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Abstract: There have been few assessments of the performance of alternative resistance 

surfaces, and little is known about how connectivity modeling approaches differ in their 

ability to predict organism movements. In this paper, we evaluate the performance of four 

connectivity modeling approaches applied to two resistance surfaces in predicting the 

locations of highway crossings by American black bears in the northern Rocky Mountains, 

USA. We found that a resistance surface derived directly from movement data greatly 

outperformed a resistance surface produced from analysis of genetic differentiation, despite 

their heuristic similarities. Our analysis also suggested differences in the performance of 

different connectivity modeling approaches. Factorial least cost paths appeared to slightly 

outperform other methods on the movement-derived resistance surface, but had very poor 

performance on the resistance surface obtained from multi-model landscape genetic 

analysis. Cumulative resistant kernels appeared to offer the best combination of high 

predictive performance and sensitivity to differences in resistance surface parameterization. 
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Our analysis highlights that even when two resistance surfaces include the same variables 

and have a high spatial correlation of resistance values, they may perform very differently 

in predicting animal movement and population connectivity. 

Keywords: American black bear; functional connectivity; least cost path; resistant kernel; 

synoptic connectivity modeling 

 

1. Introduction 

As organisms move through landscapes, they respond to biotic and abiotic factors to maximize 

access to resources and mates, while minimizing fitness costs. The structure of the landscape will interact 

with the movement response of organisms to affect connectivity [1,2]. The connectivity of populations 

is critical, both for maintaining regional populations and for species to shift their geographic range in 

response to climate change [3]. Increasing recognition of the importance of connectivity to population 

persistence, combined with the development of new algorithms, fast computers and user-friendly 

software [4], has led to a proliferation of research on population connectivity [5] and conservation 

actions applying this knowledge across broad landscapes [6,7]. 

The Greek word, συνοπτικός (synopticos), means seeing everything together. A synoptic view is 

one that simultaneously integrates all elements. Most past applications of population connectivity 

modeling have been based on assessments of movement cost or corridor routes between a few select 

locations [6,7]. For example, least cost path modeling identifies the single, lowest cost route through a 

landscape between two points [8]. However, effective conservation often depends on understanding the 

connectivity of every location simultaneously to all other locations, in a synoptic view.  

There is obvious advantage in adopting synoptic perspectives on population connectivity, but how 

can they be achieved? Factorial least cost path analysis [9] is a spatially synoptic form of least cost path 

analysis in which least cost paths are calculated for thousands or millions of combinations of locations 

across the landscape. These paths are then summed to show the density of least cost crossing any point 

in the study area. A second synoptic approach to landscape connectivity is cumulative resistant kernel 

modeling [10], which calculates the expected density of dispersing individuals in each pixel in the landscape. 

These synoptic connectivity modeling approaches have several advantages in assessing population 

connectivity. First, they provide prediction and mapping of expected functional connectivity for every 

pixel in the study area, rather than only for a few selected ‘linkage zones’ or source locations [11]. Second, 

factorial least cost path and resistant kernel analysis can evaluate how different population sizes, 

dispersal abilities and vagilities will affect connectivity through the specification of dispersal 

thresholds [12]. However, despite their theoretical advantages, synoptic approaches have not been 

widely used, in part because these new methods are substantially more computationally intensive than 

traditional approaches. In addition, little is known about how well synoptic methods perform in 

predicting organism movement. 

Most assessments of population connectivity are based on applying connectivity models, synoptic 

or otherwise, to resistance surfaces [5–7,13]. Resistance surfaces depict the unit cost of traversing each 

location on the map. The spatial pattern of resistance determines the location of least cost paths, 
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corridors and the extent of resistant kernels. Therefore, an essential part of assessing the performance 

of different connectivity modeling approaches would include evaluation of how well alternative 

resistance surfaces reflect the functional cost of movement for an organism of interest. The vast 

majority of published resistance surfaces used in connectivity assessments have been derived from 

unvalidated expert opinion [5], and there have been few assessments of the performance of resistance 

surfaces in predicting organism movement with data independent of that used in parameterizing them 

(see [14–16]). 

In this paper, we evaluate the performance of synoptic connectivity modeling approaches and 

alternative resistance models in predicting highway crossing locations of American black bear (Ursus 

americanus) in northern Idaho, USA. Our specific goals are to: (1) evaluate the relative performance of 

resistance surfaces derived from (a) individual-based landscape genetic modeling and (b) path-level 

modeling of landscape resistance based on GPS movement data; and (2) evaluate the relative 

performance of one local (neighborhood average landscape resistance) and two synoptic (factorial least 

cost path, resistant kernel) approaches to predicting connectivity across these two resistance surfaces. 

