
diversity

Article

Predicting Extinction Risk for Data Deficient Bats

Jessica Nicole Welch 1,* ID and Jeremy M. Beaulieu 2

1 Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
2 Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; jbeauli@uark.edu
* Correspondence: jwelch14@utk.edu; Tel.: +1-865-974-3065

Received: 31 March 2018; Accepted: 11 July 2018; Published: 13 July 2018
����������
�������

Abstract: Conservation biology aims to identify species most at risk of extinction and to understand
factors that forecast species vulnerability. The International Union for Conservation of Nature (IUCN)
Red List is a leading source for extinction risk data of species globally, however, many potentially at
risk species are not assessed by the IUCN owing to inadequate data. Of the approximately 1150 bat
species (Chiroptera) recognized by the IUCN, 17 percent are categorized as Data Deficient. Here,
we show that large trait databases in combination with a comprehensive phylogeny can identify
which traits are important for assessing extinction risk in bats. Using phylogenetic logistic regressions,
we show that geographic range and island endemism are the strongest correlates of binary extinction
risk. We also show that simulations using two models that trade-off between data complexity and
data coverage provide similar estimates of extinction risk for species that have received a Red List
assessment. We then use our model parameters to provide quantitative predictions of extinction risk
for 60 species that have not received risk assessments by the IUCN. Our model suggests that at least
20 bat species should be treated as threatened by extinction. In combination with expert knowledge,
our results can be used as a quick, first-pass prioritization for conservation action.

Keywords: Chiroptera; comparative method; conservation applications; data deficient; extinction
risk; IUCN; phylogenetic tree

1. Introduction

Of 1150 species of bats recognized by the IUCN (International Union for Conservation of Nature)
Red List of Threatened Species (hereafter, Red List), approximately 15 percent of bats (Chiroptera)
are threatened by extinction [1]. The IUCN assigns species a category for extinction risk under
prevailing circumstances according to population sizes, growth rates and fluctuations, number of
mature individuals, and other quantitative measures that are often difficult to collect for bats [2].
Accordingly, 17 percent of bat species recognized by the IUCN have not received extinction risk
assessments owing to insufficient knowledge of the relevant biology and threats, raising uncertainty
regarding whether these species ought to be considered a priority for conservation [3].

This raises an important question: In the absence of data appropriate for IUCN extinction risk
assessments, how can we identify species in need of conservation efforts? For bats, this seems
critical given the need for rapid conservation decision-making, as they have a “slow” life history (e.g.,
low reproductive rates, long life spans, etc.) that limits population growth after perturbations [4].
A cautious approach would be to assume that all unassessed species are threatened with extinction,
which would safeguard against species loss before data are available for formal assessments. It would
also draw attention to the maximal extent to which bat biodiversity could be threatened with extinction
in the future. For instance, if all unassessed bats were treated as threatened, over a quarter of bats
recognized by the IUCN—more than 300 species—would be considered at risk of extinction. However,
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this approach offers no guidance for prioritizing conservation resources and could incur high costs,
not just financially [5], but also politically [6], if many species are, in fact, not threatened.

One cost-effective procedure for prioritization is to apply a comparative approach that leverages
existing data for species whose risk has been assessed [7]. There are clear correlations between
species traits (such as morphology, diet, endemism, reproductive factors, etc.), and extinction risk
in many major taxonomic groups [8–11], which indicates that if the same traits were measured
for unassessed species, extinction risk could be estimated [12]. When viewed from an evolutionary
perspective, extinction risk is non-randomly distributed across a phylogeny, which depicts genealogical
relationships among sets of species [13]. Therefore, there is value in knowing the degree of relatedness
of a species that lacks a formal assessment (i.e., the “data deficient” or “not evaluated” IUCN status
categories) to any set of species with known extinction risk. This is due simply to the evolutionary
process of inheritance—closely related species tend to have similar traits due to shared ancestry [14],
and, therefore, morphological and ecological traits exhibited in one species are often expressed to a
similar degree in their closest relatives. In our view, a predictive framework of extinction risk could
benefit from encoding phylogenetic information so that not just traits, but also evolutionary history
and relatedness, are capitalized.

