Proceedings of the Computer Science and Its Applications,
Lecture Notes in Computer Science, Glasgow, UK, 2006; pp. 1019-1027.

21. Han, L.; Ryu, Y.; Yim, K. CATA: A Garbage Collection Scheme for Flash Memory File Systems.
In Proceedings of the Ubiquitous Intelligence and Computing, Lecture Notes in Computer
Science, Wuhan, China, 2006; pp. 103-112.

22. Chang, L.P. On Efficient Wear Leveling for Large Scale Flash Memory Storage Systems. In
Proceedings of the ACM Symposium on Applied computing, Seoul, Korea, 2007; pp. 1126-1130.

23. Chang, Y.H.; Hsieh, J.W.; Kuo, T.W. Endurance Enhancement of Flash-Memory Storage
Systems: An Efficient Static Wear Leveling Design. In Proceedings of the ACM IEEE Design
Automation Conference, San Diego, CA, USA, 2007; pp. 212-217.

24. COAGMET. Available online: http://ccc.atmos.colostate.edu/~coagmet/index.php/ (accessed on
16 August 2009).

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

