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Abstract: The ecology of habitats along the Great Barrier Reef (GBR) shelf-break has rarely been
investigated. Thus, there is little understanding of how associated fishes interact with deeper
environments. We examined relationships between deep-reef fish communities and benthic habitat
structure. We sampled 48 sites over a large depth gradient (54–260 m) in the central GBR using Baited
Remote Underwater Video Stations and multibeam sonar. Fish community composition differed
both among multiple shelf-break reefs and habitats within reefs. Epibenthic cover decreased with
depth. Deep epibenthic cover included sponges, corals, and macro-algae, with macro-algae present to
194 m. Structural complexity decreased with depth, with more calcified reef, boulders, and bedrock in
shallower depths. Deeper sites were flatter and more homogeneous with softer substratum. Habitats
were variable within depth strata and were reflected in different fish assemblages among sites and
among locations. Overall, fish trophic groups changed with depth and included generalist and
benthic carnivores, piscivores, and planktivores while herbivores were rare below 50 m. While depth
influenced where trophic groups occurred, site orientation and habitat morphology determined
the composition of trophic groups within depths. Future conservation strategies will need to
consider the vulnerability of taxa with narrow distributions and habitat requirements in unique
shelf-break environments.

Keywords: deep reefs; shelf-break habitats; BRUVS; multibeam bathymetry; fish-habitat associations;
trophic structure

1. Introduction

In coastal oceans, the shelf-break is defined as the point where the continental shelf ends
and the continental slope begins. It is characterized by steep increases in depth and associated
changes in biotic and abiotic conditions. While tropical shelf-break ecosystems, such as deep reefs
(i.e., >50 m depth), support a variety of ecologically and economically important fishes, there is a
lack of information on the links between these fish communities, depth, and benthic composition,
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which limits our ability to effectively assess ecological impacts and manage stocks. While deep-reef
fish communities include many species endemic to these habitats, they may also provide habitat
extensions or ‘refuges’ for numerous shallow water fishes [1–3], and can support key ontogenetic
stages [4,5] or large, highly fecund individuals [6]. Consequently, deeper habitats can represent critical
reservoirs of biodiversity [7], while maintaining fisheries resilience and safeguarding local and global
biodiversity [8].

Despite their potential importance, the majority of deep reefs globally are afforded little or
no protection [9] with current management measures either insufficient or non-representative of
geographic scope or ecological importance. One partial exception is Australia’s Great Barrier
Reef (GBR) where deep habitats are afforded some protection due to the comprehensive marine
reserve network that includes continental shelf and slope habitats in addition to the better-known
shallow-water coral reefs. The GBR marine reserve network was designed using conservation
objectives that explicitly accounted for latitudinal and cross-shelf gradients in geophysical and
environmental conditions likely to influence spatial patterns of biodiversity, which is an approach that
resulted in reasonable representation of deepwater habitats despite a lack of biological data [10]. Fish
stocks within the GBR also receive some additional protection from overlapping Queensland State and
Commonwealth fishery regulations. Despite reasonable representation of deepwater habitats within
the GBR marine reserve network, no information is currently available on finer-scale biological or
ecological factors that are critical for managing particular species or ecosystems. For example, there is
limited information on the ecology of deep reef ecosystems, the life history traits of associated fishes,
and the role of deep habitat as a mediator of the fish community structure.

In shallow marine environments (<30 m depths), biotic and abiotic habitat characteristics that
influence individual or population fitness impact the distribution and abundance of fish species.
For instance, many fish associate with structurally or biologically complex benthic habitats [11–16]
since these can provide a greater abundance of food resources, shelter, and reproductive opportunities.
Increasing complexity can also mediate important processes such as predator-prey interactions,
recruitment, and competition [17–20], which, in turn, can promote greater fish community diversity [21].
The widespread disturbance of shallow benthic habitats, as a result of climate change and other
anthropogenic impacts, has led to decreased habitat complexity and loss of ecosystem function, and
has corresponded with local and global declines in fish abundance and diversity [22,23]. While the
significance of habitat complexity as a mediator of the fish population structure and biodiversity is
well documented for shallow reef systems, its role within deep reef ecosystems is poorly documented.
However, given the potential economic and ecological value of these systems, increasing varied
anthropogenic pressure should be applied to them [24,25] to understand the importance of deep-reef
habitat composition for fish communities is critical for effective future management.

Our current understanding of shelf-edge reef fish communities and fish-habitat interactions
is generally poor [26–31]. Some studies have examined entire fish assemblages associated with
deeper reefs (>50 m). However, a number of potential interactions between habitat characteristics
and the associated fish community have been identified. For example, studies of fish assemblages
from tropical Indo-Pacific and Atlantic shelf-breaks have reported the partitioning of trophic groups
with depth [2,8,26,30,32–36]. With increasing depth, the abundance of herbivores decreases and the
abundance of planktivores increases [37]. However, the majority of these studies sampled depths <80 m,
and the distribution of other groups, such as piscivores, showed no consistent depth-related patterns.

The abundance and composition of benthic fauna, especially habitat-forming species, such as
corals, sponges, and algae, are the primary drivers of fish community composition [38]. The distribution
of these benthic organisms is often highly depth-dependent. For instance, scleractinian corals are
generally the most important component of shallower communities [2,34,36], while the representation
of heterotrophic taxa such as sponges and gorgonians increase with depth as light decreases [26,39].
Similarly, other studies have suggested that physical attributes of the underlying benthos that increase
habitat complexity, such as overall rugosity or the presence of key elements such as boulders or
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bedrock, often affects fish abundance [30], even in the absence of habitat-forming sessile invertebrates
and algae.

Our limited understanding of mesophotic fish-habitat relationships is largely due to the difficulty
of studying them. Direct observations traditionally require the use of expensive and logistically
restrictive equipment such as technical diving [40], Remotely Operated Vehicles (ROVs, e.g., [41,42]),
Autonomous Underwater Vehicles (AUVs, e.g., [43]) or submarines (e.g., [44,45]). However, Baited
Remote Underwater Video Stations (BRUVS) and other single or stereo video systems (e.g., BotCam,
stereo-BRUVS, stereo video-lander) are practical, cost-effective alternatives that can be deployed on
complex topographies in a variety of habitats [46–52]. The underwater video can effectively identify
both community patterns (species richness and abundance) and whole assemblage composition
without depth restrictions, and can increase potential sampling time, replication rate, and sampling
area relative to cost. Importantly, BRUVS are less selective or destructive than fishery-dependent
methods [53] and, since all deployments are filmed, images can be easily archived for future use. While
BRUVS sample representative trophic groups and relative abundance at similar rates to diver-based
surveys [54], they can document higher species richness [55,56] as well as small fishes missed by
divers [56]. Shallower GBR BRUVS studies have identified strong cross-shelf gradients and weak
latitudinal patterns, likely due to varying topographical complexity and the distribution of key habitats,
as well as depth-related but variable changes to fish communities [57]. In deeper deployments, baited
units have greater sampling efficiency than un-baited units, which records a greater abundance of
demersal species and allows more accurate species identification [48]. While BRUVS have been
used extensively in the GBR [53,58], they have rarely been deployed below 100 m depths. Deeper
deployments have added challenges, including increased pressure at depth, low ambient light for
cameras, strong currents, longer deployment, and retrieval times, and substantial gear requirements.
BRUVS methods have inherent biases and, for deeper deployments, both bait and light could be
attractants for some species or trophic groups preferentially over others. The biases of BRUVS have
been reviewed [59,60] and should be carefully considered. However, for studies sampling fishes below
150 m (below this depth, the ambient light may not be sufficient to accurately identify species), there
are few cost-effective and statistically robust options. Since the field-of-view of the BRUVS is limited,
the parallel use of additional sampling techniques, such as multibeam echo-sounding technology, can
rapidly gather complimentary high-resolution information on seafloor characteristics. Differences
in substratum type (e.g., sand or bedrock), relief (i.e., elevational change), rugosity (i.e., relative
topographical position), and complexity (i.e., three-dimensional structure) [61] can help explain fish
community patterns over varying spatial scales.

