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Abstract: This paper describes the utility &MEIAS (Center for Microbial Ecology
Image Analysis Systemomputerassisted microscopy to extract data fraecurately
segmented imagebat provide 63 different insights into the ecophysiologyf microbial
populations and communitiesvithin biofilms and other habitats Topics include
guantitativeassessments :0fi) morphological diversity as an indicator mhpacts that
substratum physicochemistries have on biofilm community structure and domiaaitge
relationships among populatigr@) morphotypespecificdistributionsof biovolume body
size that relatemicrobial allometric scaling metabolic activityand growth physiology

(i) fractal geometryof optimal cellular positioning for efficient utilization of allocated
nutrient resourcegiv) morphotypespecific stress responses to starvation, environmental
disturbance and bacteriovory predatidiw) paterns of spatial distributiorindicating
positive and negative cedell interactions affecting their colonization behayi@nd

(vi) significant methodological improvements to increase the accuramyladiscriminated
ecophysiology, e.g.differentiaton of cell viability based oncell membrane integrity,
cellular respiratory activity, phylogenetically differentiated substrate utilizatindN-acy!
homoserine lactonmediated cellcell communication byacteria while colonizing plant
roots The intengly of these ecophysiological attributes commonly varies at the individual
cell level, emphasizing the importance of analyzing them at sgejleesolution and the
proper spatial scale at which they octusitu.
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1. Introduction

A major challenge in microbial ecology is to develop reliablethods of computeassisted
microscopy that can analyze complex digital images of microorganisms at single cell resolution and
reveal insights about their ecology situ without cultivation. To address this challenge, our team of
microbiologists, matheaticians and computer scientists has been developing software applications
that canaccuratelyprocess digital images of actively growing microbial populations and communities
in natural and managed habitats, and extract an abundance of ecologicallgtrdia@afrom them.

The longrange goal is to develop and release a comprehensive suite of software applications designec
to strengthen quantitative, microscelpgsed approaches for understanding microbial ecology at
spatial scales relevant to the indivitlumicrobes and their ecological niches. Our software suite is
called CMEIAS (Center for Microbial Ecology Image Analysis System), and as components become fully
developed and documented, they are released for free download at our project website [MERe C

ver. 3.10 currently being developed {2 a significant upgrade of the earlier released version 3]2&rd

inter alia, includes an ecophysiology module based on motivation to create quantitative computing
tools that can help users obtain bettagtistically defendable answers to pertinent questions on
physiological attributes of microbial populations and communities during their biofilm colonization of
biological and notbiological surfaces.

A long-termgoal of this approach is to integrate multiple methods of ecological statistics performed
on CMEIAS acquired data into coherent and consistent models and take full advantage of their
predictive power. This papelocumentghe use of computeassisted miascopyto extract the wealth
of ecologically relevant information present in accurately segmented images of microbial populations
and communitiesand variousquantitativemethods tanalyze thosattributesto revealinsights about
microbial ecgphysidogy in situ. The intensity of these attributes commonly varies at the individual
cell level, emphasizing the importance of analyzing them at segjleresolution and the proper
spatial scale at which they occur.

2. Experimental Section

Submerging transparent microscope slides in ageatidonmentg4] provides a simple approach
to produce natural assemblages of microbial biofilm communities suitable for detailed morphological
analysis using comput@ssisted microscopy. The microbiabsamblages described here were
developed on clean microscope slides of planosilicateglass or polystyrene plastic polymer (Erie
Scientific, Portsmouth New Hampshire) submerged for four summer days from a fishing line 1 foot
below the surface of the Re&Cedar River that flows through the campus of Michigan State University
(East Lansing, MI, USA). Slides were retrieved and their underside wiped clean. The slides were
mounted in filtersterilized water with a No. 1.5 thickness glass cover slip, oiledeabnd below the
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slide, and examined by phasentrast light microscopy usir@y100x Planapochromat Phase 3 objective
lens to resolve individual bacterial cells. Digitab®8 grayscaleimages of the biofilms were acquired
using a monochrome digital camerthen segmented to binary, combined into composite images,
spatially calibrated and analyzed using CMEIAS image analysis softwg@@] to produce the
2-dimensionalcoordinate systems that accurately define the location and morphology of individual
attached bacterial cells atDe m s p at i a.lExtraceed data were amalyzed statistically using
StatistiXL [5], EcoStat{6], Ecological Methodology{], PAST [B], Species Diversity and Richne$, [
GS+ Geostatisticgl0], andanin-house CMEIAS Data ToolPack softwagplication [2].

Methods to acquireligital micrographsand segmenthe foreground object®r in situ studies of
bacterial viability, metabolic respiration, dedell communication, and phylogenetically differentiated
substrate utilization are described elsewl&i#14].

3. Results and Discussion
3.1 Images oMicrobial CommunityBiofilms andTheir Spatial Abundance

Figure 1 shows accuratelysegmenteddigital images that represent the mixed populatiohs
microbes in immature biofilms that developed situ on plain glassd) and polystyrene plastid)
substrata submerged in a freshwater aquatic ecosystem. Theseaepnasentativemicrobial
assemblages, namei of i | m communi ¢ ihave differAnd diveesited grénih
physiologies, metabolic activities and biogeographeftecting the stronginfluence that substratum
physicochemistry exerts on development of freshwater aquatic microbial biofilm catexbefore
they become confluent

Table 1 reports the spatiattensity of the microbes in these two biofilm assemblages, each
standardized to landscapes of equal substratum surface areas. The substratum area captured in ec
image was 10,360 Uirthe bovolume formula was shagaelapted with assumed axial symmetry, and their
biomass carbon was calculated using the allometric conversion of 200 fg &/cefl biovolume [2,15].

