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Abstract: The predominant analytical approach to associate landscape patterns with gene
flow processess based on thassociation of cost distances with genetic distances between
individuals. Mantel and partial Mantel testave been the dominant statistical tasded to
correlate cost distances and genetic distances in landscape genetics. However, the inherent
high correlation among alternative resistance models resulishigh risk of spurious
correlations using simple &ftel tests. Several refinemeniscluding causal modeling,

have been developed to reduce the risk of affirming spurious correlations and to assist
model selection. However, the evaluation of these approaches has been incomplete in
several respects. To menstrate the general reliability of the causal modeling approach
with Mantel tests, it must be shown to be able to correctly identify a wide range of
landscape resistance models as the correct drivers relative to alternative hypotheses. The
objectives ofthis study were to (1) evaluate the effectiveness of the originally published
causal modeling framework to support the correct model and reject alternative hypotheses
of isolation by distance and isolation by barriarglto (2) evaluate the effectivenest

causal modeling involving direct competition of all hypotheses to support the correct
model and reject all alternative landscape resistance models. We found that partial Mantel
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tests have very low Type Il error ratdsut elevated Type | error rates. iShleads to
frequent identification of support for spurious correlations between alternative resistance
hypotheses and genetic distance, independent of the true resistance model. The frequency
in which this occurs is directly related to the degree of datien between true and
alternative resistance models. We propose an improvement based on the relative support of
the causal modeling diagnostic tests.

Keywords: landscapgeneticsmanteltest causal modelingsimulation CDPOP

1. Introduction

Landscap genetics provides a powerful approach to evalttegesffects of multiple landscape
features on population conneaty [1112]. Individuatbased analyses relating landscape structure to
genetic distance across complex landscapes enable rigorous ewalohtimultiple alternative
hypotheses relating landscape structure to gene flow.

The predominant analytical approach to associate landscape patterns with gene flow processes i
based on paiwise calculation of cost distances, using least cost paths [(E3d.4] or multi-path
circuit approacheq15]). These paiwise cost distances among individuals across a landscape
resistance model are then correlated with-pese genetic distances among the same individuals with
methods such adMantel and partial Mantel teqts5,17].

There has been controversy in the literature about the appropriateness of Mantel testing in landscap
genetics. Raufaste and Rousli] questioned the use of partial Mantel tests in m&rolutionary
studies. Sukequently, Castellano and Balleftt9] attempted to rehabilitate the use of the partial
Mantel test in genetic analysis. Recently, Legendre and Ha@rclarified this confusion. They show
that Raufaste and Rous$#&8] raised a valid point about asttion requiring a particular permutation
procedureput made unwarranted claims that partial Mantel tests are a biased testing procedure, while
Castellano and Ballettd 9] attempted to refute thibut advocated an inappropriate testing procedure.
Legende and Fortif20] note that distanebased regression approact®s;h aghe Mantel test, have
lower power than traditional linear models and tend to underestimate the true magnitude of a
relationship. They conclude that partial Mantel testing is theropppte framework when the
hypotheses are explicitly defined in terms of distance matrices, as they are in landscape genetic
analyses testing effects of landscape resistance on neutral genetic differentiation.

Recently Guillot and RoussdR1] reported hat partial Mantel tests may suffer from bias in cases
where there is spatial correlation in landscape resistaihes. suggest that Mantel tests should not be
used in case autorrelation is suspected in both variables. Similakeirmans [22] argued #i
spatial autocorrelation deriving from isolation by distance bias the outcome of Mantel tests, leading to
a large number of false positives. Amos3][2eported a similar pattern of results for alternative
resistance modelsather than isolation by distee.

Cushmaret al.[6] proposed a causal modeling framework to assist in model selection and increase
the likelihood of identifying the true driver of genetic isolation. This approach involves identifying the
most supported resistance hypothesis amongnger of alternative resistance models (based on
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statistical significance) and then using partial Mantel 2826] to determine whether it meets the
statistical expectations of a causal model relative to alternative models of isolation by distance or
isolation by barrierRecently, Cushman and Landg(®6] evaluated the power of this framework and
found that the method performs well in identifying the drivers of genetic differentiatemcase study

of complex landscapandrejecting incorrect and correlated alternatives. However, theiai@h of
Cushman and Landguf26] only evaluated whether a single stipulated landscape resistance model
(i.e. that identified byCushmaret al.[6]) could be reliably distinguished frohypotheses of isolation

by distance and isolation by barrier.