Depth had a great influence on fish assemblages [62] and we predicted that the complex mosaic
of habitats would affect the distribution of fishes. Specifically, we examined how variation in the
fish community composition related to benthic habitat among and within multiple locations along
the GBR shelf-break. We described some deep reefal and inter-reefal habitats and investigated how
multivariate metrics of biotic and abiotic components may be responsible for community patterns
that may be masked by depth. We also assessed community patterns of trophic groups and species
co-occurrence, which could have important implications for future conservation management strategies
of shelf-break habitats.

2. Materials and Methods

2.1. Study Locations

Submerged shoals along the margin of the GBR support a wide range of ecosystems, largely due
to the diverse range of shelf-edge reef morphologies that occur [63]. The central GBR is particularly
morphologically distinctive (Figure 1, [64]). In this region, very few major reefs reach sea-level within
eight kilometers landward of the shelf-edge, and only one emergent reef is found on the edge itself
(Myrmidon Reef, [64]). The shelf-edge here is characterized by one to three lines of submerged reefs,
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which indicates periods of active development during lower historical sea levels [65]. The central
GBR shelf-break is located >100 km from shore, which is a greater distance than in the northern GBR
(north of Cairns), but much less than the southern GBR (up to 250 km). Gradients on the upper
continental slope in the central GBR are also comparatively low compared to the northern GBR, with a
combination of subsidence [66] and sediment input [67] as the likely drivers for this morphology. The
region commonly experiences nutrient enrichment as the seasonal thermocline of the adjacent Coral
Sea shallows [68], which, in turn, transports nutrient-rich waters to the continental shelf [69].Diversity 2018, 10, x FOR PEER REVIEW  5 of 37 

 

 
Figure 1. Map showing shelf-break areas of the central Great Barrier Reef sampled: (a) Myrmidon 
Reef, Northern Submerged Shoals, an inter-reefal transect, and (b) Viper Reef. The shelf-break is over 
100 km offshore and the adjacent continental slope drops off to depths of hundreds of meters. Within 
the Great Barrier Reef Mark Park, activities are managed by the Great Barrier Reef Marine Park 
Authority (GBRMPA) in Zones. Marine National Park Zones (green) are ‘no-take’ areas where 
extractive activities such as fishing and collecting are not allowed without a permit. Habitat Protection 
Zones (blue) are set aside to protect habitats from potentially damaging activities. See Fernandes et 
al. 2005 for a description of the zonation. Submerged banks from Harris et al. 2013 are depicted in 
darker blue. 

2.2. Baited Remote Underwater Video Stations (BRUVS)  

To sample fish assemblages and habitats in situ, 48 single BRUVS deployments were conducted 
over three research cruises (May, June, and September 2014), all during daylight hours (0700–1800). 
BRUVS were depth-stratified targeting depths of ~100 m, ~150 m, and over 200 m to investigate depth 
gradients. Since Viper Reef has the shallowest slope environment, some deployments were placed at 
depths <100 m to ensure similar width of spacing between BRUVS at the other locations. All BRUVS 
were set at a minimum distance of 200 m between units to minimize the effects of bait plumes and 
reduce the likelihood of fish being re-sampled [76]. BRUVS were deployed at sites between 54 to 260 
m depth and sampling a total of three reefs and one inter-reefal transect (Figure 2). 

Figure 1. Map showing shelf-break areas of the central Great Barrier Reef sampled: (a) Myrmidon Reef,
Northern Submerged Shoals, an inter-reefal transect, and (b) Viper Reef. The shelf-break is over 100 km
offshore and the adjacent continental slope drops off to depths of hundreds of meters. Within the
Great Barrier Reef Mark Park, activities are managed by the Great Barrier Reef Marine Park Authority
(GBRMPA) in Zones. Marine National Park Zones (green) are ‘no-take’ areas where extractive activities
such as fishing and collecting are not allowed without a permit. Habitat Protection Zones (blue) are
set aside to protect habitats from potentially damaging activities. See Fernandes et al., 2005 for a
description of the zonation. Submerged banks from Harris et al., 2013 are depicted in darker blue.

In order to assess variation in habitats along the upper continental slope environment, four
distinct shelf-edge locations were targeted using the multibeam sonar and BRUVS: Myrmidon
Reef, a suite of unnamed shoals 15 km northwest of Myrmidon (‘Northern Submerged Shoals’),
an inter-reef transect (Figure 2a), and two submerged shoals 30 km east of the Viper Reef (‘Viper
Reef’, Figure 2b). The mesophotic benthic communities of the central GBR are composed of a diverse
range of habitat-forming taxa such as hard and soft corals (including Scleractinia, zooxanthellate, and
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azooxanthellate Octocorallia), sponges, seagrasses, and algae [70,71]. Hard substratum above ~60 m
is typically dominated by shallow-water zooxanthellate corals such as Montipora, Porites, Seriatopora,
and Xeniidae. However, below 60 m, the communities are increasingly dominated by azooxanthellate
octocorals [39,72]. Inter-reefal habitats between 50–80 m are generally composed of either bare sand
or dense fields of calcareous Halimeda macroalgae, with this species becoming sparse below 80 m
in the central GBR [71] but present down to 100 m in the northern GBR [63], and where shelf-edge
bathymetry allows nutrient upwelling to occur [73]. The shelf-edge between 90–140 m includes
extensive hard reef substratum formed during lower Pleistocene sea levels that now supports dense
forests of gorgonians [39,74]. Beyond 140 m, this hard reef substratum is less abundant, with a
correlated decline in the abundance of octocorals and other habitat-forming species. The one exception
may be the eastern side of the Myrmidon Reef, where a steep rocky slope extends to depths well below
150 m and continues to support azooxanthellate octocorals (T. Bridge pers. obs. from this study).

Diversity 2018, 10, x FOR PEER REVIEW  6 of 37 

 

A high-definition camera (Sony HDR-CX110E) was housed in an aluminum rollbar-frame for 
protection during deep deployments while also minimizing damage to benthic habitats (Figure 3). 
The field-of-view (FOV) of each BRUVS was illuminated by a white spotlight (550 lumen) to 
overcome diminished light with depth and aid in species identification. The camera focus was set to 
manual infinity to maximize the FOV. BRUVS were attached to a bridled rope configuration with 
sufficient rope (8-mm diameter polypropylene, approximately twice the water depth of the 
deployment because of the strong currents), ballast weights, and a float-flag assembly for retrieval. 
A plastic mesh bag filled with one kilogram of crushed pilchards (Sardinops sagax) was attached to 
the BRUVS via a flexible plastic conduit as an attractant. BRUVS were left to soak for 45 min, but, due 
to the time to reach the bottom, tapes were an average of 54 min (27 to 84 min). BRUVS units were 
retrieved from the surface using a hydraulic pot-hauler.  

 
Figure 2. Regional and detailed multibeam bathymetry for (a) Myrmidon Reef, an inter-reefal 
transect, and the adjacent Northern Submerged Shoals, and (b) the submerged shoals adjacent to the 
Viper Reef. Sites of BRUVS deployments are shown as black circles and depth (- meters below the 
surface from shallower to deeper depths) as a color gradient (from high to low).

Figure 2. Regional and detailed multibeam bathymetry for (a) Myrmidon Reef, an inter-reefal transect,
and the adjacent Northern Submerged Shoals, and (b) the submerged shoals adjacent to the Viper Reef.
Sites of BRUVS deployments are shown as black circles and depth (- meters below the surface from
shallower to deeper depths) as a color gradient (from high to low).
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Within the Great Barrier Reef Marine Park (GBRMP), locations have varying levels of protection
based on the activities that are permitted. Approximately 33% of the area is designated Marine
National Park Zone as ‘no-take’, where fishing is not allowed [75]. Other zone types occur within the
GBRMP. However, the locations included in this study are all under habitat protection, with Myrmidon
Reef the only location in a ‘no-take’ zone.

2.2. Baited Remote Underwater Video Stations (BRUVS)

To sample fish assemblages and habitats in situ, 48 single BRUVS deployments were conducted
over three research cruises (May, June, and September 2014), all during daylight hours (0700–1800).
BRUVS were depth-stratified targeting depths of ~100 m, ~150 m, and over 200 m to investigate depth
gradients. Since Viper Reef has the shallowest slope environment, some deployments were placed at
depths <100 m to ensure similar width of spacing between BRUVS at the other locations. All BRUVS
were set at a minimum distance of 200 m between units to minimize the effects of bait plumes and
reduce the likelihood of fish being re-sampled [76]. BRUVS were deployed at sites between 54 to 260 m
depth and sampling a total of three reefs and one inter-reefal transect (Figure 2).