The results indicate an increased abundance and intensity of colonizatioa byctbbial biofilm
community B on the polystyrene substratum in the freshwater aquatic ecosystem. These data set th
stage for exploring the measurement attributes that CMEIAS can extract from these images to gain
insight into the ecophysiological forcabkat structure these differences in microbial community
ecology, thereby shedding light on ways that the environmental variable of hydrophobicity (associated
with polystyrene) in substratum physicochemistry impacts on development aiceteatiteractions

of sessile microbial communities and biofilm architecture in freshwater aquatic ecosystems.
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Figure 1. Binary images of natural microbial biofilm assemblages (communities A and B)
developing on &) plain glass slides and) polystyrene plastic slides submerged ffour
summer days in the Red Cedar River, East Lal

Table 1. Spatial intensityin microbialcommuniy A and Bfreshwatemiofilms developed
for four days on plain glass and poly&ge substrata (Figure by respectively.

Spatial Abundance Parameter Community A Community B
Spatial Density (cells/m 155,790 159,554
Microbial Coverage of the Substrat#s) 7.0 10.8

Cell LengthIntensity (um/mnf) 154,568 215,049
Biosurface Aredntensity(um?/mn¥) 272,798 398,226
Biovolumelntensity (um*mnt) 34,513 68,79

Biomass Carbointensity(pg C/mnf) 6,903 13,760
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3.2 Biofilm Diversity andecophysiologyndicated byMorphologicalAnalyses of th&iofilm Communities
3.2.1 Background

Diversity embraces the concept of heterogeneity in community structure, and incorporates
information on the richness and distribution of abundance among population cldges |
The divesity of a microbial assemblage is inherently important to understand its structure and function
at all levels of biological organizatioftcological theory(based primarily on studies of plants and
animalg predics that basic differences in biology between species, including niche requirements and
tropic level, inevitably generate substantial differences in abundance among $pétidsus, he
distributions ofspecies abundance can shed light on the processesldteamine the biological
diversity of the assemblage.

Several approaches are available to quantify community diversity, each emphasizing a particular set
of characteristics that impact on the ecophysiological potential and functional redundancy of each
population contained within it. Common methods of microbial diversity analysis include classification
schemes applied to growth responses of organisms in various differential culture Iifgdieofiling
of phospholipidderived fatty acid biomarkef48,19], nutritional versatility 0], and a variety of 16S
rRNA genebased techniquel21,29. The latter approach is currently the most commonly used to
assess microbial diversity, with its strength anchored inattge, everexpandingandfreely available
online searchable databases of indexed sequences and supporting tools of computationa
bioinformatics (e.g., [23]), and the relatively low cost to obtaithe phylogenetically relevant
nucleotide sequencesiowadays Theseapproachesan be complemented witbtomputerassisted
microscopy and image analysis of morphological diversity, where each individual eeltunately
segmented images is digitally analyZedilico using multidimensional pattern recognition algorithms
and then classified within milliseconds to the appropriate morphaty3®.01% rarity[2,3]. The
unique, supervised, hierarchical morphotype classifieatured in CMEIAS operates within
14-dimensionaspaceusing mathematical rules of pattern recognition algorithms that are fully tested
and documentedperforms with an overall accuracy 0f96%, and has usedefined features to
accommodate the4% errorrate B]. The resultant information on morphotasased richness and
distribution of abundance can contribute to the powerful complementary approach of polyphasic
taxonomy (especiallywvhen combined withl6S rDNAbased methods) for microbial community
analysis, reflecting the diversity of niche apporti@mts in the community being studig®i 16/ 25].

Also, inclusion of morphologybased analyses in a polyphab&sed approach can shed additional
light onin situ ecophysiological assessments of community membeghiponment relationships,
allometric scaling indicative of their metabolic rate and biomass productivity, nutrient resource
allocation and utilization efficiency when competing for limiting resouraedices of community
health, integrity and functional stabiligffectingcommunityresilience, dominanegarity relationships
reflecting environmental stability and ecological succession,vandus morphologicallyexpressed
adaptations following stressduced perturbationéstarvation, predation, eutrophicatiogtc) in the

same communit}3,16,24 32].
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3.22. Effect of SubstratumChemistry orBiofilm CommunityStructure

Figure &b is the CMEIASrendered images of theametwo biofilm community assemblages
(Figure 1ab) showing each microbeistinctively pseudocolored according to its assigned morphotype
classification These pseudocolored imagese automatically produced as an output of the software
classification routineReadily apparent in both communities are inenericallydominant cocci (red)
and regular rods (blue), and themericallyless abundant prosthecates (yellow), unbranched filaments
(aqua), curved rods (purple), and ellipsoids (true green). In addietailed inspection of the images
revealsthe rare occurrence of-shaped rod (pink) and club (olive green) morphotyfied are
uniquely presenpnly in the biofilmassemblage afommunity B(Figure2b).