Two additional questions need to be evaluated to determine the overall reliability of the causal
modeling approach using partial Mantel tests in landscape genetics. First, to demonstratertie ge
reliability of the Cushman and Landgui®6] approach(Figure 1a),it must be shown to be able to
correctly identify a wide range of landscape resistance models as the correct drivers relative to
isolation by distance and isolation by far. Second Wassermaret al. [11] proposed a more
complete form of causal modeling to imprawe strength of inferencérigure D). In this approach,
rather tharto first identify the most supported resistance hypothesis and then to evaluate it relative to
null mockls, all resistance and null models directly compete against each other. To validate this
approach, a formal evaluation using simulation must be conducted to determine whether these
additional comparisons improve the reliability of the method.

The objecties of this study were to (1) evaluate the effectiveness of the Custirahif6] causal
modeling framework to support the correct model and reject alternative hypotheses of isolation by
distance and isolation by barriemadto (2) evaluate the effectiveas of the Wassermaat al. [11]
approach to causal modeling. We had three specific hypotheses. First, we expected, following
Cushman and Landguth [26], that causal modeling would have high power to correctly identify the
driving processi(e., a low rateof failing to find significant support for the true model, independent of
alternative models). Second, as seen in Cushman and Landguth [26], we expected a lower ability of
causal modeling to correctly reject alternative models that are highly correldtethevitrue driving
processi(e., a higher rate of significant partial Mantel correlation between the null models and genetic
distance, partialling out the resistance model known to be true). Third, we expected that the rate of
failing to reject spuriouslternative models would be positively related to the strength of correlation
between the cost distances in simulated (true) resistance hypothesis and those in the null model the
could not be rejected.



Diversity2013 5 54

Figure 1. Schematic describing the two differentpapaches to causal modeling with
partial Mantel tests used in this papa). The method used by Cushmetnal. [6] in which

if a resistance hypothesis is supported independently of the two null models of isolation by
distance and isolation by barriers nh€l) the partial Mantel test between the resistance
model and genetic distance would be significant, partialling out geographical distance,
(2) the partial mantel test between the resistance model and genetic distance would be
significant, partialling at the barrier model, (3) the partial Mantel test between geographical
distance and genetic distance would not be significant, partialling out the resistance model
and(4) the partial Mantel test between the barrier model and genetic distance would not be
significant, partialling out the resistance moddd) The method used by Wasserman

et al. [11] involves directly competing alternative resistance models against each other. In
this method, if a resistance model is supported independently of anothemasisiodel

then: (1) the partial Mantel test between the resistance model and genetic distance would
be significant, partialling out the alternative modat (2) the partial Mantel test between

the alternative model and genetic distance would not befisagt, partialling out the
supported resistance model.

/1 Gen | f Gen

Resist | Distance Barrier

Resist 1 Resist 2

(1) Gen ~ Resist | Distance, sig

(2) Gen ~ Resist | Barrier, sig

(3) Gen ~ Distance | Resist, nsig (1) Gen ~ Resist 1 | Resist 2, sig
(4) Gen ~ Barrier | Resist, nsig (2) Gen ~ Resist 2 | Resist 1, nsig

(@) (b)