A high-definition camera (Sony HDR-CX110E) was housed in an aluminum rollbar-frame for
protection during deep deployments while also minimizing damage to benthic habitats (Figure 3). The
field-of-view (FOV) of each BRUVS was illuminated by a white spotlight (550 lumen) to overcome
diminished light with depth and aid in species identification. The camera focus was set to manual
infinity to maximize the FOV. BRUVS were attached to a bridled rope configuration with sufficient
rope (8-mm diameter polypropylene, approximately twice the water depth of the deployment because
of the strong currents), ballast weights, and a float-flag assembly for retrieval. A plastic mesh bag filled
with one kilogram of crushed pilchards (Sardinops sagax) was attached to the BRUVS via a flexible
plastic conduit as an attractant. BRUVS were left to soak for 45 min, but, due to the time to reach the
bottom, tapes were an average of 54 min (27 to 84 min). BRUVS units were retrieved from the surface
using a hydraulic pot-hauler.Diversity 2018, 10, x FOR PEER REVIEW  7 of 37 
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Figure 3. Illustration of Baited Remote Underwater Video Station unit for deepwater (<300 m)
deployments. A high-definition video camera was in a water-tight housing and an additional white
spotlight above the camera aided species identification. Bait arm of plastic mesh filled with ~1 kg of
crushed pilchards extended into the camera’s field-of-view. At surface-level, there was a flag-float
assembly for retrieval and a running float was used to keep track of the slack line. This figure is a
schematic not drawn to scale.
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Videos were read to the full length, then standardized for number of fishes per hour, using
purpose-built software developed by the Australian Institute of Marine Science (AIMS). Fishes
were identified to the lowest possible taxonomic level with the help of multiple ichthyologists via
correspondence. Time on the seabed, visibility, time of first appearance of each species, abundance N
of each species until the time when MaxN was reached (i.e., the greatest number of individuals of a
species per frame [51]), and time of the end of sampling (i.e., when the video left the bottom or when
the video camera stopped recording) were recorded. Video stills of all fish identified were indexed
for inclusion in the AIMS reference image library. MaxN is a conservative estimate of abundance and
is used to avoid recounting individuals that exit and re-enter the FOV [77] and provides a minimum
estimate of true abundance [78]. Species richness and total abundance were added for each deployment
and standardized by effective sampling time to be estimates per hour filmed at the seabed. Individual
BRUVS deployments were treated as independent sites and the sites sampled were divided into four
locations (Myrmidon Reef, Viper Reef, Northern Submerged Shoals, and the inter-reefal transect).

We hypothesized that some components of the epibenthos and substratum would affect the fish
community composition. Benthic habitat information at each site was estimated from the FOV. This
included identifying major abiotic and biotic habitat characteristics based on a standardized, tripartite,
benthos classification scheme developed for a project that used similar methods to describe patterns
in fish and fauna of deeper shoals on the GBR continental shelf with a range of habitat, spatial, and
temporal variables [79]. Substratum categories used were bedrock, boulder, calcareous reef, mud/silt,
gravel (2–64 mm), rubble, sand, and ‘indeterminate’ (i.e., where substratum could not be determined
reliably due to the angle or visibility of the FOV). Bedform categories included qualitative descriptors
such as bioturbated sand, boulder field, sand dunes, sand ripples, rubble field, flat gravel/sand/silt,
Halimeda beds, high-relief reef, and low-outcrop reef. Benthic community categories included coral,
gorgonian, and sea-whip garden, low-relief rubble field, macroalgae bed, open sandy seabed, and
seagrass bed. In addition, the following benthic community components were also qualitatively
summarized in the same way: anemones, bryozoans/encrusting animals, coralline algae, gorgonian
fans, forams, Halimeda, hard coral, hydroids, macroalgae, seagrass, soft coral, sponges, sea whips,
zoanthids, and ‘none.’ Each component was given a percentage score 0–100 in increments of 10.
Rarer categories of substratum or epibenthos were pooled with related categories for fewer covariates
(Table 1).

2.3. Multibeam Sonar Acquisition

Reef architecture can affect the distribution of fishes. For this reason, we obtained a broader suite
of information on the underlying habitat structure of shelf-break environments, with multibeam
bathymetry and backscatter information describing a number of neighborhood characteristics.
High-frequency multibeam sonar produces accurate, high-resolution digital bathymetric models [80].
While this technology is in wide use, it has only recently been applied to study shelf-break reefs
and fish communities on the GBR [81,82]. Multibeam information has the potential to characterize
fine-scale spatial relationships between deeper habitats and fish [83]. Multibeam echo sounders
collect bathymetry and backscatter information over a wide swath of the seafloor [80,84], with the
relative acoustic backscatter, i.e., the ‘acoustic reflectivity of the seabed,’ which provides a useful
proxy for seabed substratum [84]. Multibeam sonar surveys using a Reson 8101 were conducted
in 2014 onboard James Cook University’s RV James Kirby (24, 25 May) and Australian Institute of
Marine Science’s RV Cape Ferguson (03–09 Sept). Multibeam mapping in water depths of 10–250 m
was conducted at a speed of 5–6 knots. The Reson 8101 emits 101 acoustic beams of 1.5◦ × 1.5◦,
covering an angular sector of up to 150◦ for a total swath approximately seven times the water
depth. A Kongsberg Seatex motion reference unit corrected for pitch, roll, and heave. A Fugro
OmniSTAR 9200-XP differential GPS recorded positioning, with a quoted accuracy of 1.0 m RMS in
the X and Y plane. Data from all peripheral sensors were recorded using QPS QINSy acquisition
software. A Sontek CastAway CTD system corrected the acoustic profile. Predicted tides generated
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from XTide software [85] corrected the bathymetric data by tidal datum over the survey period.
Raw multibeam data files were converted to Extended Triton Format (XTF) and imported to Caris
HIPS/SIPS post-processing software. All multibeam data post-processing included noise editing, tide,
and sound velocity corrections. Bathymetry data were visually inspected and spurious soundings
removed to create a level and clean dataset relative to the mean sea level. The error of estimation for
vertical soundings reported is estimated to be a maximum of ±0.2 m. The final digital models were
produced using Caris HIPS/SIPS software with a 5-m cell size.

2.4. Secondary Datasets from Multibeam

Multibeam sonar datasets measures both the seabed structure through bathymetry and seabed
composition with acoustic backscatter [80]. To improve the predictive power of the multibeam
sonar datasets, a variety of secondary datasets, potentially correlating with seafloor properties, were
produced from the raw bathymetry and backscatter data using neighborhood-based statistics and
terrain analysis techniques [84,86]. Neighborhood operations produce an output raster dataset in
which each cell location is a function of the input value at a cell location and the values of the cells in a
specified kernel (i.e., neighborhood) around that location. The configuration (size and shape) of the
kernel determines which cells surrounding the input cell are included in the output value. The most
typical kernel size is 3 × 3 cells (i.e., a radius of 1 grid cell), which incorporates the processing cell and
its closest eight neighbors.