Advances in phylogenetic methodology and access to large datasets of species traits have
accelerated the use of comparative methods to address conservation questions. In fact, several studies
have combined comprehensive phylogenies with trait databases for various taxonomic groups to
predict extinction risk [15–17]. For example, Jones et al. (2003) assessed whether certain traits were
correlated with Red List threat categories [18]. Just two traits, geographic range and aspect ratio (i.e.,
the relationship between wingspan and wing area), explained roughly 48 percent of the variation in
bat extinction risk. Importantly, they found that extinction risk was distributed non-randomly among
bat families, which underscores the utility of a phylogenetic-based approach, and they compared
estimates of extinction risk to published Red List categories. These authors, however, did not apply
their model for the purposes of estimating extinction risk in bats that lack formal assessment by the
IUCN, leaving unclear the predictive value of their model for conservation applications.

Our research builds on the study of Jones et al. (2003) by reexamining correlates of bat extinction
risk given a comprehensive, well-resolved phylogeny, and predicting the threat of extinction for
unassessed species [18]. For our purposes, we develop two phylogenetically-based predictive models
of extinction risk to illustrate trade-offs between model complexity and data availability. We use
simulations to test the reliability of our models, and we then provide binary estimates of threat for
species that are designated Data Deficient on the Red List or that have not been recognized by the
IUCN (i.e., category Not Evaluated). Our results identify trait data that should be measured for all
bats and demonstrate how data can be used to rapidly distinguish species that ought to be prioritized
for immediate conservation actions.

2. Materials and Methods

2.1. Trait Data Collection

We began our study in 2014. GenBank [19] offers subspecies-level data irrespective to the presence
of coupled species-level data and offers multiple data points for a species owing to more than one
recognized taxonomic name. To ensure that only one species was represented in our analyses (i.e.,
to minimize repeated analyses of synonymous bats), we used Wilson & Reeder’s Mammal Species
of the World v2005 (MSW05) [20], an update to MSW05 (Simmons & Cirranello 2014 unpublished
dataset), and the Red List v3.1 (Table 1) [1] to match species names to data acquired through GenBank
(detailed below). We refer to all bats using their MSW05 taxonomic names, and a list of our bat
synonyms is provided in the Supplementary Materials (Supplementary Attachment).
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Table 1. Summary of data sources used in a global phylogenetic assessment of extinction risk for bat species (Chiroptera).

Variable Definition Source

aspect ratio continuous: wingspan squared divided by wing area Jones et al., 2003
endemism binary: observed (endemic) only on islands, excluding Australia IUCN Red List 3

forearm length (mm) continuous: adults, total length from elbow to wrist; measures of central tendency PanTHERIA 1

diet breadth discrete: number of dietary categories eaten; measures of central tendency; categories defined as vertebrate, invertebrate, fruit,
flowers/nectar/pollen, leaves/branches/bark, seeds, grass, and roots/tubers; maximum observed = 4 PanTHERIA 1

litter size continuous: number of offspring born per littler per female; measures of central tendency PanTHERIA 1

litters per year continuous: number of litters; central tendency PanTHERIA 1

mass (g) continuous: adult body mass, excluding pregnant females; measures of central tendency PanTHERIA 1

nucleotide sequences CytB, Rag2, Val, 12S, 16S GenBank
range (km2) continuous: total extent of a species geographic range area from Sechrest 2003 2 PanTHERIA 1

threat category binary: 1 = Critically Endangered (CR), Endangered (EN), Vulnerable (VU), 0 = Near Threatened (NT), Least Concern (LC);
NA = Data Deficient (DD), Not Evaluated (NE) IUCN Red List 3

trophic level categorical: measures of central tendency; categories defined as 0 = herbivore, 1 = omnivore, 2 = carnivore PanTHERIA 1