2. Experimental Section
2.1 Study Area and Resistance Hypotheses

We chose a real landscape in northern Idaho, USA (FRutbat has been the focus of extensive
landscape genetiesearch on black bears2®] and American marten [14829]. This landscape has
al so been used as a fAcase studyo in several
individuatbased landscape genetic approach€3 &d of the causal modetinframework [26].
Cushmanet al [6] evaluated the Mantel and partial Mantel correlation between 108 landscape
resistance models, plus the null models of isolation by distance and isolation by badigeck bear
genetic differentiation in the studyea. In the current study, we use a subset of 35 of these resistance
models that had the highest relationships with black bear genetic differentiatipnTfse 35
resistance models are a combination of the effects of elevation, forest cover and roaglstamnce
(Table 1). These are the major physiognomic attributes that vary in the study area. In addition, this
suite of resistance models has also been used as the basis of studies tomyallsien connectivity
across the U.S. northern Rocky Moungafor a wide range of native taxa2[33] and to quantify the
sufficiency of Federally owned lands in providing protection for these spedies [3
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Figure 2. Map of study areawhich contains 4,500 square kilometers encompassing the
extreme northern padf the ldaho panhandiendadjacent areas of Washington, Montana
and British Columbia.

|
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Table 1. List and description of the 35 resistance models evaluated in the present study.
The models were a combination thfe effects of elevation, forest covend roads on
resistance to gene flow (for details see [6] Cusheiaal. 2006;2012)). The resistance
model identified as causal in [6] Cushmetral. (2006) hasa minimum resistance in forest

at middle elevations with high resistance of roads (FHEMRH).

Model Acronym Model Description

EH Minimum resistance at high elevations5d0m)

EHFH Minimum resistance in forest (strong) at high elevations

EHFL Minimum resistance in forest (weak) at high elevations

EHRH Minimum resistance at high elevations with higlsistance of roads
EHRL Minimum resistance at high elevations with weak resistance of r
EL Minimum resistance at low elevations (500

ELFH Minimum resistance at in forest (strong) at low elevations

ELFL Minimum resistance in forest (weak)latv elevations

ELRH Minimum resistance at low elevations with high resistance of ro:
ELRL Minimum resistance at low elevations with weak resistance of rc
EM Minimum resistance at middle elevationsO0m)

EMFH Minimum resistance in forest (strghat middle elevations

EMFL Minimum resistance in forest (weak) at middle elevations
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Table 1.Cont.
Model Acronym Model Description
EMRH Minimum resistance at middle elevations with high resistance of roads
EMRL Minimum resistance at middievations with weak resistance of roads
FH Minimum resistance in forest (strong)
FHEHRH Minimum resistance in forest (strong) at high elevations with high resistance of r
FHEHRL Minimum resistance in forest (strong) at high elevations with wesiktance of roads
FHELRH Minimum resistance in forest (strong) at low elevations with high resistance of ro
FHELRL Minimum resistance in forest (strong) at low elevations with weak resistance of r
FHEMRH Minimum resistance in forest (strong) atiddle elevations with high resistan
of roads
FHEMRL Minimum resistance in forest (strong) at middle elevations with weak resis
of roads
FHRH Minimum resistance in forest (strong) with high resistance of roads
FHRL Minimum resistance in foregstrong) with low resistance of roads
FL Minimum resistance in forest (weak)
FLEHRH Minimum resistance in forest (weak) at high elevations with high resistance of ro
FLEHRL Minimum resistance in forest (weak) at high elevations with weak resisthnoads
FLELRH Minimum resistance in forest (weak) at low elevations with high resistance of roe
FLELRL Minimum resistance in forest (weak) at low elevations with weak resistance of ro
FLEMRH Minimum resistance in forest (weak) at middle elevatinfith high resistance of roac
Minimum resistance in forest (weak) at middle elevations with weak resis
FLEMRL
of roads
FLRH Minimum resistance in forest (weak) with high resistance of roads
FLRL Minimum resistance in forest (weak) with loesistance of roads
RH Strong resistance of roads
RL Weak resistance of roads

2.2 Landscape Genetic Simulation with CDPOP

We used CDPOP version 0.84 [32] to simulate the processes of mating and dispersal as functions o
each of the 37 landscape modé3$ resistance models plus isolation by distance and isolation by
barrier). CDPOP is an individublased, spatially explicit, landscape genetic model that simulates
birth, death, mating and dispersal of individuals in complex landscapes as probabilistiocn of
movement cost among them. The model represents landscape structure as resistance surfaces a
simulates mate selection and dispersal as probabilistic functions of cumulative cost across these
resistance surfaces (breeding is simulated with Merdaheritance and k-allele mutatioamutation
rate = 0.0005), a commonly used mutation model for microsatellite I5&6]3 The user specifies the
locations and genotypes of the initial populatiand the model simulates spatiadiyplicit populatio
genetic change through time as a function of indivicheéadled movement (mate choice and dispersal),
mating, mutation and mortality.