Multi-scale terrain analysis is predicted to be the most efficient method for characterizing features
at multiple spatial scales [86–88] and, for this study, we wanted to compare differences between
sites on local and broad scales. Derivative datasets that accounted for both high-frequency and
low-frequency variations in the multibeam data, and variations in the kernel (neighborhood size), were
included in the analyses. All derivatives of the bathymetry and backscatter were chosen because they
have a potential influence on the fish community ecology (Table 1) and are commonly used within
the marine habitat and seabed characterization (see Reference [89] for a review and Figure S1 for
demonstrative examples of backscatter and bathymetry derivatives used in this study). Progressively
lower frequency neighborhood analyses were applied to the multibeam bathymetry and backscatter
to investigate multiple spatial scales in two ways. Some neighborhood functions (Easting, Northing,
Slope, Topographic Position Index, Topographic Ruggedness Index, Surface Ratio, Total Curvature,
Planar Curvature, and Profile Curvature) are used to quantify the ‘shape’ of the kernel. As a result, they
are calculated from the surrounding eight pixels (a 3 × 3 kernel) and were applied to the bathymetry
raster only. Therefore, to achieve progressively ‘lower frequency’ derivatives of these metrics, the
bathymetry rasters were low-pass filtered (5 times) using an 11 × 11 kernel-averaging filter. Each
time the averaging low-pass filter was applied, the nine neighborhood functions were then calculated
to create derivative raster datasets at that resolution (designated ‘**’ in Table 1). Neighborhood
functions that could be applied to larger kernel sizes were applied to both the bathymetry and
backscatter grids using kernels with radius values of 5 and 50 pixels (Range, Standard Deviation of
Bathymetry, Average Backscatter and Standard Deviation of Backscatter, and these multiple spatial
scales were designated with ‘***’ in Table 1). Backscatter information can be interpreted as qualities of
the substratum (i.e., ‘hard’ or ‘soft’). Raster calculations were undertaken using the R software [90]
and the Raster package [91]. Additional subroutines were written for Curvature measurement based
on Zevenbergen and Thorne [92]. For site comparisons within depth strata, multibeam information
from the 5 × 5 kernel was used, and, for comparisons among depth strata, multibeam derivatives from
the 50 × 50 kernel were used.
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Table 1. Explanatory covariates from multibeam echo sounding technology and estimates from the Baited Remote Underwater Video Station field-of-view (FOV).
Some epibenthic and substratum categories were pooled for combined groups of benthos. Primary and secondary (derived) features from bathymetry and backscatter
raster datasets: * Raw raster data. ** Applied as a 3 × 3 kernel on bathymetry after it was averaged using kernels with a radius of 5 and 50 pixels. *** Applied kernels
with a radius of 5 and 50 pixels. References where these multibeam derivatives are described are in bold. Example references where these factors have been highly
influential on fish or benthic assemblages are noted in italics.

Covariate Name
(Abbreviation) Covariate Type Definition Reference

Bedrock % composition of seafloor by substratum categories FOV estimated % Bedrock

Boulder % composition of seafloor by substratum categories FOV estimated % Boulder Moore et al., 2009 [93]

Calcified reef % composition of seafloor by substratum categories FOV estimated % Calcareous reef Moore et al., 2009

Gravel % composition of seafloor by substratum categories FOV estimated % Gravel (2–64mm)
Haywood et al., 2008 [94]
Holmes et al., 2008 [95]
Malcolm et al., 2016 [96]

Indeterminate % composition of seafloor by substratum categories FOV estimated % Indeterminate

Mud % composition of seafloor by substratum categories FOV estimated % Mud/silt Haywood et al., 2008

Rubble % composition of seafloor by substratum categories FOV estimated % Rubble

Sand % composition of seafloor by substratum categories FOV estimated % Sand Malcolm et al., 2016
Kane & Tissot 2017 [36]

Filtering organisms % composition of seafloor by epibenthic categories % combined Fans, Hydroids, Sponges, Whips Holmes et al., 2008

Encrusting organisms % composition of seafloor by epibenthic categories FOV estimated % combined Bryozoans/encrusting animals,
coralline algae

Coral % composition of seafloor by epibenthic categories FOV estimated % combined Hard coral and Soft coral Garcia-Sais 2010 [2]
Kane & Tissot 2017

Bare % composition of seafloor by epibenthic categories FOV estimated % no epibenthic cover

Plants % composition of seafloor by epibenthic categories FOV estimated % combined Macro-algae and Seagrass Holmes et al., 2008

Halimeda % composition of seafloor by epibenthic categories FOV estimated % Halimeda

Name Source Description Possible Ecological Context Reference

Depth * (m) Vessel depth sounder Depth below sea-level
Location relative to Photic Zone

Potential impact by waves and storms
Location relative to thermoclines/haloclines

Costa et al., 2014 [97]
Oyafuso et al., 2017 [98]

Kane & Tissot 2017
Moore et al., 2009

Moore et al., 2011 [99]

Latitude Handheld GPS unit Position of the deployment Location relative to latitudinal gradients Cappo et al., 2007

Longitude Handheld GPS unit Position of the deployment Location relative to longitudinal gradients Cappo et al., 2007

Easting ** Bathymetry derivative Easterly component of the kernel
azimuth Level of exposure or protection from oceanographic processes Hirzel et al., 2002 [100]
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Table 1. Cont.

Name Source Description Possible Ecological Context Reference

Northing ** Bathymetry derivative Northerly component of the kernel
azimuth Level of exposure or protection from oceanographic processes Hirzel et al., 2002

Slope ** (Degree) Bathymetry derivative Change in elevation as a function of
distance within the kernel

Indicate activity of gravity driven processes
Indication of hard substratum

Dartnell and Gardner 2004
[101]

Misa et al., 2013 [102]
Moore et al., 2009

Topographic Position
Index **

(TPI)
Bathymetry derivative

Difference between center kernel
value and the average of all kernel

values.
Example of TPI interpretation as

defined in Weiss 2001
(SD is standard deviation of

bathymetry):
Ridge: z0 > SD

Upper slope: SD ≥ z0 > 0.5 SD
Middle slope: 0.5 SD ≥ z0 ≥ −0.5 SD,

slope > 5◦

Flat area: 0.5 SD ≥ z0 ≥ −0.5 SD,
slope ≤ 5◦

Lower slope: −0.5 SD > z0 > -SD
Valley: z0 < -SD

Relative topographic position in the neighborhood:
Positive TPI values are higher than their surroundings (i.e.,

ridges) and negative TPI values are lower than their
surroundings (i.e., valleys). TPI values near zero are flat areas.
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Table 1. Cont.

Name Source Description Possible Ecological Context Reference

Planar Curvature **
(Degrees/m) Bathymetry derivative

Index of concavity/convexity
measured perpendicular to slope

within the kernel

Identifies ridges, valleys, and flat slopes

Diversity 2018, 10, x FOR PEER REVIEW  13 of 37 

 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Planar Curvature** 
(Degrees/m) 

Bathymetry 
derivative 

Index of concavity/convexity 
measured perpendicular to slope 

within the kernel 
 

Identifies ridges, valleys, and flat slopes 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Zevenbergen 
and Thorne 1987 

Profile Curvature** 
(Degrees/m) 

Bathymetry 
derivative 

Index of concavity/convexity 
measured parallel to the slope 

within the kernel 
 

Concave or convex slopes 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Zevenbergen 
and Thorne 1987 
Moore et al. 2009 

Acoustic 
Backscatter* 
(Decibels) 

Backscatter 
derivative Acoustic backscatter  Proxy for seabed substratum  

Hughes-Clarke 
et al. 1996 [80] 

Ave Backscatter*** 
(Decibels) 

Backscatter 
derivative 

Average backscatter within the 
kernel 

Proxy for seabed substratum 
Brown et al. 

2011 [84] 
StdDev 

Backscatter*** 
(Decibels) 

Backscatter 
derivative 

Standard deviation of values 
within the kernel 

 
Variation in substratum within the kernel 

Brown et al. 
2011 

(re-drawn from “Curvature type” ArcGIS help files)

Zevenbergen and Thorne 1987

Profile Curvature **
(Degrees/m) Bathymetry derivative

Index of concavity/convexity
measured parallel to the slope within

the kernel

Concave or convex slopes

Diversity 2018, 10, x FOR PEER REVIEW  13 of 37 

 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Planar Curvature** 
(Degrees/m) 

Bathymetry 
derivative 

Index of concavity/convexity 
measured perpendicular to slope 

within the kernel 
 

Identifies ridges, valleys, and flat slopes 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Zevenbergen 
and Thorne 1987 

Profile Curvature** 
(Degrees/m) 

Bathymetry 
derivative 

Index of concavity/convexity 
measured parallel to the slope 

within the kernel 
 

Concave or convex slopes 

 

(re-drawn from “Curvature type” ArcGIS help files) 

Zevenbergen 
and Thorne 1987 
Moore et al. 2009 

Acoustic 
Backscatter* 
(Decibels) 

Backscatter 
derivative Acoustic backscatter  Proxy for seabed substratum  

Hughes-Clarke 
et al. 1996 [80] 

Ave Backscatter*** 
(Decibels) 

Backscatter 
derivative 

Average backscatter within the 
kernel 

Proxy for seabed substratum 
Brown et al. 

