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Abstract: Two subspecies of European beech (Fagus sylvatica L.) can be found in southeast Europe:
Fagus sylvatica ssp. sylvatica L. and Fagus sylvatica ssp. orientalis (Lipsky) Greut. & Burd. (Fagus orientalis
Lipsky). In a previous study, based on genetic diversity patterns and morphological characters,
indications of hybridization between both subspecies were found in northeastern Greece, a known
contact zone of F. sylvatica and F. orientalis. Nevertheless, potential genetic admixture has not been
investigated systematically before. Here, we investigated genetic diversity and genetic structure
of 14 beech populations originating from Greece and Turkey as well as of two reference F. sylvatica
populations from Germany based on nine expressed sequence tag-simple sequence repeat (EST-SSR)
markers. Very low genetic differentiation was detected among F. sylvatica populations (mean GST:
0.005) as well as among F. orientalis populations (mean GST: 0.008), but substantial differentiation was
detected between populations of the two subspecies (mean GST: 0.122). Indications for hybridization
between both subspecies were revealed for one population in Greece. One of the genetic markers
showed specific allele frequencies for F. sylvatica and F. orientalis and may be used as a diagnostic
marker in future studies to discriminate both subspecies.
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1. Introduction

In southeast Europe, two subspecies of Fagus sylvatica L. can be found: Fagus sylvatica ssp. sylvatica
(hereafter F. sylvatica) and Fagus sylvatica ssp. orientalis (Lipsky) Greut & Burd. (hereafter F. orientalis) [1,2],
whereby the status of these two taxa as subspecies or species and their phylogeny still needs to be
clarified [3,4]. F. sylvatica is distributed over large areas in Europe, whereas F. orientalis ranges from the
southeastern Balkan to northern Iran [5]. Several studies were conducted to investigate morphological and
genetic variation patterns within the distribution area of the two subspecies. For instance, Denk et al. [6]
conducted a morphological analysis of beech populations covering the range of species in western Eurasia.
The authors detected a west-east gradient of morphological characteristics with overlapping variability
in morphological types. Differences in morphological traits were also revealed on a more regional
scale. Thus, morphological forms resembling F. sylvatica were found in western parts of Greece, whereas
morphological types resembling F. orientalis were found in the eastern parts of the country [7]. Populations
of F. sylvatica and F. orientalis were also investigated using different types of genetic markers such as
amplified fragment-length polymorphisms (AFLPs), chloroplast microsatellites, internal transcribed
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spacer (ITS) sequences, and isozymes [6,8–13]. Genetic analyses revealed clinal variation of increasing
genetic diversity from west to east [9,11]. Much higher haplotype diversity was found for beech in
southeastern Europe compared to central and western Europe [8,10,13], likely due to the migration history
of the species during the Pleistocene. Based on AFLPs [10] and isozymes [12], it was possible to group
beech populations into F. sylvatica and F. orientalis, albeit no clear species-specific alleles were identified.

Papageorgiou et al. [9] investigated both subspecies in their potential transition zone in the Rodopi
Mountains in northeastern Greece. Morphological traits and genetic variation revealed characteristics
resembling F. sylvatica mainly in the western parts of the mountains and at higher altitudes, whereas
characteristics resembling F. orientalis were mainly found in the eastern parts of the mountains and
at lower elevations. Intermediate phenotypes were also detected in the investigated populations [9].
The intermediate phenotypes and higher genetic diversity compared to other beech populations
indicate introgression between F. sylvatica and F. orientalis in this area [7]. Here, we further analyzed
the genetic structure of beech populations in the potential transition zone between F. sylvatica and
F. orientalis in Greece and Turkey. Based on nine expressed sequence tag-simple sequence repeat
(EST-SSR) markers, genetic diversity and differentiation of 16 beech populations were determined,
and potential genetic admixture among populations was analyzed.