We hypothesize that (H1) the resistance surface derived from movement data will outperform the 

surface derived from gene flow in predicting bear highway crossings, that (H2) synoptic measures of 

connectivity would perform better than local landscape resistance and (H3) that the resistant kernel 

would be less sensitive to differences between resistance surfaces than factorial least cost paths.  

2. Experimental Section 

2.1. Study Area 

The study area consists of approximately 1500 km2 in the Purcell Mountains of northern Idaho, 

USA (Figure 1). The topography is mountainous, with steep ridges and narrow valleys. Elevation 

ranges from 700 m to 2400 m. The area is heavily forested, with Abies lasiocarpa (subalpine fir) and 

Picea engelmannii (Engelmann spruce) codominant above 1300 m and a diverse mixed conifer forest 

dominating below 1300 m. For a further description of the study area, see [17]. 

Figure 1. Study area orientation map. The study area is approximately 1,500 square kilometers 

in the Purcell Mountains of northern Idaho. This study focuses on the section of U.S. 

Highway 95 from the junction of Highway 1 in Idaho to the Canadian border (yellow line). 
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2.2. Bear Highway Crossing Data 

Bears were trapped from June to mid-August in 2004–2006 in the Purcell Mountain range of 

northern Idaho and fitted with Lotek 3300L GPS programmed to record the location every 20 min 

from April (den emergence) to November (den entrance; Lewis et al. 2011). The Brownian bridge 

movement model [18] was used to identify 56 highway crossing events for black bears along U.S. 

Highway 95 [17].  

2.3. Resistance Models 

2.3.1. Resistance Model 1, Derived from Landscape Genetic Analysis 

Cushman et al. [19] evaluated 110 hypotheses concerning landscape resistance to gene flow for 

American black bears in the study area. They found that gene flow of black bears is facilitated by high 

forest cover at middle elevations, with avoidance of non-forest, agriculture and residential development 

and equivocal response to crossing roads. The landscape resistance model produced by [19] was used 

in this study as one of the two resistance models selected for comparison (Figure 2b). 

Figure 2. The six connectivity analyses comprised of a factorial combination of the type of 

resistance map used (genetic based, down the first column; or movement based, down the 

second column) and the type of connectivity model (average neighborhood resistance, 

across first row; factorial least cost paths, across second row; cumulative resistant kernels, 

across third row). Green dots are the locations of 56 highway crossings by black bear. 
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2.3.2. Resistance Model 2, Derived from Path-Selection Function Modeling 

The second resistance model was produced by applying path selection functions to evaluate the 

degree of selection or avoidance of landscape features [15] (Figure 2a). Cushman and Lewis [15] used 

conditional logistic regression [20] to evaluate 15 landscape resistance models, ranked these models by 

AICc (Akaike information criterion corrected for small sample size) and used model averaging based 

on AICc weights to produce a final model. They found that spring (March through July) movement 

path selection was strongly facilitated by forest cover at middle elevations and resisted by roads and 

human development. We use their spring season model as the second resistance surface evaluated in 

this analysis. 

2.4. Connectivity Modeling Approaches 

We predicted landscape connectivity for each of the two resistance models above with the following 

three connectivity approaches. 

2.4.1. Connectivity Approach 1, Neighborhood Average Landscape Resistance 

Our first connectivity modeling approach is based on the hypothesis that animal movement is 

primarily driven by local resistance of the landscape and is not strongly affected by the broader pattern 

of resistance in the landscape. To implement this approach, we calculated the focal mean of landscape 

resistance for each of the two alternative resistance surfaces within a 500-m radius circle centered on 

the highway. This produced focal average resistance values along the highway that were then 

compared with the locations of actual bear crossing points (Figure 2a,b). 

2.4.2. Connectivity Approach 2, Factorial Least Cost Path Modeling 

The second connectivity modeling method is factorial least cost path modeling [9]. We modeled 

movement from 1082 source locations distributed at 1-km spacings across all forested areas in the 

study area. We used the landscape connectivity modeling software UNICOR [4] to compute the least 

cost paths among all pairs of source points (584,821 individual least cost paths). We applied a 1-km 

width Gaussian smoothing kernel [4] and summed the smoothed paths to produce a raster grid in 

which the cell values represent the number of cost paths traversing that cell, which is an indication of 

“corridor strength” [11] (Figure 2c,d). 