In each of the 37 alternative landscape mqdeésplaced P48 individuals in a uniform grid at a
2 km spacing within forested cover (Figue We simulated gene flow among these locations for 500
non-overlapping sexual generations. Previous research has shown that the relationship between geneti
structure and landscape resistance equilibrates veiatrapidly, generally within 100 simulated
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generations [2@37,38]. We stipulated the population to have ten neutral and diploid loci with ten
alleles per locus, initially randomly assigned among individuals. We used an inverse square mating
and dispersaprobability function, with a maximum dispersal cestighted distance of 40,000
(approximately the dispersal ability of black bear, a focal species for this analysis) in ideal habitat
(i.e., a resistance value of one or isolation by distance). The ewpfboffspring was based on a
Poisson probability witaeme an of four , creating an excess
study area, resulting in a constant population across generatlljn$&¢8 each of the 37 landscape
resistance models, we rean Monte Carlo replicate runs in CDPOP to assess stochastic variability.

Figure 3. Example of one resistance modsiifimum resistance in forest (strong) at middle
elevations with high resistance of rodd<HEMRH), Table 1) and the locations of thg48
simulated individuals (yellow dots). The resistance model predicts low resistance (dark
areas) in middle elevation forest and high resistance (light areas)-fonest, extremely

low or extremely high elevation or on roads.

2.3 Evaluating Reliability of th€ushmaret al (2006)Causal Modeling Framework

CDPOP calculated a matrix of pauise genetic distances between ali4B simulated individuals
based on the proportion of shared allel®sg([39]) at generation 500. We thealculated 37 matrices
of pairwise leastcost distance using the COSTDISTANCE function in ArcGIg fdr each of the 37
different landscape resistance models (Table 1).

Following Cushmaret al. [6] andto assess the relationship between genetic aniddape distance
matrices, we used Mantel testsl[4as implemented inthBEc odi st 0 Z2praR K3 gve [ 4
calculated simple and partial Mantel (correlation between genetic distance and cost distance,
partialling out Euclidean distance) for all 37thalated populations (10 replicates times 37 alternative
models) at generation 500. We assessed statistical significance with 999 permutations.

For each of the 35 alternative landscape resistance hypotheses, we calculated four partial Mante
tests to asss the degree of association between each genetic distance matrix and landscape distanc
matrix, partialling out the effect of an alternative landscape distance matrix (Table 2). Causal modeling
with distance matrices using partial Mantel tests providdsoawes in terms of significance and
nonsignificance of a series of tests that can be used to reject explanations that are not consistent witl
the expectations of the causal model. We evaluated the frequencywhiith causal modeling
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correctly supportedhe true resistance model and rejected the alternative hypotheses of isolation by
distance and isolation by barrier for each of the 35 landscape resistance models. We used logistic
regression to evaluate the nature and strength of the relationship b&®egemmcy of each of the four

tests meeting the causal modeling expectation and the degree of correlation between the true resistan
hypothesis and the null models of isolation by distance and isolation by barrier.

Table 2. The four partial Mantel testsad in the causal modeling framework to assess the
degree of association between each genetic distance matrix and three cost distance
matrices, representing the two null models (Isolation by Distance, Isolation by Barrier), and
the correct landscape resiste model. The expected outcomes are for the situation where
the landscape resistance moded isie driver of the observed genetic differentiation.