2. Materials and Methods

2.1. Plant Material

In total, 16 beech populations were investigated (Figure 1, Table 1). DNA samples of six
Turkish F. orientalis populations (Covakici, Duezce, Catalca, Inegoel, Izmit, and Karabuek) were
obtained (ten samples per population) from a previous study [10]; they originate from trees of a
provenance trial in Germany that was established in 1986/1987 [14]. Furthermore, DNA samples from
two North German F. sylvatica populations (Calvoerde and Goehrde, used as F. sylvatica reference
populations in this study) were obtained (24 samples per population) from Seifert [15]. Four potential
(based on morphological assessment) F. sylvatica populations were sampled in Northwest Greece
(Alevitsa, Varnuntas, Aetomilitsa, and Tsepelovo), and two potential F. sylvatica populations were
sampled in West Rodopi in Northeast Greece (Frakto, Lepida). Finally, one potential F. orientalis
population was sampled in East Rodopi in Northeast Greece (Hilia), and one potential F. orientalis
population was sampled in Northwest Turkey (Demirkoy). In each population, leaves from 24
randomly selected individuals, with a minimum distance of 100 m among each other, were sampled.
For an easier identification of the populations in the manuscript, we will use the prefixes “Fs” for
F. sylvatica and “Fo” for F. orientalis, and the country name will be used as a suffix to indicate the
population origin (e.g., “Fo-Duezce-Turkey” for the F. orientalis population Duezce from Turkey).

Figure 1. Locations of the sampled populations in Greece and Turkey. The German reference
populations are not shown. The map was generated with SimpleMappr [16].
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Table 1. Population characteristics.

Population Name Origin No. of Samples Subspecies Latitude Longitude

Calvoerde Germany 24 F. sylvatica 52.403967 11.261017
Goehrde Germany 24 F. sylvatica 53.122983 10.820400

Aetomilitsa Greece 24 F. sylvatica ** 40.272958 20.813221
Tsepelovo Greece 24 F. sylvatica ** 39.882826 20.876105
Alevitsa Greece 24 F. sylvatica ** 40.432116 20.963033

Varnuntas Greece 24 F. sylvatica ** 40.806592 21.328064
Frakto Greece 24 F. sylvatica ** 41.545455 24.523565
Lepida Greece 24 F. sylvatica ** 41.386269 24.621609
Hilia Greece 24 F. orientalis ** 41.302195 25.934421

Demirkoy Turkey 24 F. orientalis ** 41.819996 27.662091
Catalca Turkey * 10 F. orientalis 41.466670 28.350000
Inegoel Turkey * 10 F. orientalis 39.883330 29.600000
Izmit Turkey * 10 F. orientalis 40.566670 29.950000

Duezce Turkey * 10 F. orientalis 40.850000 31.150000
Covakici Turkey * 10 F. orientalis 41.050000 31.283330
Karabuek Turkey * 10 F. orientalis 41.283330 32.533330

* Samples were obtained from a provenance trial in Germany (see Materials and Methods). ** Based on morphological
assessment [9,17].

2.2. DNA Extraction and Genotyping

Total DNA was extracted from dried leaves of the newly sampled populations with the DNeasy
96 Plant Kit (Qiagen, Hilden, Germany). All samples were genotyped at 9 EST-SSR markers (Table S1)
obtained from previous studies [18,19]. The primer FS_C4971 was analyzed in a separate PCR, while the
other primers were compiled into multiplex reactions (multiplex 1: FgSI0006, FgSI0024, FS_C1968,
FS_C2361; multiplex 2: FgSI0009, FS_C7377; multiplex 3: FS_C6785, FS_C7797). The following
touchdown PCR program was used for all reactions: an initial denaturation of 95 ◦C for 15 min,
followed by 10 touchdown cycles of 94 ◦C for 1 min, 60 ◦C (−1 ◦C per cycle) for 1 min, and 72 ◦C for
1 min, 25 cycles of 94 ◦C for 1 min, 50 ◦C for 1 min, and 72 ◦C for 1 min, followed by a final extension
step of 72 ◦C for 20 min. The PCR mix consisted of 1 µL DNA (ca. 0.6 ng/µL), 1.5 µL 10× reaction buffer
B (Solis BioDyne, Tartu, Estonia), 1.5 µL MgCl2 (25 mM), 1 µL dNTPs (2.5 mM each dNTP), 0.2 µL
(5 U/ µL) HOT FIREPol Taq DNA polymerase (Solis BioDyne, Tartu, Estonia), 0.2 µL (5 picomole/µL)
tailed forward primer (a M13-specific sequence (5’-CACGACGTTGTAAACGAC-3’) was added to the 5’
end of the primer [20,21]), 0.5 µL (5 picomole/ µL) PIG-tailed (the sequence 5’- GTTTCTT-3’ was added
to the 5‘ end of the primer [22]) reverse primer, 1 µL (5 picomole/µL) dye labeled (6-FAM or 6-HEX)
M13 primer, and H2O (filled up to a volume of 12.4 µL). Fragments were separated on an ABI 3130xl
Genetic Analyzer (Applied Biosystems, Foster City, USA) using GS 500 ROX (Applied Biosystems,
Foster City, USA) as size standard. Allele scoring was conducted with the GeneMapper 4.0 software
(Applied Biosystems, Foster City, CA, USA).