2011 [84] 
StdDev 

Backscatter*** 
(Decibels) 

Backscatter 
derivative 

Standard deviation of values 
within the kernel 

 
Variation in substratum within the kernel 

Brown et al. 
2011 

(re-drawn from “Curvature type” ArcGIS help files)

Zevenbergen and Thorne 1987
Moore et al., 2009

Acoustic Backscatter *
(Decibels) Backscatter derivative Acoustic backscatter Proxy for seabed substratum Hughes-Clarke et al., 1996 [80]

Ave Backscatter ***
(Decibels) Backscatter derivative Average backscatter within the kernel Proxy for seabed substratum Brown et al., 2011 [84]

StdDev Backscatter ***
(Decibels) Backscatter derivative Standard deviation of values within

the kernel Variation in substratum within the kernel Brown et al., 2011



Diversity 2019, 11, 26 12 of 32

2.5. Data Analysis

2.5.1. Habitats and Fish Communities Separated by Depth

Depth had a great influence on fish community patterns. However, since numerous ecological
factors vary with depth, this can obscure the underlying drivers of fish distributions, including the
influence of fish-habitat interactions [62]. Therefore, we investigated habitat differences within and
among depth strata. For epibenthic and substratum percent cover comparisons, we divided the sites
based on depth categories with n = 16 sites for balance (‘Shallow’ 54–107 m, ‘Middle’ 110–156 m, and
‘Deep’ 160–260 m). We then analyzed patterns of fish and environmental covariates using non-metric
multi-dimensional scaling (nMDS) and fitting environmental correlates on the ordination package
‘vegan’ [110] in R. Fish abundance data was divided into ‘Shallow’ (54–115m, n = 18 sites), ‘Middle’
(128–160m, n = 14 sites), and ‘Deep’ (179–260m, n = 12 sites with no missing values) sites and fish species
only occurring at one site were removed from the dataset, which left 72 species. Sites (i.e., BRUVS
deployments) were eliminated from the analyses if there were missing habitat values (some multibeam
values were ‘missing’ if the kernels extended beyond the region where multibeam information was
collected, which was more frequent at the deepest sites). One site was removed because it did not
contain any of the remaining 72 species. Separating sites into three nMDS investigated the differences
in habitats with the maximum separation between depth categories.

Ordination by nMDS separated the sites based on community dissimilarities in relative
abundances and composition. Separate nMDS identified what species and habitat variables contributed
to similarities among locations (function metaMDS, k = 2). Non-metric MDS is a flexible and
robust ordination method for visualizing patterns that preserve the ranks of dissimilarities in species
abundance data. Relative abundances were transformed with a fourth-root to reduce the influence of
highly abundant fishes and then scaled using a Wisconsin double-standardization with the Hellinger
method where species are standardized by the maxima and sites by the site total. Hellinger accounts
for relative rarity and the ‘horseshoe effect’ where sites are considered more alike by what species
are absent from those sites. Species abundance data were then incorporated into a Bray-Curtis
resemblance matrix.

To see what environmental covariates were meaningful for distinguishing sites, correlating
covariates were fitted as vectors overlaying the plotted sites if they were above the p < 0.05 significance
level (function envfit, Pearson correlations with 999 permutations). This function estimated the
strength of the correlation as well as the direction of the correlation among sites. Multibeam
information and FOV information were first evaluated for variables that were highly correlated
(>0.8) and those variables were removed. The absolute values of multibeam data from the 5 × 5 kernel
were log(x+1)-transformed. FOV epibenthic/substratum measurements were arcsine-transformed.
Environmental variables were scaled and converted into a Euclidean distance-based matrix.

We also investigated community differences among deep reefs using similarity percentages
(SIMPER, PRIMER v7, PRIMER-e, Auckland, New Zealand), which estimated the contributions of
fish species to the differences in community composition variability between locations within depth
strata. SIMPER analysis used presence/absence-transformed community fish data, using a Bray-Curtis
resemblance matrix with 70% as the cut-off level for low contributions.

2.5.2. Species-Species Associations

The occurrence and abundance of fishes may be explained by co-existence or competition with
other species in the community. Therefore, we investigated between-species correlations. We plotted
significant Pearson correlations (p < 0.05) for all the possible pairs of the 28 most frequently-occurring
species using the packages ‘corrplot’ [111] and ‘Hmisc’ (function rcorr, [112]). This subset of 28 species
included the relative abundance of fish observed at five or more of the total 48 sites. Significant
negative correlations could indicate potentially competing species and significant positive correlations
could indicate species co-existing in a similar ecological system.
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2.5.3. Trophic Communities

We hypothesized that fishes would have different levels of habitat association and that these
levels were likely due to differences in the ecological niche (i.e., what they eat). The degree of habitat
specialization between fishes can even be different between closely related species [113,114]. An
analysis was conducted to determine differences in the trophic community composition (diversity of
feeding groups) between deep-reef habitats. Each species was designated a trophic group based on
diet or trophic ecology information, according to Fishbase (herbivore, piscivore, planktivore, general
carnivore, benthic carnivore, or unknown [115]). The number of total species per trophic group
(presence/absence) per site was summed as a measure of relative trophic richness. Some species’ diets
could be inferred to the most likely category based on closely-related species (e.g., Gymnothorax species
tend to be carnivores), but, where there were different trophic niches within a family, these species
were left as unknown.

Sites were plotted along the two primary axes (PC1 and PC2) accounting for most of the variation
in trophic richness using a Principal Component Analysis (PCA) on Wisconsin-standardized trophic
group richness. Wisconsin double-standardization first transformed data by ‘species’ maxima and
then by ‘site’ totals for a more uniform comparison and common scale among sites with very different
numbers of members, reducing the contribution of abundant taxa [116] and improving the gradient
detection capability when comparing dissimilarities [117]. Sites were grouped according to the depth
category (n = 16, ‘Shallow’ 54–107 m, ‘Middle’ 110–156 m, and ‘Deep’ 160–260 m) and individual
habitat measures were correlated to the variance explained in PC1 and PC2. We presumed broad
trophic differences would be operating on larger spatial scales, so the multibeam measurements used
were from the 50 × 50 kernel (i.e., largest sampling window). This approach compared each single
predictor to the combined community response of the principal component. This comparison reduced
dimensionality, which increased the ability to identify how much communities respond directly to
gradients in the environmental factors [118]. This method determined which habitat variables are most
important in explaining the variation among sites.

Animal ethics approval was granted by James Cook University (A1808 and A2207).

3. Results

3.1. Description of Deep-Reef Benthic Shelf-Break Habitats

Epibenthic cover and substratum type varied with depth (54–260 m deep, Figures 4 and 5). The
mean abundance cover of macro-algae decreased from 27% at the shallowest sites (54–107 m), to 13%
at middle sites (110–156 m), to 5% at the deepest sites (160–260 m, Figure 5). Halimeda (kept as a
separate category for analyses) was also most prominent in shallower sites (10% mean abundance
cover) and was found to a maximum depth of 150 m. Soft corals were seen down to 155 m. Sponges
had the greatest representation in the Middle sites (4%–16% average cover). The encrusting community
(coralline algae and bryozoans) was most abundant at Shallow sites (~22% mean abundance cover) and
decreased with increasing depth. Overall, the average percent cover of the total epibenthic community
decreased from Shallow (72%), Middle (43%) to Deep sites (11%), with deeper sites having noticeably
more ‘bare’ coverage (89%). Structural complexity also decreased with greater depth, largely due to
the declining abundance of calcified reef (mean 45%, 54–107 m, 8%, 160–260 m). However, other hard
substratum categories, such as bedrock and boulder, had limited but relatively consistent average
abundance cover (1%–4%). Rubble and sand became more common with increasing depth, while mud
only appeared in the middle and deeper sites.
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Figure 4. Examples of deep-reef habitats from the field-of-view of Baited Remote Underwater Video
Stations (BRUVS). The bait arm extension is visible in the video frame. A unique BRUVS operation
code (TS_ removed observer bias) and depth are noted for each site with the relative proportion of
epibenthic (left pie chart) and substratum categories (right pie chart).
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Figure 5. Deep-reef habitats varied by depth, measured by epibenthic and substratum cover in the
field-of-view of the camera. Sites were divided into three depth strata: Shallow (54–107 m), Middle
(110–156 m), and Deep (160–260 m) represented by three sequentially stacked bars (each n = 16 sites)
with error bars for the standard error of the mean percent cover.
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There was some notable habitat variation among locations surveyed and also at the level of sites
within locations (Figure 4). Overall, epibenthic composition was more similar between Myrmidon
Reef and Northern Submerged Shoals than the Viper Reef (Figure S2). While coral was observed at
shallow Viper Reef sites, it was absent from other locations (Viper included some shallower sampling
depths). In addition, while the abundance of sponges was consistent between the Myrmidon Reef and
Northern Submerged Shoals, they were absent from Viper Reef. Macro-algae was abundant at deeper
sites of the Northern Submerged Shoals, occurring at three of the four sampling sites and down to
194 m. There were no major differences in substratum by location (Figure S3), but what was visible in
the FOV were coarse qualifications of substratum. The number of replicate sites per reef and depth
varied (e.g., for inter-reefal sites, there was only one site per depth category), and, therefore, due to
low replication at some locations, these results were not analyzed by parametric tests by location.