The relative abundance of morphotygeecific classs (Table 2) in communities can be evaluated
in discrete units (individual cell counts) or in continuous sdailevblume body size each reflecting
their niche apportionment in communities and how they change following environmental perturbation
or natuel succession [16]. The small apportionment of the richasgsgvery abundant morphotypes
(2/6 and 2/8 for Communities A and B, respect
morphoipes (5% relative abundance) commonly occurs when only one or a few factors dominate
the ecology of the assemblage [1Bjversity levelsmay be higher when other methods are included in
the polyphasic taxonomy approach. The alpha diversity statistics (Tabés@)le the heterogeneity
in biofilm community membership at spatially defined units [26]. The indices of diversity, dominance,
and evenness are computed from the data on the richness in number of different morphotype classes |
the two assemblages and tlaiations in distribution of abundance among each of {l6&é816,24.

When abundance is scored by either metric (individual cell counts and cell biovolume), the
evenness in distribution of morphotype classes is higher (hence, lower dominance) bafitive
assemblage colonized on the polystyrene surface (community B), and thus that hydrophobic
substratum favors developed of a microbial biofilm community with greater diversity than the
community A developed on plain glass (Tables 2 and 3). The Singpgensity index (1/D) is highest
among the group of diversity indices tested because it is heavily weighted towards the most abundan
class. Evenness indices are typically higher when abundance is biowokigtged (Table 3) since its
discrimination of narphotype sizes commonly shows that few larger morphotypes will compensate for
the smaller, more numerically abundant morphotypes. The Simpson Dominance andFBekger
Dominance indices, which indicate the proportional importance in community membeif sigomost
abundant classes, are larger when abundance is measured as individual counts rather than biovolum
The Solow statistical randomization test of significance using a 1M&@@@ed partition [9,33]
indicated that the computed differences iesth indices between community pairs are statistically
significant at the 5% level (Table 3). Thus, the diversity of morphotype populations in the community
can be described as having a pyrastidped structure (many small and few large individuals) that is
less steep when abundance is scored by Ii@mlume body mass.
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Figure 2. CMEIAS-rendered pseudocolor images indicating the morphotype classification for
each individual microbé situ within biofilm assemblages @ommunities A &) and B D).
See text for details.

Table 2 The distribution of abundance for each morphotype class in images of biofilm
communities A and B.

Morphotype Individual Cell Counts Cumul ative Cel P
Class Community A Community B Community A Community B
Coccus 1262 1122 157.24 185.84
Regular Rod 312 450 118.44 128.56
Unbranched Filament 6 29 28.35 261.57
Prosthecate 20 23 9.01 7.86
Ellipsoid 2 22 0.76 38.31
Curved Rod 12 3 5.14 1.98
U-Shaped Rod 0 2 0 1.17
Club 0 2 0 1.59
Morphotype Richness 6 8 6 8
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Table 3. Indices of diversity, evenness, dominance and dissimilarity for communities A
and B. Statistically significantp(< 0.05) higher values are indicated with superséript

the comparison otommuniies A vs B when using thesame morphotype hundance
metric (e.g.,community Avs B usingcell counts) and are indicated with the superscfipt

in the comparison of countss biovolume as the abundance metric for the same
community(e.g.,comparing ell countsvs. biovolumefor Community A)

Index Computed from Index Computed from
Diversity Index Metric Differentiated Cell Counts Differentiated Cell Biovolumes
Community A Community B Community A Community B
Simpson Diversity (1/D) 1.541 1.868 2.575° 3.260%"
ShannoAWe i ner Ho 0.630 0.833% 1.11%° 1.322%°
Brillouin D Diversity 0.623 0.824° 1.082° 1.299%°
ShannorPielou J Evenness 0.303 0.401° 0.536° 0.636%
Simpson Dominance 0.646%" 0.535° 0.384% 0.307
BergerParker Dominance 0.7822" 0.679 0.4942 0.417
% Dissimilarity 10.88 39.19

These differences in community structure are also reflected in the Renyi diversity ordering and
Whittaker ranked abundance plots shown in Figuré, 3@spectively.The Renyi ordering analysis
shows the relative magnitude of diversity changes veeseral differenindices are used [9]. Its plot
(Figure3a) indicatesthat the greater relative diversity in community B is robust for multiple diversity
indices when the metric of abundance is eitineividual counts or biovolume body mass, and the
computed diversity is always higher using biovolume body size rather than individual cell counts as
the abundancemetric for both communities. The shape of the Whittaker rank/abundance curve
indicates thedominance and evenness of the community [16]. The plotted Bajard 3b) has a
shallower declining slope when biovolume is the metfi@bundance, indicating higher evennass
distributionof abundance between morphotype classes in these badiemlages

These distinctions are important becatrserelative abundance of populations within a community
to some extent reflects their success at competing for limited resources [16], and therefore the metric
used to measure abundance in community meripecgan significantly influence how variations in
that relationship are interpreted. This point extends to all methods to measure abundance in communit)
analysis. The b diversity index of percent dissimilarity indicates that the ability to distinguish
comnunity diversity is 3 to 4-fold higher when using the metric of morphotyggeecific biovolume
rather than individual counts per morphotype class. Consideration of these results allows one to
appreciate the significant discriminating power that morphotyj@ssification combined with
biovolume measurements provides when analyzing microbial communisés.

Ecological theory predicts important interrelationships between the relative proportions of dominant
to rare members in a community and the stalifitthe environment in which they have colonized [16,28].

