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Abstract: A comparison of the community structure of juvenile hermatypic corals of 2 to 
37 m depth at the fringing reefs of Curaçao between 1975 and 2005 shows a decline of 
54.7% in juvenile coral abundance and a shift in species composition. Agaricia species and 
Helioseris cucullata, the most common juveniles in 1975, showed the largest decline in 
juvenile abundance (a 9 and 120 fold decrease in density respectively) with Helioseris 
cucullata being nearly extirpated locally. In 2005, Porites astreoides contributed most 
colonies to the juvenile coral community, increasing from 8.2% (in 1975) to 19.9% of the 
total juvenile community. Between 1975 and 2005, juveniles of brooding species decreased 
in relative abundance while the abundance of juveniles of broadcast spawning species 
increased or remained the same. These data illustrate the magnitude of the changes that 
have occurred in only three decades in the composition of juvenile coral communities. 
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1. Introduction 

Over the past 30 years, coral cover on Caribbean reefs has declined from approximately 50% to  
10% [1]. A similar, though less dramatic decline, occurred in Curaçao, in the Southern Caribbean. On 
the leeward side of Curaçao, coral cover declined from approximately 40% to 20% between 1973 and 
2003 [2]. Both in Curaçao [3], and across the Caribbean [4–6], coral cover decline has been attributed 
to the combination of habitat degradation, sedimentation, and eutrophication that result from local 
industrial activity and near-shore residential and tourist developments. While the decline in coral cover 
has been documented for reef systems around the world [7], other changes to coral community 
structure are less well documented, largely due the absence of long-term studies (i.e., datasets over  
20 years old) and relevant historic information.  

The maintenance and recovery of coral communities depends on the successful establishment, early 
survival and subsequent growth of coral planulae [8] and overall recruitment success differs between 
species under the same environmental conditions [9–11]. Variation in local coral recruitment rates is 
caused by variation in the composition of the local benthic habitat [8,12,13] as well as the size of the 
adult source population [8,14]. In addition, the total number of coral recruits, juveniles and adults in a 
given location will decrease during episodic disturbance events such as storms [15]. Recruitment 
failure can halt, delay or even prevent coral community maintenance and recovery [12,16,17]. 

Variability in recruitment across several decades (i.e., between 1963 and 1992) has been quantified 
in the Pacific (Great Barrier Reef: [15]; Hawaii: [17]) but a decline in recruitment rates following 
changes in adult abundance was not observed. On the Great Barrier Reef local recruitment rates 
depended primarily on the availability of open space [15], whereas in Hawaii they depended on adult 
cover in the preceding year [17]. Such seemingly conflicting observations can be explained by 
differences in the open/closed nature of the study system under consideration [18]. For the Caribbean, 
there is little information on decadal variation in recruitment rates. Hughes and Tanner [16] showed 
that the recruitment rates of three dominant coral species in Jamaica declined between 1977 and 1993. 
They suggested increased algal cover and a decline in the species’ source populations as drivers of the 
decline in recruitment rates through time. On Curaçao, Bak et al. [2] witnessed a 50% decline in coral 
cover over a 30-year time period from 1973 to 2003. Similarly, Vermeij [10] observed a 5.16-fold 
decline in coral recruitment to artificial substrata when comparing data taken during 1979–1981 with 
data taken over the period 1998 to 2004. 

 “True” recruitment, i.e., the combined outcome of settlement and early post-settlement mortality, is 
difficult to monitor due to the temporal variability in larval supply, and the problems in finding and 
identifying true coral settlers, which are less than 2 mm in diameter; [8]). Growth rates collected for 
various species at Curaçao [10] indicate that coral colonies up to 4 cm in diameter can be up to 13 
years old. Juvenile densities are therefore not indicative of recent and potentially stochastic recruitment 
dynamics, but rather represent the integrated outcome of settlement and postsettlement survivorship 
over much longer time periods (i.e., greater than 10 years). The fact that juvenile densities represent 
the integration of approximately ten years of recruitment means that measurements of juvenile 
abundance are less subject to dramatic interannual fluctuations. 

In this article, we compare the abundance and distribution of juvenile corals on Curaçao’s leeward 
reefs in 2005 with a similar data set from 1975 from the same Caribbean island [19]. Using this 
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uniquely detailed historical ecological data on juvenile corals, we quantify the changes that have 
occurred in the abundance and composition of Caribbean juvenile coral communities over a thirty  
year period.  

2. Materials and Methods 

2.1. Sampling Methodology  

The abundance of juvenile corals (maximum diameter 4 cm) was determined at six reefs along the 
Curaçao coast, including the two sites that were studied using similar methods in 1975 [19]: Buoy I 
(12°07’34”N–68°58’32”W) and Buoy III (12°07’34”N–68°58’41”W). The other sites are: Santa 
Martha Bay (12°16’04”N–69°07’47”W), Snake Bay (12°08’21”N–68°59’53”W), Piscadera 
(12°07’21”N–68°58’16”W) and Water Factory (12°06’32”–68°57’16”W). For details on all sites,  
see [20]. At each site the abundance of juveniles was determined in four depth zones (following the 
original sampling design described in [19]): the shallow terrace zone (3–9 m), the drop-off zone  
(9–17 m), the upper slope zone (17–26 m) and the lower slope zone (26–37 m).  