3.2. Investigating Habitats and Fish Communities within Depth Strata

There was great variation in species composition both among locations and sites nested within
locations. The differences among locations were greatest at shallow depths, but there was still an
overlap between sites among locations (Figure 6). Of the environmental variables responsible for
differences among sites, only a few were significant by depth strata. Slope and the presence of
filter-feeding organisms among shallow sites were significant (p < 0.05), while Middle sites had the
significant separation based on longitude, latitude, and the proportion of sand. The presence of boulder
substratum differentiated among sites at Deep sites.

Variation within depth strata show some overall patterns between fish communities by location
(Figures S4–S6). Many species are shared among multiple locations, such as Lethrinus rubrioperculatus,
Aprion virescens, Gymnocranius euanus, and Carcharhinus albimarginatus, indicated by the close clustering
of species towards the middle of the ordination (Figure S4). Among Middle sites, the species
composition at Northern Submerged Shoals overlapped with Myrmidon sites, and Viper varied
the most in species composition (Figure S5). For the within-location similarity between sites, SIMPER
analysis showed the species that contributed to each location’s community were varied and there were
also high levels of unexplained variation within depth strata among locations (Table 2). The species
showing greater similarities within a location were often representatives of the Lutjanidae, Lethrinidae,
Carcharhinidae, and Carangidae families. At Shallow sites, locations sampled were dissimilar in
species assemblages because of high species diversity, with the greatest dissimilarities between the
inter-reefal transect and the other reefs sampled. Among sites at Middle depths, Myrmidon and
Northern Submerged Shoals were the most similar.
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Figure 6. Nonmetric Multidimensional Scaling (nMDS) showed patterns between fish community
composition and environmental variables, including epibenthic and substratum measured in the
underwater camera field-of-view and multibeam echo sounder measured variables. Sites were
separated into Shallow (54–115 m, nMDS non-metric fit, R2 = 0.967, linear fit, R2 = 0.827, stress = 0.21,
top), Middle (128–160 m, nMDS non-metric fit, R2 = 0981, linear fit, R2 = 0.913, stress = 0.15, middle),
and Deep (179–260 m, nMDS non-metric fit, R2 = 0.989, linear fit, R2 = 0.924, stress = 0.15, bottom)
based on depth. Ordination from Bray-Curtis dissimilarities in species abundance data, transformed
using fourth-root transformation, and standardized using Wisconsin-double standardization. Colored
hulls show the affiliation of each site to a location. Environmental variables that were significant within
these depth strata are depicted as vectors on the nMDS ordination (p < 0.05, 999 permutations).
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Table 2. Similarity percentages (SIMPER) analysis on deep-reef fish community data described the relative contributions of specific species to the dissimilarities
between sites (among locations) with percent contribution of individual species to those differences. Species abundances were presence/absence-transformed, and
Bray-Curtis similarity measures were used. Species contributing to ~70% combined are listed.

Location Myrmidon Reef Northern Submerged Shoals Viper Reef Inter-Reefal Transect

Depth strata

Shallow

(54–115 m)

n sites = 8
Average similarity: 28.0%

Individual species contributions:
Carangoides caeruleopinnatus, (15.3%)

Lutjanus bohar (13.6%)
Carcharhinus amblyrhynchos (9.9%)

Aphareus rutilans (8.9%)
Gymnocranius euanus (8.9%)
Cirrhilabrus roseafascia (6.0%)

Pristipomoides filamentosus (5.3%)
Lethrinus miniatus (5.0%).

n sites = 4
Average similarity: 15.9%

Individual species contributions:
Carangoides caeruleopinnatus (21.7%)

Gymnocranius grandoculis (13.1%)
Carcharhinus albimarginatus (10.0%)

Lethrinus rubrioperculatus (9.1%)
Carcharhinus amblyrhynchos (7.2%)

Pomacanthus imperator (7.2%)
Plectropomus leopardus (7.2%)

n sites = 4
Average similarity: 25.6%

Individual species contributions:
Carangoides dinema (23.6%)
Echeneis naucrates (11.4%)
Lethrinus olivaceus (9.5%)
Aphareus rutilans (4.7%)

Carcharhinus albimarginatus (4.7%)
Carangoides fulvoguttatus (4.7%)

Lutjanus bohar (4.7%)
Parapercis sp. (4.7%)

Epinephelus cyanopodus (4.7%)

n sites = 2

Individual species
contributions:

All similarities are zero

Middle

(128–160 m)

n sites = 8
Average similarity: 29.5%

Individual species contributions:
Aphareus rutilans (31.2%)

Pristipomoides typus (14.3%)
Pristipomoides filamentosus (13.1%)

Parapercis nebulosa (10.3%)
Pristipomoides multidens (9.4%)

n sites = 3
Average similarity: 58.3%

Individual species contributions:
Bodianus sp. (10.4%)

Wattsia mossambica (10.4%)
Aphareus rutilans (10.4%)

Pristipomoides filamentosus (10.4%)
Pristipomoides multidens (10.4%)

Pristipomoides typus (10.4%)
Gymnosarda unicolor (10.4%)

n sites = 2
Average similarity: 28.57

Individual species contributions:
Carcharhinus albimarginatus (100%)

n sites = 1

Deep

(179–260 m)

n sites = 8
Average similarity: 17.0%

Individual species contributions:
Pristipomoides argyrogrammicus (39.0%)

Pristipomoides multidens (31.2%)

n sites = 3
Average similarity: 31.7%

Individual species contributions:
Gymnosarda unicolor (48.9%)

Seriola dumerili (13.2%)
Pristipomoides argyrogrammicus (13.2%)

n sites = 0 n sites = 1
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3.3. Relationships among Fish Species

The distribution of fishes among habitats may be both positively and negatively influenced by
inter-species interactions. Of the 28 species present at five or more sites, many correlated species were
identified (Figures 7 and 8, correlation values with a significance of p < 0.05). L. bohar abundance was
highly correlated with the abundance of L. ravus (0.71) and L. olivaceus (0.67), and moderately correlated
to Parapercis sp. (0.50, Family Pinguipedidae). Deeper reefs often had mixed groups of lethrinid species:
L. olivaceus was often found with L. ravus (0.59) and L. miniatus (0.57); L. miniatus was associated with
L. rubrioperculatus (0.68), G. euanus was often frequented seen with species L. rubrioperculatus (0.55) and
L. miniatus (0.60). Lethrinid and other family co-occurrences were common: L. rubrioperculatus and C.
caeruleopinnatus (0.77), G. euanus with C. caeruleopinnatus (0.58) or the grey reef shark, C. amblyrhynchos
(0.62), which also was frequently seen with L. rubrioperculatus (0.54) and L. miniatus (0.57). The
silvertip shark, C. albimarginatus, was often seen with an attached sharksucker, E. naucrates (0.57).
The deep-reef serranid Epinephelus morrhua and P. typus were frequently observed at the same sites
(0.67). W. mossambica was weakly correlated in abundance to deepwater lutjanids P. typus (0.51),
and P. filamentosus (0.57), as well as E. morrhua (0.67), and G. unicolor (0.54, Scombridae). Deep reefs
commonly featured Parapercis species. P. nebulosa and the labrid, Terelabrus rubrovittatus, were often
seen on the same videos and Parapercis sp. abundance was weakly correlated with L. ravus abundance
(0.51). T. rubrovittatus was also frequently seen with an unknown Selenanthias sp. (a potential new
species for the GBR, 0.59).Diversity 2018, 10, x FOR PEER REVIEW  23 of 37 
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Figure 7. Species correlations of most frequently occurring 28 fish species from Baited Remote
Underwater Video Station deployments on shelf-break reefs. Positive Pearson correlation values
are depicted in blue and negative correlations in red (only significant correlations where p < 0.05 are
depicted).
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and (m–o) North Myrmidon 105 m. 
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Figure 8. Examples of fish co-occurrences on deep reefs of the Great Barrier Reef shelf-break: (a,b) West
Myrmidon 128 m, (c) North Myrmidon 100 m, (d–f) Northern Submerged Shoals (NSS) 155 m, (g) NSS
160 m, (h,i) West Myrmidon 129 m, (j,k) North Myrmidon 103 m, (l) North Myrmidon 107 m, and
(m–o) North Myrmidon 105 m.