The presence of rare species is predicted to indicate a successional process in which later colonist
have requirements that are more specific and hence are rarer [16,34]. Polyphasic taxonons/@nalyse
methanogenic anaerobic bioreactor communities show that the driving force responsible for high
resilience following environmental perturbation is the flexibility in responsiveness of the significantly
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important rare members of the microbial communrgither than the magnitude of community diversity

as a whole [3,24,25]. Interestingly, analysis of microbial communities in agricultural soils have

indicated that soil bacteria captured by standard bacteriological culturing methods are either
represented imery low abundance or not detected when the same community membership is analyzed

by the cultureindependent sequence analysis of amplified 16S rDNA [35]. Considered collectively,

the important I mpl ication
communities is fAconditional o [ 35] and

represent viable components actively occupying ecological niches in the community and can make

of t h enbeeshipf im midrobmalg s

does

significant contributions to its stability amdsilience following environmental perturbation [24,25].

Figure 3. Renyi ordering ) and Whittaker i) ranked abundance plots that compare the
diversity of morphotype classes in communities A and B when individual cell counts and
biovolume body size angsed as the metric of class abundance
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These theoretical principles provide the framework for a quantitative analysis focused on
dominancerarity relationships in community structure performed on data acquired by corapsisied
microscopy. One methodises aK-dominance analysis to examine the contribution of each
morphotypeclass by plotting its percentagecumulative abundancagainst log class rank the
community[16,28. Communities differ in diversity when their-dominance curves do not overlap
Less diverseassemblagesiominated by only a few (morpho)taxaill accumulate percentage
abundanceavith more elevated curvakanwill more diverseassemblagel,28). This is the case for
the biofilm assemblage afommunity A, indicating that its greatmtensity of dominanceRigure4a)
contributes to its lower diversity (Table 2). A second methodbiminancerarity analysis produces a
2-dimensionalGastonQuartile Rarityscatterplof16,29, where thequartiles in the two distributions
are shown by dotted linéEigure4b). Morphaype classeare considered rare when loaate thefirst
(lower left) quartile (25th percentile) of the scatterp®8].[ Note that the majority of morphotype richness
for both communities A and B represented bglasses that fit the criteria of rari{yables 2 and 3,
Figure4a,b). Ecological theoryvould predict thathey have experienceecological succession in the

aquatic ecosystei6,29.

n
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Figure 4. (a) K-Dominanceand p) Quartile Rarityscatterplots that compare thextentof
dominarn andraremorphdype classesvithin the communites Dotted lines indb indicate
the 25th percentile for both axes that definefifs¢ quartile of rare morphotype classes
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3.2.3. MorphotypelnfluencedAllometry, Nutrient Allocation, ReproductiveStrategy and
StarvationSurvival

The abundancef a species to some extent reflects its success in competing for limiting resources.
In addition to the insights provided by biovolume aseasure of abundancas@described above), this
metric can also be used to explore distributions of individual body size, which is the hallmark of
allometric scaling This ecophysiological characteristic addresses the relatiaiséipreen metabolic
rate and body size, which governs many observed patterns in ecology. Allometric scaling relates body
size proportional to nutrientesource concentration arallocation in an environment and the
consequential metabolic performance andwgh rate of the organisms in the commurigg,30].
Body size determines resource use, how the fractal nature of food cluster availability and concentration
tradebff with body size, and how species body size constrains its ability to coexist withpetieg46,29.
Multiple species camoexist on the same limited resource aedupy the same or very similar niche
space within the community because they differ in body size, diet, and resource {lEsn26d

Pertinent to thémportanceof allometric scaling in microbial ecophysiology is their sizing d@asn
an adaptation tothe starvatiorimposed stressof nutrient limitationsin an environmen{31,33.
As nutrients become scarcer and the cell enters a state of starvation surviyatripggent response
triggered by amino acid deprivatignds body size is decreased by reductive division accompanied by
an increase in surface area to volume ratio that enhances its efficiency to capture more nutrients fol
utilization and provide betterdistribution of those resources once inside the cell. These
ecophysiologicalchanges in body size asccompanied byarious phenotypic changes including
increased efficiency of nutrient uptake systemsteased production of flagella and pili, remodeglin
of their cell envelope architecturternover of ribosomes and utilization of internal storage polymers to
satisfy their maintenance energy requirements for surinviide absence of growtptimal cell size
depends negatively on the size of resourcdenules when resource uptake is limited by diffusive
transport and membrane uptal?y][ When competing for two resources of different molecular sizes,
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two differentsized consumers can coexist if the inputs of resources and sizes of consumers are
correcty chosen 27]. Thus individual body size caprovide a first, best surrogas@proximation of

its habitatspecific concentration, allocation and acquisitionreftrient resourcg metabolicrate and

growth physiology [16]. This information can provide insights to distinguistutochthonous
(oligotrophic) k reproductive strategistswhose small body size anshcreased ratio of surface
areayolume allow them to grow slowlwhile successfully adaptg to starvation stress, and
outcompetezymogenous (copiotrophic) reproductive strategistswhen nutrient concentrations are

very low. In contrast, the zymogenaustrategistare limited by their carrying capacity agcbw faster

allowing them to outcompetithers when external concentrations of essential nutrients are high.