2.3. Data Analysis

The GenAlEx 6.5 software [23,24] was used to calculate the number of alleles (Na), the observed
heterozygosity (Ho), and the expected heterozygosity (He). Furthermore, the software was used to
calculate pairwise GST values [25,26] between populations based on 999 permutations. The inbreeding
coefficient (FIS) and allelic richness (AR) were calculated with the FSTAT 2.9.4 software [27]. FIS values
were corrected for multiple testing using a sequential Bonferroni correction [28] implemented in FSTAT.
The software was further used to test for significant differences in AR, Ho, and He between F. sylvatica
populations and F. orientalis populations (excluding the Fo-Hilia-Greece population, since it was revealed
to be a hybrid population between the two subspecies) based on 1000 permutations. The presence
of null alleles was checked with the MICRO-CHECKER 2.2.3 software [29]. Outlier analyses were
performed with the LOSITAN 1.0 software [30] and the BayeScan 2.1 software [31]. For the LOSITAN
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analysis, the stepwise mutation model, 70,000 simulations, and a false discovery rate (FDR) of 0.05
were used. For the BayeScan analysis, default parameters were selected and loci with a q-value
lower than 5% were considered to be outliers. The populations 1.2.32 software [32] was used to
generate a neighbor-joining (NJ) dendrogram based on Nei’s genetic distances [33]. Bootstrap values
were calculated based on 1000 permutations over loci. The tree was visualized using Tree Explorer
implemented in MEGA 7.0.26 [34]. The STRUCTURE 2.3.4 software [35] was used to infer population
structure. The admixture model and correlated allele frequencies were selected. A burn-in period of
30,000 and Markov chain Monte Carlo (MCMC) replicates of 100,000 were used. Potential clusters (K)
from 1 to 20 were tested using 10 iterations. The ∆ K method [36] was used to determine the most likely
number of K with the STRUCTURE HARVESTER 0.6.94 program [37]. The CLUMPAK software [38]
was employed for summation and graphical representation of the STRUCTURE results.

3. Results

The mean number of alleles (Na) over all populations ranged from 2.6 for marker FS_C6785 to
9.6 for marker FS_C1968 (Table 2). The observed heterozygosity (Ho) ranged from 0.284 for marker
FS_C6785 to 0.769 for marker FS_C1968, and the expected heterozygosity (He) ranged from 0.278 for
marker FS_C6785 to 0.761 for marker FS_C1968. For no marker, FIS values significantly different from
zero were detected (Table 2).

Table 2. Mean genetic diversity indices over all populations for each marker.