wing loading continuous: body mass times gravity acceleration divided by wing area Jones et al., 2003
1 Using the “MSW05” dataset of [21]. 2 Sechrest, W. 2003. Global diversity, endemism and conservation of mammals. University of Virginia, Charlottesville, Virginia, USA. 3 Categories
and Criteria 3.1.
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We collected information for traits that are common correlates of extinction risk from the
PanTHERIA database [21], the Jones et al. (2003) supplementary dataset [18], and the Red List v3.1 [1]
(Table 1). We chose variables that were comparable to Jones et al. (2003) [18], or that provided coverage
for at least 30 percent of the taxa on our tree. For example, we included diet breadth, which was not
included in the study by Jones et al. (2003) [18]. All continuous variables were log-transformed prior
to analyses described below.

2.2. Phylogenetic Tree Construction

We constructed our own phylogenetic tree, as opposed to relying on the popular supertree of
bats [22], to ensure that our tree reflected the current state of knowledge in bat taxonomy as well as
reflected the greatly improved species genetic sampling since 2003 that is currently represented in
GenBank. We implemented the large phylogeny construction pipeline in the program phlawd [23].
The phlawd workflow first queries sequences from GenBank [19], compares the sequences to “known”
gene segments of the taxa of interest and aligns the sequences based on the degree of relatedness
depending on the degree of sequence saturation. We used five genes commonly sequenced for
bats: One mitochondrial gene, CytB, two nuclear genes RAG2, Val, and two ribosomal genes, 12S,
16S [24–26]. The GenBank query returned 1024 taxonomic entries, and we removed entries with
uncertain species identity or incomplete scientific names. We included Equus, Diceros, Rhinoceros,
Manis, Canis, and Rusa as representative outgroups [27]. All five genes were concatenated into a single
matrix, and a by-gene partitioned maximum likelihood analysis was conducted in RAxML, using the
GTR + Γ model of nucleotide substitution [28]. Our maximum-likelihood tree included molecular
branch lengths, which were subsequently smoothed to units of time in treePL [29] applying the same
fossil calibration scheme as in Reference [30].

We eliminated synonymous species and subspecies to prune our tree to have only one
representative “per species” for a total of 793 bats. However, 84 bats did not have trait data to use for
analyses, though we retained them on illustrations of phylogeny to demonstrate missing data (Figure 1,
Supplementary Attachment). There are 74 fewer bats than the analyses in Jones et al. (2003) because
our phylogeny was limited to bats with data available through GenBank [18]. Following the convention
of Reference [31], we maintain the division of Chiroptera into the major clades Yinpterochiroptera
(Pteropodoidea + Rhinolophoidea) and Yangochiroptera (all other families) in our analyses, instead of
Megabats and Microbats, respectively [22]. However, we note that our phylogenetic tree does show
high support for this split.



Diversity 2018, 10, 63 5 of 15
Diversity 2018, 10, x FOR PEER REVIEW  5 of 15 

 

 
Figure 1. The dated phylogenetic tree of bats (excluding the outgroup) based on five genes available 
through GenBank (see main text). Several bat families are highlighted. The color of the tree tips 
represents a species’ IUCN binary risk assessment. Data availability is shown by the rings 
surrounding the tips, which represent individual species, and refer to the following variables (starting 
at the inner-most ring): 1 = range and endemism, 2 = body mass, 3 = diet breadth and trophic level. 

2.3. Model Construction 

We treated extinction risk as binary, where 1 = threatened (i.e., Red List categories CR, EN, VU) 
and 0 = not threatened (i.e., NT, LC). Many authors, including Jones et al. 2003 [18], treat the Red List 
category as a continuous variable, but others contend that this is inappropriate because the threat 
level is not ranked evenly across Red List categories [32]. Species assigned either Red List category 
Data Deficient (DD) or Not Evaluated (NE) were considered as not having their extinction risk 
formally assessed by IUCN. For each trait, we performed regressions for bats as a whole, and 
separately for members of Yinpterochiroptera and Yangochiroptera. 