Test Dependent . . Expected
. Independent Variable Covariate
Number Variable P Outcome
Genetic Landscape Resistanc . . N
1 . . Isolation by Distance Significant
Distance Model Cost Distance y g
Genetic Landscape Resistanc . . N
2 . . Isolation by Barrier Significant
Distance Model Cost Distance y g
Genetic . . LandscapdResistanceModel Cost Not
3 . Isolation by Distance . N
Distance Distance Significant
Genetic . . LandscapdResistancéodel Cost Not
4 . Isolation by Barrier . N
Distance Distance Significant

2.4. Evaluating Reliability of the Wassermanal (2010) Causal Modeling Framework

Wassermaret al. [11] expanded the causal modeling framework, 284 to provide more robust
landscape genetic inferenda. the Wassermaet al. [11] approach, instead of ranking alternative
landscape resistance models by partial Maptehlues (partialling out distancend then testing the
highest ranking model with causal modeling (as described abq8#})[@&ll landscape models directly
compete with each other without a preliminary ranking step. This approach employs two sets of
diagnostic tests: (1) partial Manteists between genetic distance and one simulated model, partialling
out the effect of each alternative model in turn and (2) partial Mantel tests between genetic distance
and each alternative model, partialling out the effect of one simulated model.afgplexin the case
when hypothesis EHi.€., resistance lowest at high elevation) was simulated as the true resistance
process, we computed two sets of partial Mantel tests: 36 partial Mantel tests consisting of the
correlation between genetic distance #mel EH hypothesis, partialling out each of the 36 alternative
resistance hypotheses in tuire( 34 alternative landscape resistance hypotheses, plus isolation by
distanceand isolation by barrier)Jand 36 partial Mantel tests calculating the corretati@tween
genetic distance and each of the 36 alternative hypotheses in turn, partialling out the EH resistance
model. For a resistance model to be formally affirmed as the only hypothesis supported, all of the tests
in (1) must be significanand none othe tests in (2) can be significant. This would show that the
identified model has statistically significant ability to predict genetic distances after removing the
effects of each othe competing alternative models individualfnd that none of the euopeting
alternative models hawesignificant ability to predict genetic distances after removing the effects of
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the hypothesized model. We calculated the number of times that the simulated resistance model wa:
identified correctly as the driving modeld all alternative hypotheses were rejected. We used logistic
regression to evaluate the relationship between frequency of the true resistance model being correctl
supported independent of the correlated alternative maatedsthe frequency of the corretat
alternative models being correctly rejected based on no relationship with genetic diatiemendent

of the true resistance hypothesis.

3. Results and Discussion
3.1. Correlations among Resistance Hypotheses

We found high correlation of the cost distances among pairs of resistance hypothesesAjFigure
The average Mantel correlation of cost distances among all combinations of the 35 alternative
landscape resistance hypotheses was 0.841. The minimum conrglaga0.359 between the models
EL and RL (Table 1). There were more than 50 pairs of resistance hypotheses with ar Néagéz!
than 0.99 (Figurel). These generally were pairs of resistance models that shared the same optimal
elevationor the same sertsrity to forest covemor both.

Figure 4. Matrix of Mantel correlations between cost distances between all paif4§ 1
source points in all pairs of resistance hypotheses. The rows and columns of the matrix
represent each of the 35 resistance hypoth€$able 1), with the bottom two rows
representing the two null models of isolation by barrier (rd) and isolation by distance (ed).
The color of the cell corresponds to the magnitude of the Mactalrelation between the

cost distances in the pair of iIgance hypothesemdicated by the intersection of the row

and column

0.6

0s

L 0.4
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3.2. Evaluating Reliability of Causal Modeling

There were four diagnostic partial Mahtests in the Cushmaat al.[6] method of causal modeling
(Figure B): (1) simulated moddlisolation by distance null model, (2) simulated model | isolation by
barriers null model, (3) isolation by distancsimulated model, (4) isolation by barriers | simulated
model (Table 2)The symbol | indicates a partial Mantel test, where the varfialtd&ing the | symbol
is partialled out of the Mantel correlation between genetic distance and the variable preceding the |
symbol.All runs of each of the 35 alternative resistance hypotheses produced the correct result in the
first two of these tests (ffure 5). The results indicatethe perfect ability of partial Mantel tests to
affirm independent relationships between the true resistance hypothesis and genetic distance
independent of isolation by a barrier or isolation by distdfests 1 and,Zlable 2)

Thirty-one of the 35 alternative landscape resistance models had perfect performarse 2rOf
the four that had less than perfect performance, all performed perfectly in over 80% of model runs. In
contrast, 12 of 35 alternative resistance medeld less than perfect performanc&ast 4. In nine of
these, the expectations Dést 4 were not met in the majority of ruasdthree alternative resistance
models always failed to meet the expectationFedt 4. These were models EHFH, FHEHR#Kt
FLEHRL (Figure 5).