3.4. Deep-Reef Fish Trophic Communities

The reef fishes detected in this study were ecologically diverse. Of the 98 fishes identified to
species-level, piscivores (10 species), planktivores (7 species), benthic-associated carnivores (26 species),
generalist carnivores (41 species), and four species of combined diets (e.g., planktivorous and
piscivorous fishes) were represented, based on the membership of known trophic guilds (Table S1
includes species-specific CAAB code [119]). Twenty species recorded had no published trophic
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information (according to the Fishbase). However, half of these were assigned to a trophic group
based on other family members occupying that same trophic group. Only one species was herbivorous
(Acanthurus xanthopterus), which is likely due to the decreased availability of edible algae with
depth, or the amount of feeding activity around the BRUVS. PC1 and PC2 accounted for a combined
52.5% of the variation among sites, with the presence of general carnivores against the other trophic
guilds accounting for the greatest separation and approximately 30% of the total variation (Figure 9).
Shallower sites tended to have a greater variety of feeding modes and less overlap with the other
depth categories. However, overall, there was a great degree of trophic overlap, especially between the
middle and deeper sites (110–260 m).

Several environmental variables were found to have an influence on trophic diversity across
PC1 and PC2 (Table S2). Depth, aspect (orientation), planar curvature, and surface ratio dimensions
contribute toward the differences in communities along PC1. Fish communities were affected by the
local topography and habitat position, presumably because some habitats will be cliff-like features
facing the prevailing currents. Proportional measures of bare, plants, bedrock, calcified reef, and
presence of sand also correlated with differences along PC1. Slope and standard deviation of the
bathymetry were found to explain the variation in PC2.
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Figure 9. Principal Component Analysis show trophic community differences of fishes between sites
sampled on shelf-break reefs. The first two principal components explain 52.5% of the variation in
trophic diversity between sites. Sites are grouped by depth category and each has a unique number.
Vectors depicting the principal feeding strategies (H = herbivores, PI = piscivores, PL = planktivores,
BC = benthic carnivores, GC = general carnivores, UK = unknown) show some of the key differences
between sites. Environmental variables found to significantly contribute to the community differences
along PC1 and PC2 are summarized next to the corresponding axis (** p < 0.01 and * p < 0.05).
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4. Discussion

Habitat type varied with depth and within depth strata. These differences in reef architecture
and benthic cover affected both community and trophic composition of fish communities. While
the shelf-break sites sampled all exhibited a steep vertical gradient, individual habitats were highly
heterogenous, which varied in both biotic and abiotic characteristics. These factors influenced the
distribution and abundance of many fish taxa, as well as broad trophic groups. Many habitat differences
corresponded with increasing depth, which is likely driven by vertical variation in temperature, light,
and pressure. However, habitats also varied within depth strata with regard to the benthic community
composition and underlying substrate type. Most multibeam variables did not correlate with changes
in overall fish community composition even though a few (slope, aspect, planar curvature, and surface
ratio) could distinguish sites with different trophic communities. This may be because the measures of
habitat from different spatial scales, from relatively small scales with BRUVS (<10 m2) and multibeam
derivatives describe broader spatial information (~10–100s m2). Topographical features of the habitat,
such as slope angle, aspect (i.e., sites facing prevailing currents), rugosity, and planar curvature
(e.g., local ridges or valleys) may contribute to the local availability of food and shelter. Among the
shallow-depth and middle-depth sites sampled, the fish community composition at the Viper Reef was
clearly distinct from other locations. The Viper was located on a shallower portion of the shelf-break,
where the reef bottoms out to a maximum depth of 150 m and the slope is less steep. The maximum
extent (i.e., deepest depth) of the reef may account for some of the variability in fish communities [33].

Trophic group composition and structure varied with depth, with a greater trophic diversity at
upper mesophotic depths and increasing reliance on general carnivores at the deepest depths. This
suggested that the ecology of deeper reef fish communities is fundamentally different from those found
at shallower depths. Some previous studies have noted a greater abundance of certain trophic groups,
such as piscivores, on outer-shelf reefs along the GBR [120]. However, this is the first assessment
of depth-related changes in trophic structure below 50 m. Worldwide, many mesophotic habitats
are characterized by low herbivore abundances and high planktivore abundances (e.g., the Red Sea,
Puerto Rico, Northwest Hawaiian Islands, Brazil, Main Hawaiian Islands, [8,35,121–125]). While this
study identified low numbers of planktivorous and piscivorous species compared to other feeding
strategies (7%–10%), this is largely due to the lack of trophic specificity available (some of the species
observed had ‘unknown’ feeding modes). Depth-related trophic variation indicates a dramatic shift
from shallow reef food-web dynamics to strategies that rely more on plankton and other mobile
resources. It has been postulated that mobile invertivores [35,122] and anthiine fishes [126,127] are
key links within other mesophotic food webs, and the high proportion of carnivores and piscivores
found at mesophotic depths within the GBR suggests similar strategies are operating there. Even
within the same species of Stegastes partitus, deeper habitat-associated subpopulations had broader
diet niches in those in shallower depths [128]. Future trophic comparisons should include relative
measures of trophic-level hierarchy, mobility, and prey size [122], as well as quantifying how reliant
these predators are on food sources that originate at shallower depths and use vertical diel movements
to target benthic prey [129] if there are ‘trophic subsidies’ in operation where oceanic planktonic and
nektonic resources make up the deficit for dwindling primary productivity at deeper depths [130].

Identifying where species co-occur is an important consideration in ecosystem-based fisheries
management used to predict the degree that species interact. Species distributions that are highly
correlated will also affect fishing mortality estimates in multispecies fisheries [131]. More connected
species are thought to have a higher vulnerability to combined anthropogenic threats as well as
detrimental changes to the community structure [132]. The species co-occurrences identified in this
study suggest the presence of both inter-family and intra-family interactions, similar habitat needs,
or greater food availability. However, since the majority of overlapping fish species are upper-level
predators, these are likely examples of competition or niche partitioning rather than predator-prey
interactions. In addition to differences in trophic groups with depth, there was substantial variation
in overall fish community composition both between and within-depths, with this information on
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variability critical for future management plans. Previous surveys of mesophotic and sub-mesophotic
shelf-break reefs suggested species composition is often highly heterogeneous [133] with potentially
high proportions of both rare species [134] and endemism [7,135]. New and highly unique fish
communities are being frequently described, as mesophotic research effort increases [24,124,136]. Our
surveys identified a number of new potential species as well as new location records for the GBR.