At each depth we counted, identified, and measured all juvenile hermatypic corals within a  
0.25 m × 0.25 m quadrant that was moved along a 5 m long transect so that all juveniles in a total area 
of 1.25 m2 were quantified for each transect. In each depth zone, a minimum of eight transects were 
haphazardly placed, avoiding sand patches and dense monospecific beds of the yellow pencil coral 
Madracis mirabilis. 

2.2. Species Identification  

Because of the difficulty of identifying some of the smallest juveniles to species level, they were 
binned at the genus level for the following species: Madracis spp. (i.e., M. decactis, M. pharensis and 
M. senaria), Siderastrea spp. (i.e., S. siderea and S. radians, Montastraea spp. (i.e., M. annularis,  
M. faveolata and M. franksi) and Agaricia spp. (i.e., A. agaricites, A. humilis and A. fragilis). Finally, 
because solitary juvenile polyps of Scolymia lacera and Mussa angulosa look very similar, they were 
grouped as “Mussa sp./Scolymia sp.”. Juveniles of the hydrozoan Millepora spp. (i.e., fire coral) were 
also included in our surveys. 

2.3. Statistical Analyses  

For each species, estimates of juvenile abundance in 2005 were correlated against depth to 
determine if a possible relationship existed between the abundance of their juveniles and depth. 
Potential differences in the distribution of juveniles (all species combined) across space in terms of 
depth and site were further investigated using a nested ANOVA. 

The original site-by-site abundance data from Bak and Engel [19] were lost, therefore we could not 
compare our data to the 1975 data on a site-by-site basis. From the 1975 dataset, only island-wide 
averages for all species × depth combinations were available. To compare our two datasets, juvenile 
density for both sampling periods was first recalculated as the number of individuals per m2 using 
depth zones, rather than sites, as replicates. We then compared juvenile abundance in 1975 and 2005 
using a one way ANOVA using “year” as a predictor variable. In taking this approach, we make the 
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across the depth gradient we examined in 2005 (Figure 1) parallels the historical data collected on the 
same reefs in 1975 [19]. Juvenile coral community composition varied minimally between sites, which 
is unsurprising due to the uniform nature of the reefs along the central part of the leeward coast of 
Curaçao [20]. Most of the coral juveniles belonged to four taxa: Porites, Siderastrea, Stephanocoenia 
and Agaricia, which together accounted for 63.4% of all juveniles observed (n = 544). 

The abundance of juveniles serves as a proxy measurement of the integrated outcome of settlement, 
post-settlement survivorship and disturbance across a multiple year time period. We observed that this 
metric, total juvenile abundance, declined by 54.7% overall between 1975 and 2005. Importantly, we 
quantified coral juveniles that were on average approximately 13 yrs old [10] rather than recruits (i.e., 
coral settlers < 4 mm in diameter). Therefore, the temporal fluctuations that affect recruit supply [8] 
are less pronounced in the overall abundance of juveniles and the observed decline in juvenile 
abundance is unlikely to be an artifact from sampling the highly variable recruitment process at the 
beginning and end of a 30 yr period. Importantly, the decrease of juvenile corals was observed 
consistently in four different depth zones between 3 and 37 m. (Figure 3). The declining abundance of 
coral recruits described here on multi-decadal timescales [10], as well as the decreasing densities of 
coral juveniles on other islands in the Caribbean [16], and decreased growth rates of juvenile  
corals [25], together suggest that conditions for the successful establishment and growth of coral 
recruits and juveniles have worsened in recent decades.  

Within this dim picture overall, certain species have suffered disproportionately, and are now 
virtually absent from Caribbean reefs. In our study, juveniles of Helioseris cucullata (formerly known 
as Leptoseris cucullata) comprised 8.3% of the juvenile population in 1975, making them the second 
most common juvenile species on Curaçaoan reefs. By 2005, H. cucullata decreased in absolute 
abundance 120-fold, i.e., from an average of 1.43 juveniles per square meter in 1975 to 0.01 in 2005. 
In three decades, a once abundant species nearly disappeared from the local species pool. Similar 
observations were made on Jamaica where recruitment rates of H. cucullata and adult cover of this 
species both approached zero during the late 1980s [16], while it was known as a dominant species in 
the juvenile community previously [26,27]. Because this species has a relatively short life span, 
recruitment is crucial to maintain its population through time [16]. While overall coral recruitment 
rates appear to have declined over the last three decades, H. cucullata most clearly shows how a once 
abundant species all but disappeared from Caribbean reefs in a little over three decades. 