There was a strong association between the correlation edlistetces between resistance models
and the frequency witlvhich they failed to meeTest 3 orTest 4 Table 3. There waghe perfect
ability of partial Mantel tests to cor#y reject the isolation by distance hypothesis when the
correlation between the distance model and the true landscape resistance model was over 0.85.(Figure 6:
The ability to reject a spurious correlation with isolation by distance relationship detraashe
correlation between the true resistance model and the isolation by distance null model decreases
reaching a frequency 0.12 at a Mantel correlation of 0.70 between the isolation by distance model and
the true resistance hypothesis (Figure 6ayaimtrast, the probability of incorrectly finding support for
barriers independent of the true resistance hypothesis increased with the correlation between the
resistance model and the barrier null model, reaching a frequency of approximately 0.70 when the
correlation between the barrier and true landscape models approached 0.15 (Figure 6b).

In the Wassermaet al.[11] form of causal modelindhere were two partial Mantel tests analogous
to those in the Cushmaet al. [6] form, including (1) the true modelpartialling out the alternative
landscape resistance modahd (2) the alternative resistance maqdedrtialling out the true model
(Figure 1b). Over 87% of the, 260 combinations of models met the expectationFest 1 in all
CDPOPruns (Figure 4). Six of the 35 resistance models had significant associations with genetic
distance independent of all 34 alternative landscape resistance models (EL, ELFH, FHEHRL,
FHEMRH, FHEMRL, RH; Figure 4). In contrast, only 61% of th26D combinabns of models met
the expectations ofest 2 in all CDPOP runsndno resistance models had significant associations
with genetic distance independent of all 34 alternative landscape resistance models (Figure 5).
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Table 3. Parameters for logistic reggion equations predicting whether or not each of the
diagnostic partial Mantel tests fails to produce the correct results as a function of the
correlation between the true resistance model and the alternative resistance model.
IBD | Modet simple causamodeling diagnostic test of whether there is independent
(spurious) support for isolation by distance independent of the true model.
IBB | Model simple causal modeling diagnostic test of whether there is independent
(spurious) support for isolation by io@r independent of the true model.
True | Alternativecausal modeling test of whether there is independent support for the true
model independent of the alternative model. Alternative |:Teaasal modeling test of
whether there is independent (spusd support for the alternative model independent of
the true model. The simple causal modeling tddtsdel | IBD andModel | IBB, are not
shown, as they both had 100% correct performance across all alternative resistance models
and model runs (Figure 3)he symbol | indicates a partial Mantel test, where the variable
following the | symbol is partialled out of the Mantel correlation between genetic distance
and the variable preceding the | symbol.

Test Logistic
Regression Estimate Std. Error Z value Pr(>|z|)
Number
Model
1 IBD | Model Intercept 10.207 6.276 1.626 0.1039
DD 117.451 7.855 12.222 0.0263
2 IBB |Model Intercept 12.8887 0.3562 18.111 5.03x 10
DD 22.7708 3.9155 5.816 6.04x 10°
T }
3 rue | Intercept 136.6 1.187 130.82 <2x10%
Alternative
DD 36.472 1.211 30.11 <2x 101"
Alternati .
4 Trjéna Ve | \ntercept 137234  0.1289 728.88 <2 x10%
DD 3.916 0.1471 26.62 <2x101'°