Marker N Na Ho He FIS GST

FgSI0006 18.6 3.0 0.345 0.349 0.029 0.244 *
FgSI0024 18.6 4.6 0.589 0.600 0.057 0.014
FS_C1968 18.4 9.6 0.769 0.761 0.019 0.032 *
FS_C2361 18.4 3.8 0.564 0.534 −0.032 0.118 *
FgSI0009 17.4 3.0 0.447 0.473 0.085 0.099 *
FS_C6785 18.7 2.6 0.284 0.278 0.012 0.469 *
FS_C7377 18.6 3.2 0.521 0.509 −0.006 0.158 *
FS_C7797 18.5 3.6 0.415 0.346 −0.145 0.016 *
FS_C4971 18.7 5.1 0.706 0.636 −0.078 0.095 *

Mean 18.4 4.3 0.515 0.498 −0.007 0.132 *

N—number of individuals, Na—number of alleles, Ho—observed heterozygosity, He—expected heterozygosity,
FIS—inbreeding coefficient, GST—fixation index (* p < 0.05).

The mean number of alleles (Na) ranged from 3.2 for the Fo-Covakici-Turkey population to 5.2
for the Fo-Demirkoy-Turkey population (Table 3). Mean allelic richness (AR) ranged from 2.9 for
the Fs-Goehrde-Germany population to 4.2 for the Fo-Inegoel-Turkey population. The observed
heterozygosity (Ho) ranged from 0.421 for the Fs-Goehrde-Germany population and 0.599 for the
Fo-Karabuek-Turkey population (mean Ho: 0.515), while the expected heterozygosity (He) ranged from
0.402 for the Fs-Goehrde-Germany population to 0.582 for the Fo-Hilia-Greece population (mean He:
0.498). The mean FIS value was −0.002 over all populations, and FIS was not significantly different
from zero in any population (Table 3). Mean genetic diversity indices (AR, Ho, and He) were higher for
F. orientalis populations compared to F. sylvatica populations, but only AR was significantly higher in
F. orientalis (mean in F. sylvatica: 3.3, mean AR in F. orientalis: 3.7).

Mean pairwise GST was 0.005 among F. sylvatica populations (excluding the two German reference
populations), 0.008 among F. orientalis populations (without the potentially admixed Fo-Hilia-Greece
population, see below), and 0.122 between F. sylvatica and F. orientalis populations (Table 4). Evidence
for null alleles was only detected for markers FS_C1968 and FgSI0009 in population Fo-Hilia-Greece as
well as for marker FS_C73377 in population Fo-Catalca-Turkey. Based on LOSITAN, four outlier loci
(FgSI0006, FS_C2361, FS_C6785, and _FS_C7377) were detected, potentially under directional selection.
With BayeScan, one outlier locus (FS_C1968) was found, which was potentially under balancing or
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purifying selection. Locus FS_C6785, located in a sequence annotated as a putative ribosomal protein [18],
showed a high genetic differentiation between F. sylvatica and F. orientalis (GST: 0.504). The allele 189
at this locus showed a frequency of 0.849 in F. sylvatica, whereas the allele frequency was 0.070 in F.
orientalis. The allele 192 showed a much lower frequency in F. sylvatica (0.148) compared to F. orientalis
(0.842) (Figure 2). See Figure S1 for an electropherogram showing an example of peaks 189 and 192 of
marker Fs_C6785.

Table 3. Sample size and mean genetic diversity indices for all populations.

Population N Na AR Ho He FIS

Fs-Calvoerde-Germany 24 3.8 3.1 0.500 0.464 −0.056
Fs-Goehrde-Germany 24 3.4 2.9 0.421 0.402 −0.026
Fs-Aetomilitsa-Greece 24 5.0 3.5 0.551 0.528 −0.022
Fs-Tsepelovo-Greece 24 4.2 3.4 0.516 0.519 0.028
Fs-Alevitsa-Greece 24 4.4 3.3 0.506 0.499 0.009

Fs-Varnuntas-Greece 24 4.8 3.4 0.527 0.512 −0.007
Fs-Frakto-Greece 24 4.7 3.3 0.532 0.503 −0.034
Fs-Lepida-Greece 24 4.1 3.4 0.485 0.546 0.133
Fo-Hilia-Greece 24 4.8 3.8 0.563 0.582 0.053