The 993% higher abundance of total microbial biovolume per unit of substratum aresabiofilm
assemblage ofommunity B (Table 1) provided the first clue suggesting differenceslametric
scaling of microbes in these two communities. Those results were corroboratediffeitbnces in
spatial abundance of biomass carbon and biosurface area (Table 1). To test this hyjpothesis
various statistical analyses were performedtanarrays of cell biovolume data extracted from each
microbe in thebiofilm images of communities A and Bigure 1a,b andTable 4). The ShapirVilks
test rejected the null hypothesis of normalpy<( 0.00Q@), indicating that neither array of individual
cell biovolumes was normally distributed. The median metric of central tendency for the distribution of
biovolume sizes was larger for all cells in community B, and #tal&] nonparametric MantWhitney
teg indicated that this difference was statistically highly significant. This result prompted us to identify
which morphotypeclasges) contributé€s) most to distinguish this allometric scaling relationship. The
ShapireWilks test ofindividual cell biovolunes for each separateorphotypeclassindicated normal
distributions for the ellipsoids, curved rods and prosthecates, andonomwl distributions for the
cocci, regular rods and unbranched filaments. We therefore used the mean and median, respectively, &
the metrics of central tendency in the parametric andpaoametric tests of differences between the
distributions of individual cell biovolumes for each morphotgjassin the two communities.

The results of these tests varied depending onntbgphdype examined. The distribution of
individual cell biovolumes of the cocci and ellipsoid morphotypes contributed most to ranking the
higher allometric scaling relationships in community B. The small probability of those results being
due to chance was 5x10'® and 4.0 x 10°, respectively. Although the median cell biovolume was
higher for regular rods in community A, that difference was not sufficient to raise the rank of
allometric scaling to be statistically higher than that found in community B. In addition, the Student
and ManAWhitney test statistics indicated that the distributions of cell biovolumes for the curved rod,
prosthecate and unbranched filament morphotypes in both communities were not significantly
different. The difference in body size for the unbranchddmints is visually apparent but
guantitatively insufficient to reject the null hypothesis of equal medians.

The corollary of these results was further evallidty comparing the surface anagime ratios for
all cells in the two communities and theistidibutions among different morphotype classes (Table 4)
The anticipated results occurred, with significantlghar values of the surface anedlime indicator
of cellular starvation stress in community A evaluated in whole (Table 4). The major camtgibut
this overall result were the significantly higher values for the cocci and ellipsoid morphotypes in
community A. The surface area/volume values were not significantly different for the curved rod,
prosthecate and unbranched filament morphotypesrdstingly, regular rods had higher values for
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this metric in community B, but again, that result was not statistically sufficient to raise the rank of
starvation stress above that found in community A.

Table 4. Tests for normality and differences betwaaran or median of individualetd
biovolumes and surface arbmvolume ratio for microbial morphotype classes in
communities A and B. The superscriptdenotes higher value§Community A vs.
Community B)that are statistically significant at the indichtp level, based on the
appropriate Zailed Student (for mean)or MannWhitney (for median)inference tests.

. . Normality?; Median or Mean
Normality?; Median or Mean of vy

Component Analyzed . 3 of Cell Surface ArealVolume
Cell Biovolume gm®); p value i1
(em'"); pvalue
- . . No; Median = 12.66%
Whole Biofilm Community A No; Median = 0.077 p=1.22x 10
Whole Biofilm Community B No; Median = 0.143p=1.1x 10" No; Median = 10.827
. . No; Median = 14.763
CoccusCommunity A No; Median = 0.052 D= 2.09% 10
CoccusCommunity B No; Median = 0.084 p=5.05x 10® No; Median = 11.362
EllipsoidCommunity A Yes;Mean = 0.391 No; Median = 6.44% p=0.01
EllipsoidCommunity B Yes;Mean = 1.78% p=4.0x10° No; Median = 3.740
Curved RodCommunity A Yes;Mean = 0.463; Yes;Mean = 9.634p = 0.436
Curved RodCommunity B Yes Mean = 0.489% = 0.804 Yes;Mean =9.111
Prosthecat€€ommunity A Yes;Mean = 0.450p = 0.138 No; Median = 13.679
Prosthecat€€ommunity B Yes;Mean = 0.347 No; Median = 14.655) = 0.535
Unbranched Filamer@ommunity A No; Median = 2.554p = 0.948 No; Median = 10.487 = 0.584
Unbranched Filamer@ommunity B No; Median = 1.337 No; Median = 9.301
Regular RogCommunity A EZ ysegiafd—loo.275 No; Median = 9.209
Regular RodCommunity B No; Median = 0.225 No; Median = 10.387p = 0.001

These results illustrate how the ability of CMEIAS to discriminate microbial morphotgrekelp
to evaluateallometric scaling and nutrient allocation relationships within microbial communities.
Morphotypespecific differences in intensity for these indicators all point to the impact that the
hydrophobic polystyrene substratuimposeson the growth ecophysiolog of microbial biofilm
communities in the freshwater aquatic ecosystem. Considered collectively, the statistical results
provide strong evidence thabcci and ellipsoid morphotypes cbmmunity B developing on the
polystyrene substraturhave access t@ higher level of nutrient resources that promote higher
metabolic and growth rates, larger body sizes, and a zymogdriype reproductive strategy. In
contrast,members oftommunity A developing on the plain glass substratum exhibit evidence of
significant nutrient limitation and reduced metabolic/growth rate thggeredtheir adaptations to
starvation stress, including reduction in body size concurrent with increase in surface area/volume ratio
that would enhance their nutrient uptake efficienciesp&form with an autochthonoustype
reproductive strategy under the prevailing conditions. Predictably, nutcententrate highewn the
polystyrene substratunallowing selected microbial morphotypes in the biofilm community B to
sustain higher metailtic activity and growth on its surface.
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Allometric scaling can als@rovide insight intothe intensity at which communities respond to
environmental change. In this casamulative percentages of abundance measureglbgounts and
body mass are plat againsta log scale ofranked classes to produgsbundance/Biomass
Comparison(ABC) curves.These ABC plots (derived from kdominanceconcept¥ are useful to
explore ifassemblage diversity is affectby an environmental perturbation tie landscapdocation,
and if so, thecumulativeeffect of that disturbanc§l6,3q. Both plots(Figure 5a,b) showed elevated
curves of cumulativpercentabundanceneasured bgell counts This type ofrelationshipis common
when thelocal environmenthas perturbedhe community structurehat it supportsresulting in
ecological successioi6]. The degree of separation between theves forcountsvs. biovolumeis
slightly greater for the biofilntommunity B developed on the hydrophobic polystyrene substratum,
suggestingthatits response tervironmental perturbatiowasslightly more intense