There waghe perfect ability of a resistance hypothesis to be shown to be independently supported
comparedto alternative resistance hypotheses when the correlation between the true and alternative

resistance models was less than 0.85 (Figure 7a). The correct model was usually ideveifiechen
the correlation between the true and alternative models wasigdr (r > 0.98; Figure 8a). In contrast,

there was a more than 10% chance of spurious support of the alternative model across all levels o
correlation between the true and alternative resistance hypotheses (Figure 8b). The chance of spuriou
independentorrelation between the alternative model and genetic distance, independent of the true
simulated hypothesis, increased with increasing correlation between resistance hypotheses, witt

greaterthan a 50% chance of independent spurious relationships whlealténnative model had a
Mantel correlation of over 0.9 with the true resistance hypothesis (Figure 7b).
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Figure 5. Frequency of significant independent association between a simulated landscape
resistance model and genetic distance. The rows of thexmepresent each of the 37
resistance hypotheses. The first 35 rows are the alternative landscape resistance models,
with the bottom two rows representing the two null models of isolation by barrier (rd) and
isolation by distance (ed). The columns repnésiee 35 resistance hypotheses simulated as
truth in CDPOP. The color of the cell corresponds to the frequencywhitth the partial

Mantel correlation between the model associated with a given column and genetic distance,
partialing out the model assated with a given row, is statistically significant
(alpha = 0.05). Cells in blue hagevery high frequency of correctly finding independent
correlation between the simulated resistance model and genetic distance, while red cells
havea high frequency bfailing to find significant correlation between the true resistance
model and genetic distance, partialling out the model associated with that row of
the matrix.

RL

RH
FLRL
FLRH
FLEMRL
FLEMRH
FLELRL
FLELRH
FLEHRL
FLEHRH
FL
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Figure 6. Frequency of significant spurious association between an alternative resistance
model and genetic distance, independent of the simulated landscape resistance model. The
rows of the matrix represent each of the 37 landscape models. The first 35 rows are th
alternative landscape resistance models, with the bottom two rows representing the two
null models of isolation by barrier (rd) and isolation by distance (ed). The columns
represent the 35 resistance hypotheses simulated as being true in CDPOP. Tdfetloolor

cell corresponds to the frequency withich the partial Mantel correlation between the
model associated with a given row and genetic distance, partialling out the model
associated with a given column, is statistically significant (alpha = 0.@8% i@ blue have

a very high frequency of correctly finding independent correlation between the simulated
resistance model and genetic distance, while red cellsahbigh frequency of failing to

find significant correlation between the true resistanaedeh and genetic distance,
partialling out the model associated with that row of the matrix.

RL

RH
FLRL
FLRH
FLEMRL
FLEMRH
FLELRL
FLELRH
FLEHRL
FLEHRH
FL
FHRL
FHRH
FHEMRL
FHEMRH
FHELRL
FHELRH
FHEHRL
FHEHRH
FH
EMRL
EMRH
EMFL
EMFH
EM

ELRL
ELRH
ELFL
ELFH
EL
EHRL
EHRH
EHFL
EHFH
EH

RD

ED

H3
H4H3
RELE]
HYH3
THHI
a3
H473
RERE]
HY3
Bt-RE]
w3
H4AW3
RElE]
HAW3
mt-lE]
H4
Ri-RELLE]
HyYHd
mt-1LE}
ad

il ERE]
HY¥134d
pt-pERE]
HYW34
-V ERE]
Hy14
i-RE]
HY

it

uj
-
m
I
a
I

HYH3IHA
THHIHAL
HY3HL
HYW3IHA
THWIHL



Diversity2013 5 64

Figure 7. Binary scatterplots of the frequency @) failing to passlest 1 or p) Test 2 in
comparison with the correlation between the simulated landscape resistance model and a
particular null model. The-axis is the correlation between the edistances in the simulated
landscape resistance model and the null model. The blaclkslihe iprobability of failing

to meet the respective causal modeling diagnostic test (from logistic regression; Table 3).

Figure 8. Binary scatterplots of the frequency of failire) (o passTest 3 or p) Test 4 in
comparison with the correlation between the simulated landscape resistance model and
alternative landscape resistance models. Thexix is the correlation between the
costdistances in the simulated landscape resistance model and the altenuataele The

black line is the probability of failing to meet the respective causal modeling diagnostic test
(from logisticregressionTable3).