In the Caribbean, members of the genus Agaricidae typically dominate juvenile coral communities. 
The abundance of this brooding species, and Porites spp. in 2005 echoes the shift seen in the 
community structure of other Caribbean reefs (e.g., [28–30]) from long-lived broadcast spawning 
species to brooding species that are characterized by shorter lifespans and a weedy life history strategy. 
Importantly, Agaricids have always been the most dominant taxa in juvenile coral communities on 
Curaçao [19], and on other Caribbean reefs [16,24,31]. Thus, the idea that brooding specie are 
increasing in dominance is supported by the relative increase in their abundance compared to other 
coral species. Despite an increase in relative abundance, the absolute numbers of Agaricid juveniles 
was nevertheless lower in 2005 compared to 30 years earlier (Figure 5). 

The corals that presently dominate the adult coral community of Curaçao are members of the 
Montastraea species complex, Colpophylia natans, and Diploria species [32]. Juvenile abundances of 
these broadcast spawning species were extremely low in 2005, however similar observations were 
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made over 25 years ago [19,23]. This suggests that low absolute abundance of juveniles per se is not 
necessarily indicative of recent recruitment failure, but rather a characteristic of long-lived species 
with infrequent recruitment success. Surprisingly, the absolute density of juveniles of some broadcast 
spawning species was 2–11 times higher in 2005 than in 1975 (Figure 5) and the same species 
dominate juvenile communities elsewhere in the Caribbean [21,24,33].  

Bak and Engel [19] described three main ecological strategies for corals: massive, long-lived 
species with infrequent recruitment, short-lived opportunists with high recruitment rates and species 
whose propagation depends on vegetative rather than sexual reproduction. Interestingly, all but one of 
the broadcast-spawning species that occurred in higher densities in 2005 in our study were species in 
which the males release sperm prior to egg release by the females [34]. Therefore, female colonies 
from these species release fertilized eggs or embryos rather than unfertilized eggs (as is the case for 
“true” broadcasters). Releasing embryos rather than unfertilized eggs combines benefits of obligate 
broadcast spawning (i.e., large numbers of outcrossed offspring) and brooding strategies (i.e., 
increased fertilization success). Based on our observation, this should be considered a fourth life 
history strategy, distinct from the three described by Bak and Engel. Besides the clear difference in 
spawning behavior, our data show that corals with this ecological strategy are more robust in degraded 
habitats than “true” broadcast spawning species.  

The observation that some species are now occurring in greater densities whereas others have 
declined indicates that species-specific factors affected the coral community’s response to altered 
environmental conditions between 1975 and 2005. An increase in juvenile density for some 
broadcasting species (Siderastrea spp., Montastraea cavernosa, Diploria strigosa and Stephanocoenia 
michelinii) suggests that space availability could be important in driving their local abundance since 
the total cover of adult corals of these same species declined by approximately 50% on Curaçao over 
the same time period [2]. 

For species with brooding reproductive strategies, habitat degradation (e.g., increased coverage of 
benthic algae and the increased abundance of potentially pathogenic microbes) [35]) and/or a reduction 
of the adult pool can explain the decreased densities of juveniles [30]. Brooders generally recruit close 
to parental colonies [8,21] and they are therefore less likely to escape degraded habitats whose quality 
declined after their parent colonies established themselves on a given reef. Brooding species, therefore, 
could therefore be more severely affected by habitat degradation at a reef-by-reef scale. In contrast, 
broadcast species have the ability for long distance dispersal which allows their planulae to establish 
themselves outside locally degraded habitats.  

In conclusion, whereas many studies have quantified coral degradation by measuring coral cover, 
few studies have considered how early life history processes contribute to such changes. Based on our 
data, we suggest that juvenile coral abundance is a useful measure of reef “health” as it reflects the 
relative success or failure of reef functional processes (recruitment, growth and survival) on a 
timescale meaningful to both ecology and conservation [36]. While the 54.7% decline in juvenile 
abundance observed between 1975 and 2005 can both be a cause and a consequence of the decline in 
adult coral cover on these reefs, it indicates that fundamental processes required for population 
maintenance and recovery are operating at rates well below their historic baselines. Historical 
baselines like the one described here clearly illustrate that recent inventories of coral juveniles alone 
are not sufficient to understand the changes that have occurred on Caribbean reefs over multiple 
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decades. The near-disappearance of once abundant species, such as Helioseris cucullata, in the 
relatively short time span of 30 years would have been missed if only recent surveys were considered. 
In addition, the apparent shift from broadcasting species to brooding species could only be falsified 
through the use of historic data. The overall decline in juvenile coral abundance in Curaçao over a 
period of 30 years is representative of the profound changes that are taking place in the structure of 
juvenile coral communities region-wide. Reduced in numbers and subject to increasing stress, these 
juvenile populations face the heavy burden of serving as the next generation of corals on  
Caribbean reefs.  
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