Figure 5. Abundance/biomass comparison (ABC) plots for commuagsemblagé\ (a)
and B p). Greater separation of the two curves implicates a more intense ecophysiological
response of the community to environmental change or perturbation.
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3.2.4. Morphologicallndicators ofPredatoryStressAffecting Microbial Community Structure

Predation is not evenly distributed across organism size classes. Instedklesitige and
morphologyselective predation behaviors can structure the abundance and diversity of cgmmunit
memberkip. Body size significantly influences the natudalersitygnodifying, communitigstructuring
effects of predataelective rather than random foragibghavior, in line with the evolutionary
pressure to maximize their resource intak®|.[ Bacteriovory gazing activies by heterotrophic
protozoan nanoflagellates and metazoan predaresnportant force thatshamgnthe structure and
composition of bacterial communities in aquatic ecosystems, largely because resistance to and refug
from selective bacteriovory is favored by largell aggregads and elongatedfilamentous
morphologies thaéxceed the oral diameter (egalent to gapesize) of the cytosome or lorica mouth
opening, therebyncreasng the difficulty of engulfing and consuming them by the predafdrs38.

Thus, the relative abundance of filamentous microbes can betosedicat the intensity of the
sdective pressure of phagotrophic predatory stress that contributes to shaping the aquatic microbial
community. Visual inspection of thamicrobial assemblage images (k#ig 1lab) and the
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CMEIAS-rendered pseudocoloredmorphotype classification imagefrigure 2a,b) indicates a
significantly higher abundance afnbranched filaments in biofilm community Bhis was confirmed
by image analysjsndicating that community B hasa 4.7#fold higher abundance ohat morphotype
(Table 2), andndeed its biovolume lbdy mass dominates attorphotypeclasses in that assemblage
(41.7% of total). These results predict that bacteriovory grazing actiwees more intense in the
biofilm assemblage aiommunity B andthe increased fitthess of the elongated unbranchatéht
morphotype amidst theelective predatory stress has resulteitsidominance.

3.25. Biofilm Ecophysiology oNutrient Acquisitionand UtilizationEfficiency Indicated byts
Landscapé&ractalDimension

At the core of the allometric scaling relationships in ecophysiology are the local variations in
nutrient resource allocation. Acquiring enough food is the first key requirement for successful
colonization of surfaces by microbes. Various ecological ssugliggest thahetabolic processes used
for growth physiology rely on the hierarchical fraeliké nature of resource distribution networks, and
that organisms have exploited a fourth spatial dimension by evolving hierarchical -litectal
structured spal distributions designed to maximize nutrient resource acquisiilocation and
efficiency[39]. Fractal descriptionsf this selfsimilarity metric for communities provide quantitative
insightsaboutthe spatial distribution of resourcassitu andhow organism&ompete for anéxploit
those resource§|. This fractal partitioning of heterogeneous distributioasd allocationsof the
same resource is an important tradieconstraint that enables the coexistence of multiple species
among communitynemberq26]. Thus, a landscape analysis of fractal geometry can provide insights
that help to explain the ecophysiology of microbial colonization behavior on surfaces, driven by their
food cluster availability,nutrient resource allocation and optimalspioning to maximize their
utilization efficiency.

Microbial biofilms exhibit selfsimilar fractal geometrat multiple spatial scald40,41], reflecting
the complexity of their architecture and microcolony coastline bordene ability to discriminate
fractal dimensionalong coastlines of micomlonybiofilm patchesand the spatial patterns of microbes
at singlecell resolutionwithin biofilms is being implemented in a new CMEIAS software application,
currently atits near final stage of developmej,42]. Image analysis of thespatial positioning of
individual microbes in théwo biofilm assemblage@~igure 1a,b indicate thabothlandscapegxhibit
positive fractal geometry (Table 5Jhe higher fractal dimension of the community B assemblage
consistent withthe enhancedcomplexity of its landscapestructure suggeshg that the spatialy
aggregatedells in that biofilmare moreeffectively positioned to optimize their efficient utilization of
nutrient resources provided in the flowing aquatic habitat of the Red Cedar Riighigherintensity
of fractatlike positioning of cells in community B (Table 5) and their higher mdiaate predicted
by their allometric scaling (Table 4) support the model that this natural biafisemblagéas more
effectively dispersed t@nd colonizedmicroenvironmenton the slidesvhere local nutrients have
concentratecat distancesrelevant totheir niche thus contributing taheir overall higherspatial
structure productivity and diversity on theydrophobigpolystyrene substratum.
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Table 5. Fractal geometry of the natural biofilassemblages of microbiabmmunities A
and B developing on @in glass and polystyrene substrata, respectively. The higher values
of fractal dimension are indicated by upward arrows.