2.4.3. Connectivity Approach 3, Cumulative Resistant Kernel Modeling 

The final connectivity modeling approach is cumulative resistant kernel modeling [10]. The resistant 

kernel approach to connectivity modeling is based on least cost dispersal from a set of source 

locations, in our case, the 1,082 points at 1-km spacings within forested areas, as described above. The 

model calculates the expected density of dispersing individuals in each pixel of the landscape, given 

the dispersal ability of the species, the nature of the dispersal function and the resistance of the  

landscape [10]. We used the range of significant genetic autocorrelation of the bear population [19] as 

the kernel width. We used UNICOR [4] to calculate the resistant kernels for each source point and to 
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sum them to give the total expected density at each pixel. The values in the resulting surface reflect the 

expected density of dispersing organisms at any location in the landscape [11] (Figure 2e,f). 

2.5. Evaluating Congruence between Predicted and Observed Bear Crossing Points 

We used a spatial randomization testing procedure to evaluate the congruence between the locations 

where bears were observed to cross the highway and predicted connectivity in each combination of the 

resistance surface and connectivity model. Spatial randomization testing of this kind is recommended 

in cases such as this, where there is spatial dependence among observations, and produces an unbiased 

estimate of the probability of the observed outcome given the data [21]. 

The analysis compares the median value of predicted connectivity for the 56 actual bear crossing 

locations with the distribution of median values of 1 × 107 random samples of 56 locations along the 

highway within the study area. For each combination resistance surface and connectivity modeling 

approach, we calculated the ranking of the median of observed values within the distribution of  

the medians of the 1 × 107 random samples. This ranking produces the probability of the outcome, 

given the data, and provides a non-parametric test of the hypothesis that actual highway crossing 

locations are unrelated to the predicted connectivity for each combination of resistance surface and 

modeling approach. 

3. Results  

Consistent with our first hypothesis, we found that the resistance map produced from the movement 

data of black bears in this study area [15] greatly outperformed the resistance map produced from the 

analysis of genetic differentiation [19] across all methods of connectivity modeling (Table 1). 

Specifically, for each of the connectivity modeling methods, predicted connectivity based on the 

Cushman and Lewis [15] resistance model was higher at the locations of actual bear highway crossings 

than at randomly selected locations along the highway. In contrast, connectivity predictions based on 

landscape genetic analysis [19] were not significantly associated with bear crossing locations in any of 

the methods.  

Table 1. Proportion of instances, of 1 × 10−7 random samples, where a random draw of 56 

locations along U.S. Highway 95 in the study area produced a median connectivity value 

higher than the median connectivity value of the 56 actual black bear crossing locations for 

the two resistance maps across the three connectivity modeling approaches. The connectivity 

maps are a combination of the type of resistance surface (genetic based or movement 

based) and the type of connectivity modeling approach (average neighborhood resistance, 

factorial least cost path and resistant kernel). 

Connectivity Approach Genetic Movement 

Average Neighborhood Resistance 0.215 5.63 × 10−5 

Factorial Least Cost Paths 0.999 3 × 10−7 

Resistant Kernel 0.373 2.5 × 10−6 
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Consistent with our second hypothesis, the synoptic methods, factorial least cost paths and 

cumulative resistant kernels performed best at predicting the location of actual highway crossing 

events (Table 1). For the movement-derived resistance surface, 3, 25 and 563 of the 1 × 107 random 

samples produced a median connectivity value as high as observed for the actual crossing locations in 

the factorial least cost path, resistant kernel and local landscape resistance connectivity methods, 

respectively. This indicates that the factorial least cost path approach had 8.3-times and 187.7-times 

fewer permutations with a median value less than the observed median in the kernel and local 

resistance and circuit approaches, respectively, for the movement-derived resistance surface. Conversely, 

for the genetics-derived resistance surface, 99.9%, 37.3% and 21.5% of the random samples had a 

median connectivity value higher than the actual crossing locations in the least cost path, kernel and 

focal resistance methods, respectively. 

We produced a measure of sensitivity to the differences between resistance surfaces by calculating 

the proportional change in the number of permutations producing a median value greater than that 

observed in the actual crossing locations between the two resistance surfaces for each method. Based 

on this, and consistent with Hypothesis 3, we found that the factorial least cost path was very highly 

sensitive to differences between resistance surfaces (change from 3 × 10−7 to 99% of permutations less 

than the median resistance of actual crossings) and that local landscape resistance and resistant kernels 

were relatively insensitive to differences between the two resistance surfaces.  