Since our dependent variable was binary, we used a phylogenetic logistic regression [33] to first 
determine the individual correlates of extinction risk. These regression analyses were conducted 
using the “phyloglm” function in the R package phylolm to obtain estimates of phylogenetically-

Figure 1. The dated phylogenetic tree of bats (excluding the outgroup) based on five genes available
through GenBank (see main text). Several bat families are highlighted. The color of the tree tips
represents a species’ IUCN binary risk assessment. Data availability is shown by the rings surrounding
the tips, which represent individual species, and refer to the following variables (starting at the
inner-most ring): 1 = range and endemism, 2 = body mass, 3 = diet breadth and trophic level.

2.3. Model Construction

We treated extinction risk as binary, where 1 = threatened (i.e., Red List categories CR, EN, VU)
and 0 = not threatened (i.e., NT, LC). Many authors, including Jones et al. 2003 [18], treat the Red List
category as a continuous variable, but others contend that this is inappropriate because the threat level
is not ranked evenly across Red List categories [32]. Species assigned either Red List category Data
Deficient (DD) or Not Evaluated (NE) were considered as not having their extinction risk formally
assessed by IUCN. For each trait, we performed regressions for bats as a whole, and separately for
members of Yinpterochiroptera and Yangochiroptera.
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Since our dependent variable was binary, we used a phylogenetic logistic regression [33] to first
determine the individual correlates of extinction risk. These regression analyses were conducted using
the “phyloglm” function in the R package phylolm to obtain estimates of phylogenetically-informed
slope and intercept estimates, as well as estimates of the coefficient α, which is the overall transition
rate between our two extinction risk designations [34]. The lower the transition rate the higher the
degree of phylogenetic “signal” there is for extinction risk—that is, closely related species show greater
trait similarity than more distantly related species. Given the total height of our tree, estimates of α
that exceeded 0.98 indicated negligible phylogenetic signal for a variable [33], and species were treated
as evolutionarily independent from one another for that variable. We note that the interpretation of
signal is the exact opposite as other traditional measures of signal (e.g., References [35,36]), where
0 indicates no signal, with larger values denoting increasing signals. We report 1000 bootstrapped
mean α and b estimates, p-value estimates using a Wald test, and R2 estimates using the Cox & Snell
equation with the Nagelkerke correction. For the categorical variable trophic level, we also performed
a chi-squared test to assess if extinction risk differed across trophic levels.

For geographic range, separate phylogenetic logistic regressions were conducted including and
excluding 40 bat species that are categorized as threatened on the Red List based upon “Criteria B”
alone (i.e., small geographic range size; Supplementary Attachment). This was to assess whether
parameter estimates for geographic range are inflated given circularity of the predictor variable and a
threatened status owing to Criteria B [15].

To determine a suitable, multivariate model to describe extinction risk in bats, we began by
building models using only those variables identified as significant correlates of extinction risk.
We refer to this model hereafter as the “predictor-rich” model, as it maximizes the number of predictor
variables at the expense of species sampling. Note that we excluded adult forearm length from
this particular model because it was strongly correlated with adult body mass (ρ = 0.87, p < 0.001).
The Akaike Information Criterion (AIC) was used to determine the best predictor-rich model from a
set of 12 models that included different combinations of predictors. However, nearly half of the bats on
our tree have incomplete data for variables (Figure 1, Table S1), which excluded them from our models.
Therefore, we built a second set of models using significant correlates of extinction risk that had wide
coverage for the species included in our tree. We refer to the best fit model that maximizes species
sampling at the expense of the number of predictor variables as the “taxon-rich” model hereafter
because it has data coverage for the greatest number of bat species. Like with the predictor-rich model,
AIC was used to select the best model from a set of 10 models.

To check the performance of our models in predicting extinction risk, we used the leave-one-out
cross-validation procedure. This involved running our models on all but one species that have a Red
List assessment, then using the parameter estimates of that model to estimate binary risk for the species
that was excluded. We repeated this process 10,000 times for each species to account for the stochastic
nature of the simulation. We then calculated the mean squared error (MSE) to establish how much our
estimates of risk varied from risk provided by the IUCN.