Fractal Dimension Method Community A Biofilm Community B Biofilm

Dilation 1.20196 1.30069-
Euclidean Distance Map 1.15666 1.25709-
Box Counting 1.03285 1.23618~
Cumulative Intersection 1.53651 1.75074~

3.3 Biofilm Ecophysiology Indicateoly Spatial Pattern Analysis
3.3.1 Background

Spatial patterns of distributioamong community members influence many processes that are
ecologically important [43]. Becauseamy ecological processes are sadpendent, their study
should include a spatial component measured at the scale in which the proces§A8tcArsnajor
goal of spatial analysis in ecophysiological studies idefine what a measured characteristic at one
location can reveal about that same characteristic at neighboring locations. Analyseguxdpatial
ecology are designed to scrutinize distribution patterns at a given spatial scale and produce predictive
ecological models of colonization behavior that help to reveal the ecophysiological processes
occurring in that habitat4B].

The quantification of spatial heterogeneity is necessary to elucidate relationships between
ecological processes and spatial padeld3]. The essence of the statistical pattern analysis is to
distinguish between spatial distributions of the organisms that can be explained by random chance
versusthose that cannofhe benchmark of that assessment tests the null hypothesis tipatttéras
havecomplete spatial randomnesspresented by a Poisson distribution with means equal to variance.
Complete spatial randomness implies that no microbial interactions affect the events resulting in their
spatial pattern of colonization. In comndta statistically significant deviations from complete
randomness in spatial patterns can reflpbenotypic ecophysiologicahdaptations in spatially
structured landscapes, indicating that localized and/or regionalized microbial interactions have affected
their colonization behaviaesulting in the spatial pattern present

Nonrandom spatial structures may not only result from ecological interactions; they may also play an
essential functional role in organizing the interactions that dictate their esiololgy and stability[44].

Spatial patterns of microbial colonization that aggregatedclustered) imply positive (cooperative
and/ or mutualistic) interactions among neighb
ecophysiology Extreme exampms of this relationship occur innterspecis coaggregates of
crossfeeding, e.g., syntrophic microbial species residing in methanogenic communiggregated
patterns of distribution in landscaptructurs also result from the scatiependent heterogeneous
fractal variability in limiting resource partitioning, and reflect the high efficiency at which cells
actively disperse and cooperatively position themselves spatially and physiologically when faced with
the interactive forces of microbial coexistence to optimize their allocation of nutrient resources on a
local competitive scale2p]. In contrast patterns of spatialiniformity (regularity) imply negative
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(inhibitory and/or antagonistic) interactions thawe resulted in their maximally separated, @iepersed
seltavoiding colonization behavior. This information is of significant ecophysiological importance
because spatial heterogeneity resulting from both types of nonrapdttennsbetween individuls
(aggregated or uniformiends to stabilize ecological systefdsl, 45 and can explain much of the
species diversity that coexists in a community colonizing a hal2iit Key issues in spatial pattern
analysis that typically follow statistical rejeati@f the null hypothesis of complete spatial randomness
include whether the pattern exhibits uniform regularity or coaggregation, the spatial scale at which the
pattern of interaction is defined (locak. regional), and thestatistical strength of that gat er nd s
departure from randomnests].

Does location really matter in microbial ecophysiolog9® the patterns of microbial spatial
distributionr e pr esent fAec ol o go maelthamrandomanaséAe comaanansweh e y
is yes indeedlocation does matter and structured patterns of microbial spatial distribution can be
magnificently symphoniSpatial segregation of morphotypaslonizingthe same habitat cgmovide
insights into their feeding behavjdrophic leve] food web dynamicand reproductive capacityhis
trend has consistently been found in our spatial ecology studies of microbial biofilms that develop in a
variety of natural anghanagechabitats, including plant rhizoplanes and phylloplddés49], freshwater
streambed pebles p0], andmicroscopeslides suspended wariousriver/lake ecosystem2/5152).

Microbial colonization of local areas low in nutrient availability lse&ol poor productivity with a
tendencyto form overdispersed spatial patteindicative of int&ise competitionwhereascolonization
of nutritionally enriched microenvironments resuit increased growtlthat flourishes aaggregated
patterrs of local microcolony biofilms[51,57. Central tothesenegative (conflicting) angbositive
(cooperative)interactions are various molecular ¢e#ll communication eventthat regulate the
ecophysiology affecting microbial colonization behavior and biofilm architect2je Also, knowing
the location and intensity of clustered behavior for microorganismémanove the understandingf
the underlying processes that generate and sustain the interdependent -emenarenent
relationships within biofilm architectures and the spatial scale at which they 6. Thus,
modelingspatial patterns of micradli communities at multiple spatial scales is crucial to understand
their ecophysiological functioninfully. Indeed no study of microbial ecophysiology is complete
without anin situ spatial consideratioaf their activitieswithin the habitat, simply because everything
is not randomly located everywhere. Applying spatial statistics to analyze microbial biofilm
architectures can algarovide insighton the ecological forces that underlie the basic mechanisms of
the colonizatio behavior that created them.