4. Discussion 

Our analysis is among the first to simultaneously evaluate the performance of multiple resistance 

surfaces and connectivity modeling approaches in predicting independent animal movement data. Our 

first hypothesis was that a resistance surface derived directly from movement data would outperform a 

resistance surface produced from the analysis of genetic differentiation. We based this on the 

expectation that the landscape factors that govern movement may differ to some degree from those that 

govern gene flow. Gene flow in animals, such as the black bear, is effected through mating and 

dispersal events, which are related to movement, but are particular and rare kinds of movement. Thus, 

a resistance model optimizing the factors related to gene flow [19] may not ideally reflect the factors 

that drive the behavioral decisions of individuals in selecting crossing locations. Conversely, resistance 

surfaces derived directly from movement data [15] may be expected to more effectively predict the 

specific movement decisions made by individual bears. Our results dramatically demonstrate this,  

with extremely high performance of all four connectivity modeling methods when applied to the 

movement data-derived resistance surface and universally poor performance when applied to the 

landscape genetic-derived surface. 

Cushman and Lewis [15] compared these two resistance surfaces and noted that they are heuristically 

similar, containing the same factors with the same qualitative relationships between landscape features 

and resistance. They further noted a high correlation between the pixel values of the two surfaces and 

argued that movement data and genetic differentiation both supported the conclusion that landscape 

resistance for American black bears in the Rocky Mountains is facilitated by middle elevation forest 

and resisted by roads and human land uses. Our analysis, in contrast, suggested that these surfaces in 

fact differ substantially in terms of their predictions of functional connectivity across the study area in 
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each of three connectivity modeling approaches. This suggests that even when two resistance surfaces 

include the same variables and have a high spatial correlation of resistance values, they may perform 

very differently in predicting animal movement and population connectivity. 

Our second hypothesis proposed that synoptic connectivity modeling approaches, such as factorial 

least cost paths and resistant kernels, would outperform a local measure of population connectivity 

based on the average landscape resistance within a local neighborhood. We based this expectation on 

the idea that the movement path choices of individual bears, including where they cross a highway, 

would be influenced by the synoptic pattern of connectivity across a broad landscape and not just by 

the local landscape resistance at a crossing location. Consistent with this expectation, for the 

movement-derived resistance surface, two of the synoptic methods (cumulative factorial least cost path 

and cumulative resistant kernel) outperformed local landscape resistance, with factorial least cost paths 

apparently performing best. This is an important finding, as most applications of connectivity 

modeling in conservation biology have used local information or non-synoptic connectivity methods to 

predict movement corridors [6,11]. Our results suggest that synoptic methods (such as factorial paths 

and kernels) are best able to predict actual organism movement, since population connectivity is an 

emergent phenomenon driven by the cumulative influences of landscape structure throughout the 

population. Furthermore, factorial least cost path modeling best predicted crossing locations, likely 

because this method emphasizes optimal movement routes, and animals choosing locations to cross a 

potentially dangerous obstacle, such as a highway, are likely to select the routes that minimize risk. 

Consistent with this conclusion, Lewis et al. [17] evaluated movement data from GPS-collared black 

bears and found that bears selected for areas of forest on the landscape and away from human 

development along the road when crossing Highway 95. 

We interpret the high performance of all connectivity modeling methods when applied to the 

movement-derived resistance map and low performance when applied to the genetics-derived map to 

indicate that the movement-derived resistance map is a close match to the factors that the bears were 

responding to, and the genetics-based map was a relatively poor match. Given this, we evaluated the 

sensitivity of the methods to the misspecification of the resistance surface. Ideally, one should use a 

method that is moderately sensitive to differences between resistance surfaces, such that the implications 

of landscape change in a single landscape or differences in habitat extent and fragmentation in 

different landscapes for connectivity can be quantified, but not so sensitive that the method fails to 

predict connectivity well when the resistance surface is approximately, but not ideally, parameterized. 

Our third hypothesis was intended to evaluate the performance of these methods based on these 

criteria. As expected, we found that the factorial least cost path method was extremely sensitive to the 

difference between the two resistance surfaces (more than 22-times more sensitive than the resistant 

kernel method). We expected this method to be most sensitive given that least cost path locations are 

spatially constrained to optimal narrow routes, and small changes in overall landscape resistance 

across the landscape may completely shift those paths. Cumulative resistant kernel methods had 

moderate sensitivity to differences in resistance between the two surfaces, which might provide 

sufficient sensitivity to evaluate different landscapes, while enough stability to obtain reliable 

predictions of the patterns and relative strength of connectivity across the landscape. Our results 

suggest that cumulative resistant appeared to offer the best combination of high predictive performance 

and sensitivity to differences in resistance surface parameterization. Specifically, resistant kernels 
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appear to be the preferred choice when the goal is quantifying differences in connectivity between 

different landscapes or overtime, while factorial least cost paths would be best suited for the analysis 

of resistance maps where there is high certainty in resistance values and where researchers wish to 

localize predictions to prioritize specific locations for protection rather than evaluating landscape-wide 

patterns of connectivity. It would be interesting to compare the methods tested here with other spatial 

methods to identify where animals cross highways (e.g., [22–25]) 
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