Fo-Demirkoy-Turkey 24 5.2 3.7 0.569 0.500 −0.117
Fo-Catalca-Turkey 10 3.9 3.7 0.460 0.472 0.079
Fo-Inegoel-Turkey 10 4.4 4.2 0.468 0.512 0.143
Fo-Izmit-Turkey 10 4.2 3.9 0.543 0.490 −0.054

Fo-Duezce-Turkey 10 4.0 3.8 0.558 0.500 −0.062
Fo-Covakici-Turkey 10 3.2 3.1 0.447 0.421 −0.002
Fo-Karabuek-Turkey 10 4.0 3.8 0.599 0.522 −0.094

Mean 18.8 4.3 3.5 0.515 0.498 −0.002

N—number of individuals, Na—number of alleles, AR—allelic richness, Ho—observed heterozygosity, He—expected
heterozygosity, FIS—inbreeding coefficient.

Figure 2. Frequencies of alleles 189 and 192 of locus Fs_C6785 for the different populations.
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Table 4. Pairwise GST values between populations.
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Fs-Calvoerde-Germany 0.000
Fs-Goehrde-Germany 0.016 0.000
Fs-Aetomilitsa-Greece 0.014 0.039 0.000
Fs-Tsepelovo-Greece 0.014 0.026 0.001 + 0.000
Fs-Alevitsa-Greece 0.015 0.046 0.000 + 0.010 0.000

Fs-Varnuntas-Greece 0.009 0.032 0.003 + 0.001 + 0.006 0.000
Fs-Frakto-Greece 0.009 0.032 0.004 + 0.002 + 0.012 0.005 + 0.000
Fs-Lepida-Greece 0.020 0.043 0.005 + 0.009 0.013 0.010 0.000 + 0.000
Fo-Hilia-Greece 0.073 0.104 0.054 0.047 0.069 0.062 0.039 0.035 0.000

Fo-Demirkoy-Turkey 0.150 0.190 0.125 0.121 0.143 0.140 0.116 0.106 0.019 0.000
Fo-Catalca-Turkey 0.159 0.205 0.119 0.120 0.139 0.141 0.114 0.099 0.024 0.013 0.000
Fo-Inegoel-Turkey 0.124 0.158 0.111 0.103 0.127 0.121 0.101 0.097 0.018 0.006 + 0.019 0.000
Fo-Izmit-Turkey 0.139 0.183 0.115 0.112 0.136 0.131 0.102 0.092 0.012 0.004 + 0.000 + 0.000 + 0.000

Fo-Duezce-Turkey 0.137 0.172 0.117 0.115 0.136 0.136 0.106 0.092 0.015 0.002 + 0.017 + 0.000 + 0.000 + 0.000
Fo-Covakici-Turkey 0.185 0.231 0.152 0.145 0.177 0.168 0.144 0.136 0.034 0.001 + 0.010 + 0.011 + 0.005 + 0.014 + 0.000
Fo-Karabuek-Turkey 0.136 0.173 0.114 0.103 0.129 0.126 0.109 0.106 0.024 0.015 0.017 0.009 + 0.013 + 0.014 + 0.004 + 0.000

+ Not significant (p ≥ 0.05); all other GST values are significant (p < 0.05).
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The neighbor-joining dendrogram showed a separation between the Turkish populations and
the German and Greek populations, with Fo-Hilia-Greece clustering with F. orientalis from Turkey
in a basal position (Figure 3). Furthermore, the two West Rodopi populations Fs-Frakto-Greece and
Fs-Lepida-Greece grouped together with F. sylvatica populations of North Western Greece.

Figure 3. Neighbor-joining (NJ) dendrogram for all populations. Bootstrap values ≥ 50 are shown.

Similar results were obtained from the STRUCTURE analysis. The ∆ K method revealed a
most likely number of two clusters (K = 2) (Figure S2), whereby the German and Greek populations
formed one cluster and the Turkish populations the second one. The Fo-Hilia-Greece population
was not assigned to one of the two clusters and shows a high degree of admixture (Figure 4).
The two West Rodopi populations Fs-Frakto-Greece and Fs-Lepida-Greece cluster together with F.
sylvatica populations.