3.3.2 Point Pattern Spatial Distribution Analysis

CMEIAS is designed to analyzbreedifferent categories of microbial spatial distributidine first
category is @lot-lessfpoint patternd b as ed on eixdturnacminateo staled flistahchse
between each bacterial celhd its nearest neighbavithin the biofilm landscape Spatial attributes
included in these analyses are the X|Y Cartesi
the assigned 00 landmark position located at the lower left corner of the image)mtecaled
di stance from each firgt landsecandnearest bactérial meéighbors, and ithe s
empirical distribution function diirst nearest neighbor distances.
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Several analyses of spatial point patterns were performed on the two wofilmunitiesfor this
study Thefirst involved acalculaton of the ClarkandE v a R@andomnesindex intended taest for
departure from complete spatial randomnesthe overdllandscapestructure This spatial statistids
computed from dta of thefirst nearest neighbor distanclestween cells anthe spatial densityvithin
the biofilm landscape The mean neighboringdistances weregreaterfor observed than expected
values Z values were greater thahe threshold border df.96 and R indices were greater than 1.00
(Table 6). These resultietectstatistically significantleparture of complete spatial randomness for spatial
patternsin both biofilm assemblagesncluding uniform patternssignalling negative ovedispersed
conflictsof selfavoidingcolonization behavior thatremoreintensein biofilms of Community A than
in Community B p values of 3.2 10 ®* and 2.78x 10'°, respectively).

Table 6.Clark and Evanspatial point pattern test for complete spatial randomness of cells
in biofilm communities A and B. Calculations are based on landscape areas defined by the
convex hull of point distributions with Donnelly edge correction [8].

Point Pattern Statistic Community A Community B

Observed Mean Distanc 1.5125 1.3191
Expected Mean Distanc 1.2331 1.2494
Z test statistic 16.92 4.2168

R Index 1.266 1.056

The next point pattern analysis evaluated Hmapirical Distribution Function(EDF) of the cell®
spatial distributionwhich produces a plot thatompares the cumulative ranking of thest nearest
neighbor distances between individual cells in the sample to the theoretical distribution that would
result if the pattern were completely rand¢indicaed by adiagonal random trendlinthat extends
from the XY intercept to the maximumearest neighbor distandeund in the analysjs Datapoints
indicate a uniform pattern ofdistribution when they form a tighgroup with little range offirst
neighbor distance, an aggregated distribution when the curve adcefolsn a distinct extended
asymptote at EDF of 1.0@bove the random diagonal trendlied a random distribution whethne
EDF curveascend with a shallower slop#ser to the diagonatendline Differences in intensity of
aggregated patterns aralicated by theirelative distanceabovethe diagonal trendline of complete
spatial randomnes3he empirical distribution plofor the biofilm landscape(Figure 6ab) indicatea
greaterportion of uniformly dispersed pattern for Community(@nsistent with Clark and Evans R
index, Table 6)anda steeper curve displaced further abovebibe diagonal trendlindor Community
B, indicatingthat Community Bhas a more intense aggregatetigra than does Community A, whose
EDF curveis shallower and closer to tihed diagonal trendline

Ri p | e[38pnuilti-distance spatial cluster analysis is a useful sequel to the EDF analysis. This is
a seconebrder, point distribution statistic thavauates the coccurrence of separation distances
between pairs of object points to determine if the point pattern changes with distance of the spatial
scale of analysis. Thk(d) function measures the average count of objects enclosed within circles of
radiusd that are centered on every object point in the landscape divided by the mean spatial density of
objects in that landscape. A plot of K{d) functionsvs. all radial separation distances for all objects
in the landscape indicates if the pattermingformly dispersed, clustered or enclosed within a Monte
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Carlo simulation of the confidence envelope representing the 95% critical limits for a test of complete
spatial randomness. Observgftl) values representniform spatialdistributions when locatedelow

the confidence envelope of spatial randomness, and represstéreddistributions when located
above the confidence envelope. The intensity of clustering or uniformity is indicated by the relative
proportion and location of observed points whose separation distances lie above or below the
statistically defined 95% envelemf spatial randomness, respectively.

Figure 6. Cumulative empirical distribution function of the first nearest neighbor distances
between individual bacteria within biofilm assemblages of community ap gnd
community B p). The diagonal trendline of caplete spatial randomness is indicated in
both plots for comparison.

The Donnelly edgeorrected [7,8] and standardized Ripley K (L=()[8] values of point pattern
characteristics for all bacteria within biofilm community assemblages developing qtatheglass
and polystyrene substrata are plotted in Figurd iéspectively. Several features of these two Ripley
K plots reveal statistically significant information that dramatically distinguishes the spatial patterns of
the microbes at different spaltiscales in these two biofilm assemblages. First, some cells in both
biofilm landscapes are uniformly equidistant from each other. These occur at eight different separation
distances in community A and two different separation distances in community cBndSethe
majority of separation distances is represented by cells with random spatial distribution in community A,
and by cells that are spatially aggregated in community B (note the larges ¥cale in Figure Jb
Third, the distribution of K functiom for spatially aggregated cells in Community B has a discrete
modeof local interactionst separation distances of approximatél§ 6m (up to 18mm) and another
mode of regional interactionst a maximum of 36rm. These interesting results indicate thae
biofilm landscape that developed on the polystyrene substratum is significantly more spatially
aggregated than the biofilm developed on plain glass. This distinction of colonization behavior
revealed by the Ripley K analysis illustrates how the dpstiacture of secondrder interactions
within microbial biofilms can be significantly influenced by the (physico)chemistry of the substratum
upon which it develops.