Variation in fish community structure among and within depths likely reflects differences in
the biotic and abiotic components of shelf-break reefs, with these habitats distinctive from shallower
reefs along the continental shelf. A greater proportion of sponges and macro-algae within the benthic
community, and the presence of boulders, distinguish shelf-break environments from shallower
habitats, as well as differences among shelf-break reef habitats. Not only were significant differences in
the community composition found between the sampled reefs, but also between reefs and inter-reefal
areas. This is especially true at the shallower depths where a steep slope angle and a high abundance
of filter-feeding invertebrates were characterizing features. Sponges and filters are an important
habitat-forming component of the upper mesophotic zone along the central GBR [26,137], compared
to shallow reefs where coral is the primary ecosystem engineer. Dominant benthic taxa shift from
photosynthetic to obligate heterotrophic in deeper, mesophotic Indo-Pacific environments [39,72,138].
The central GBR shelf-break has similar benthic habitats to other clear, tropical mesophotic regions,
where Halimeda and corals are observed down to >150 m [37,139,140]. While the lower mesophotic
zone is dominated by depth-specialist benthic communities that are distinct from shallower areas [141],
coral communities have been documented in transitional depths of 60 to 75 m at multiple sites [39,82].
The lower depth-limits of corals vary, with isolated coral colonies documented to at least 125 m
in some locations in the GBR and neighboring Coral Sea [64,142], this study). Halimeda bioherms,
while not explicitly studied here, are common macro-algal components of deep reef ecosystems and
provide important deposits of calcium carbonate that promotes reef growth. In this study, we observed
photosynthetic algae at deeper depths than reported in other MCEs worldwide, which is likely due
to well-documented nutrient upwelling. Macro-algal communities in other mesophotic locations
have also found new mesophotic-specific species [143,144]. At the deepest depths surveyed, boulders
replaced reef-building organisms in creating structural complexity. It is clear that, in the GBR, the
shelf-edge should be considered an ecologically unique ecosystem and fundamentally different from
shallow reefs, which is similar to other MCEs [24,134,145].

Shelf-break reefs are likely critical habitats for key ecological processes, and it is not yet known
to what extent these habitats are necessary for certain species to thrive. Anecdotally, several of
the BRUVS deployments observed juvenile fish at mesophotic depths. While it was not always
possible to identify juvenile fish to the species-level (and single BRUVS only allow an estimated
size), some fish appear to complete most of the life cycle in solely deep habitats, such as the grouper
Epinephelus morrhua (Figure 10). In general, the juvenile habitats of the deep-reef species we observed
are not well-documented. For instance, juvenile habitats of Pristipomoides sp. were only accidentally
discovered over deep (65–100 m), flat, soft habitats in Hawaii [146]. Dogtooth tuna, Gymnosarda unicolor,
were observed in groups of 1–3 in all BRUVS deployments except one (Figure 10c). This behavior could
be a spawning aggregation, to increase safety from predators, or to increase hunting success. Certain
Lutjanidae and Serranidae spawning aggregations are reliable and infamous worldwide [147–149].
The use of different habitats by many species to complete their life cycle is not known for the GBR, and
future research should attempt to describe and quantify how deep reefs are important for spawning,
ontogenetic shifts and life history cycles.
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Figure 10. Some deep Baited Remote Underwater Video Stations captured juvenile fishes, including this
Epinephelus morrhua at 194 m (a,b). Another deployment captured a large aggregation of Gymnosarda
unicolor and other species (c). Most often G. unicolor were found in small groups of one to three
individuals (d).

5. Conclusions

This study has shown that benthic composition can influence the distribution and abundance
of mesophotic fish communities. Therefore, further research on the distribution and composition
of deep-reef habitats is critical to understanding mesophotic biodiversity. A greater sampling effort
of the GBR shelf-break along its latitudinal extent would fill in existing knowledge gaps on these
deeper marine biomes and would be useful for future conservation strategies. When the GBR
Marine Park (GBRMP) protection and mixed-use zonation was determined a decade ago, only coarse
environmental data was available for the deeper habitats within the GBRMP [10]. The strategy of the
conservation zones allowed for some uncertainty and was designed to protect unknown habitats [75],
and incidentally ~30% of submerged banks are within no-take areas and 88% of banks are protected
from bottom-trawling [10,150]. Of the locations sampled, only Myrmidon is afforded greater protection
as a ‘no-take’ area with the other locations under habitat protection. However, this research showed
community differences between reefs and also between reefal and inter-reefal sites. In the future, it
will be important to compare species richness and abundance over different protection levels and to
include inter-reefal areas for habitat protection, since currently there is no information if existing habitat
protection measures are sufficient to safeguard deep-reef fish communities. More detailed benthic
habitat mapping and biotic surveys have improved the representative distributions of habitats and
fishes in other marine conservation parks in Australia [96,151]. Therefore, increasing the understanding
of GBR shelf-break habitats should be a priority. While BRUVS have some biases and limitations,
such as the effects of light, bait, and the field-of-view, BRUVS proved to be useful for gaining a better
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understanding of deep-reef fish communities and habitats. The species composition of fishes varied
greatly among habitats. Although depth was important, habitat preferences clearly had a role in
determining the distribution of species and trophic groups. Potential predictors of fish distributions
on the shelf-break are depth, reef architecture, and benthic cover. The narrow spatial extent of the
mesophotic areas on the GBR and other locations makes them vulnerable to fisheries.
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Figure S1: Examples of multibeam bathymetry, backscatter and derivatives for the Northern Submerged Shoals
Figure S2: Epibenthic habitat measures by reef, Figure S3: Substratum habitat measures by reef, Figure S4:
Non-metric multidimensional scaling showing fish community composition for Shallow sites (54–115 m), Figure
S5: Non-metric multidimensional scaling showing fish community composition for Middle sites (128–160 m),
Figure S6: Non-metric multidimensional scaling showing fish community composition for Deep sites (179–260 m);
Table S1: Ecology of deep-reef fishes seen in deep Baited Remote Underwater Video Stations, Table S2: Habitat
variables to understand variation in fish trophic communities.
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of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries:
Silver Spring, MD, USA, 2016; 86p.

145. Olavo, G.; Costa, P.A.; Martins, A.S.; Ferreira, B.P. Shelf-edge reefs as priority areas for conservation of reef
fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 199–209. [CrossRef]

146. Moffitt, R.; Parrish, F.A. Habitat and life history of juvenile Hawaiian pick snapper, Pristipomoides filamentosus.
Pac. Sci. 1996, 50, 371–381.

147. Smith, C.L. A spawning aggregation of Nassau grouper, Epinephelus striatus (Bloch). Trans. Am. Fish. Soc.
1972, 101, 257–261. [CrossRef]

148. Heyman, W.D.; Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at
Gladden Spit, Belize. Bull. Mar. Sci. 2008, 83, 531–551.

149. Mourier, J.; Maynard, J.; Parravicini, V.; Ballesta, L.; Clua, E.; Domeier, M.L.; Planes, S. Extreme inverted
trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 2016, 26, 2011–2016. [CrossRef]
[PubMed]

150. Harris, P.T.; Bridge, T.C.L.; Beaman, R.J.; Webster, J.M.; Nichol, S.L.; Brooke, B.P. Submerged banks in the
Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. J. Cons. 2013, 70,
284–293. [CrossRef]

151. Moore, C.H.; Radford, B.T.; Possingham, H.P.; Heyward, A.J.; Stewart, R.R.; Watts, M.E.; Prescott, J.;
Newman, S.J.; Harvey, E.S.; Fisher, R.; et al. Improving spatial prioritisation for remote marine regions:
Optimising biodiversity conservation and sustainable development trade-offs. Sci. Rep. 2016, 6, 32029.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep07652
http://dx.doi.org/10.1007/s12526-014-0221-8
http://dx.doi.org/10.1002/aqc.1174
http://dx.doi.org/10.1577/1548-8659(1972)101&lt;257:ASAONG&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.cub.2016.05.058
http://www.ncbi.nlm.nih.gov/pubmed/27476598
http://dx.doi.org/10.1093/icesjms/fss165
http://dx.doi.org/10.1038/srep32029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Locations 
	Baited Remote Underwater Video Stations (BRUVS) 
	Multibeam Sonar Acquisition 
	Secondary Datasets from Multibeam 
	Data Analysis 
	Habitats and Fish Communities Separated by Depth 
	Species-Species Associations 
	Trophic Communities 


	Results 
	Description of Deep-Reef Benthic Shelf-Break Habitats 
	Investigating Habitats and Fish Communities within Depth Strata 
	Relationships among Fish Species 
	Deep-Reef Fish Trophic Communities 

	Discussion 
	Conclusions 
	References