Figure 4. Clustering of individuals for K = 2.

4. Discussion

High genetic diversity was revealed for all analyzed beech populations (mean AR: 3.5, mean Ho:
0.515, mean He: 0.498), and no signs of inbreeding were detected. Genetic diversity values were similar
to other studies based on EST-SSRs in beech [18,39,40]. Among the diversity indices, only allelic
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richness (AR) was significantly higher in F. orientalis (mean AR: 3.7) compared to F. sylvatica (mean
AR: 3.3). Higher AR in F. orientalis compared to F. sylvatica populations was also found in a previous
study based on isozyme markers [12]. Very low genetic differentiation was detected among F. sylvatica
populations (mean GST: 0.005) as well as among F. orientalis populations (mean GST: 0.008). Low genetic
differentiation among beech populations in southeast Europe was also found by Gömöry et al. [11]
based on isozymes (mean GST: 0.019 for Fagus moesiaca, a putative hybrid form between F. sylvatica
and F. orientalis). Papageorgiou et al. [9] found a genetic differentiation of GST: 0.089 among beech
populations (F. sylvatica and F. orientalis) in the Rodopi Mountains in northeastern Greece based on
AFLPs. These results indicate high gene flow levels among populations. As expected, higher genetic
differentiation was detected based on maternally inherited cpDNA markers [8,9].

In the present study, substantial genetic differentiation was found between F. orientalis and
F. sylvatica (mean GST: 0.122). Even the German reference F. sylvatica populations showed substantially
lower differentiation to the Greek F. sylvatica populations (mean GST: 0.025) compared to differentiation
values between subspecies (mean GST: 0.167) (Table 4). High genetic differentiation between the two
subspecies was also reflected by the NJ dendrogram and the STRUCTURE analysis. In both analyses,
two clusters were formed, one comprising F. sylvatica populations and the other one comprising
F. orientalis populations. Two Greek populations located in West Rodopi (Fs-Frakto-Greece and
Fs-Lepida-Greece), which previous studies based on chloroplast DNA markers have considered as
intermediate or closer to F. orientalis [8], clearly group with F. sylvatica in both analyses, indicating that
they are actually F. sylvatica. The population Fo-Hilia-Greece could not be assigned to one of the two
subspecies. Previous studies have reported a morphological resemblance of trees from this population
with F. orientalis [7,9,17]. In the NJ dendrogram, this population is located in an intermediate position
between the two clusters, and in the STRUCTURE analysis, it showed a high degree of admixture.
Defining individuals with assignment probabilities of ≥0.9 in one cluster as pure species, 0.4 to 0.6
in one cluster as hybrids, and 0.61 to 0.89 as introgressive forms [41], a total of 10 individuals are
classified as pure (sub)species, 11 individuals are introgressed forms, and three individuals are hybrids
in the population Fo-Hilia-Greece. In combination with intermediate frequencies of F. sylvatica and F.
orientalis specific alleles (see below) in this population, these results indicate hybridization between both
subspecies. The population is geographically located in East Rodopi, between F. sylvatica populations
in the west and F. orientalis populations in the east (Figure 1), making contact via gene flow between
the two subspecies very likely. Hybridization between F. sylvatica and F. orientalis has been suggested
before for this area [9] and could be confirmed in the present study.

To investigate whether some of the EST-SSRs used in the present study are potentially under
selection, outlier analyses were conducted based on grouping of populations into F. sylvatica and
F. orientalis. The Fdist approach [42] implemented in the LOSITAN software [30] revealed four
loci (FgSI0006, FS_C2361, FS_C6785, and FS_C7377) to be potentially under directional selection,
whereas the Bayesian method implemented in the BayeScan software [31] revealed one potential
outlier (FS_C1968), with indications of balancing or purifying selection. Thus, both methods revealed
contrasting results. Recently, it was shown that FST-heterozygosity outlier methods such as the one
implemented in LOSITAN are not working reliably if only few populations are compared [43]. In these
cases, other methods such as BayeScan may reveal a lower number of false positive results. In the
present study, two pooled demes (F. sylvatica and F. orientalis) were compared with each other, and
hence, BayeScan should be the more suitable method in this case. The potential outlier locus (FS_C1968)
revealed by BayeScan is located in a sequence annotated as a putative auxin-response protein [18].
Auxin-response factors have been shown to be involved in abiotic adaptation (e.g., precipitation/drought,
bud burst) in different tree species [44–47], and it has been proposed that beech morphology is related
to environmental conditions at its growing sites [7,17]. Furthermore, Varsamis et al. [48] detected
significant differences in adaptive traits such as bud burst timing and survival under drought conditions
between beech populations from West and East Rodopi in a provenance test and a growth chamber
experiment. Thus, this locus may be involved in adaptation in F. sylvatica and F. orientalis. Albeit,
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the LOSITAN results may be inflated by false positive results, the outlier locus Fs_C6785 located in a
sequence annotated as a putative ribosomal protein [18], and has not been detected in other outlier or
environmental association analyses before, is worth noting. Based on a more relaxed q-value of 12%
(compared to 5% used in the present study), this locus would also be revealed as an outlier by BayeScan.
The locus showed a high genetic differentiation between F. sylvatica and F. orientalis (GST: 0.504).
Strikingly, the allele 189 at this locus showed a high frequency (0.849) in F. sylvatica, whereas the
allele frequency was low in F. orientalis (0.070) (Figure 2). In contrast, allele 192 showed a much lower
frequency in F. sylvatica (0.148) compared to F. orientalis (0.842). The potential hybrid population
Fo-Hilia-Greece showed intermediate frequencies for both alleles (allele 189: 0.458, allele 192: 0.500).
Thus, this locus may be involved in genetic differentiation of the two subspecies and could be used as
diagnostic marker to discriminate F. sylvatica and F. orientalis.

5. Conclusions

In the present study, we found indications of hybridization between F. sylvatica and F. orientalis
in the transition zone of the two subspecies in northeastern Greece. Based on our marker set, it was
possible to discriminate both subspecies. One of the markers (Fs_C6785) showed distinct allele
frequencies between F. sylvatica and F. orientalis and can be used as a diagnostic marker to distinguish
both subspecies. This study might be helpful for future studies to further narrow down the hybrid zone
of the two subspecies. Future studies may take advantage of genotyping by sequencing approaches to
investigate which genomic regions are involved in differentiation of F. sylvatica and F. orientalis.
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the study.

Author Contributions: Conceptualization, A.C.P., M.M., I.T., and O.G.; methodology, M.M., P.A.L., A.C.P., I.T.,
and O.G.; validation, M.M., P.A.L., A.C.P., I.T., and O.G.; formal analysis, M.M. and P.A.L.; investigation, M.M. and
P.A.L.; resources, O.G. and A.C.P.; data curation, M.M.; writing—original draft preparation, M.M.; writing—review
and editing, M.M., P.A.L., A.C.P., I.T., and O.G.; visualization, M.M.; supervision, O.G.; project administration,
O.G.; funding acquisition, O.G.

Funding: The APC was funded by the Open Access Grant Program of the German Research Foundation (DFG)
and the Open Access Publication Fund of the University of Göttingen.

Acknowledgments: We thank Christine Radler for assistance with the lab work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Denk, T. The taxonomy of Fagus in western Eurasia, 1: Fagus sylvatica subsporientalis (= F. orientalis).
Feddes Repert. 1999, 110, 177–200. [CrossRef]

2. Denk, T. The taxonomy of Fagus in western Eurasia. 2: Fagus sylvatica subsp sylvatica. Feddes Repert.
1999, 110, 381–412. [CrossRef]

3. Renner, S.S.; Grimm, G.W.; Kapli, P.; Denk, T. Species relationships and divergence times in beeches: New
insights from the inclusion of 53 young and old fossils in a birth-death clock model. Philos. Trans. R. Soc. B
2016, 371, 20150135. [CrossRef] [PubMed]
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