We used the ML estimates of the slopes and intercepts to generate a prediction interval of
extinction risk for species that have not received extinction risk assessments. Our procedure involved
two main steps: (1) we used a jackknife approach, which re-estimated the model parameters after
repeatedly removing 25% of the species chosen at random; (2) the re-estimated parameters were then
used with the original trait data, to simulate extinction risk across the entire bat phylogeny, including
species that are considered Data Deficient (DD) or Not Evaluated (NE) according to the Red List.
This process was repeated 1000 times. The predicted average, median, and upper and lower quantile
estimates of extinction risk were generated for each bat species and represented the proportion of
times a particular species was simulated as having high risk. For both the predictor-rich and taxon-rich
models, we ranked bats most at risk of extinction based upon the median estimate. Although the
estimates are continuous, owing to summarizing a large set of simulated binary values, we considered
a species to be threatened if its median estimate was greater than or equal to 0.50.
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3. Results

3.1. Correlates of Extinction Risk

For Chiroptera as a whole, significant individual correlates of extinction risk were generally
categorized according to the ecological and morphological size of the organism (e.g., larger body mass,
larger diet breadth, and larger forearm length) and size of their range (e.g., small geographic range
and island endemism) (Table 2). There was a significant difference in extinction risk across trophic
levels (X2(2) = 7.483, p = 0.024), but it explained little variation (R2 = 3.9%). The strongest relationship,
based on effect size, was with geographic range (R2 = 46.8%) followed by island endemism (R2 = 13.9%).
It is worth noting that because island endemism and geographic range naturally covary (i.e., island
endemics generally have small ranges), whether a species is an island endemic might not actually
correlate well with extinction risk [18]. However, geographic range remains a significant correlate
of extinction risk for both bats that are island endemic (b = −1.290, p < 0.001) and for those that are
not (b = −2.289, p < 0.001). Overall, when examining the rate of transitions between the extinction
risk categories across the phylogeny, indicated by α, all estimates are substantially smaller than 0.98,
suggesting that risk is conserved across the phylogeny. This lends support for extinction risk exhibiting
strong phylogenetic signal within bats.

When we examined the relationships within Yinpterochiroptera and Yangochiroptera separately,
the two major clades recognized within Chiroptera, small geographic range and endemism were
significant predictors of extinction risk for both clades (Table 2). For Yinpterochiroptera, variables
associated with morphology (i.e., large mass and forearm length) and life history (i.e., wide diet
breadth) were also important predictors of their extinction risk. Trophic level was not an important
factor explaining extinction risk for either clade (Yin: (X2(2) = 3.475, p = 0.175), (α = 0.128, R2 = 1.5%);
Yang: (X2(2) = 1.937, p = 0.474), (α = 0.577, R2 = 2.1%)). The strength of phylogenetic signal for
extinction risk varies across traits and differs between clades, though largely follow the patterns
observed across bats as a whole.

For Chiroptera as a whole, as well as within each major clade analyzed separately, geographic
range is the strongest predictor of extinction risk even when “Criteria B species” are excluded
(i.e., “range abbr.”, Table 2). The findings we report below are from analyses that included species
categorized as threatened owing to Criteria B. Clade differences are probably accentuated when
Criteria B species are excluded, as it removes about nine percent of Yinpterochiroptera bats from
the dataset.
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Table 2. Results of phylogenetic logistic regressions on single predictors and interactions to identify important correlates of extinction risk in bats. Results for the
categorical variable trophic level is reported in the main text. The variable “geo range abbr.” excludes bats listed at threaten owing to Criteria B alone. The parameter
α represents the phylogenetic correlation parameter, where values near 0 indicate strong phylogenetic signal and values approaching 0.98 indicates very weak
phylogenetic signal based on the root age of our tree. Regression coefficients (b) are bolded for variables significant at p ≤ 0.05 according to a Wald test. P(1) represents
the probability of odds of increasing threat with a unit increase in the variable. R2 values are estimated by the Cox & Snell equation with the Nagelkerke correction.

Variables
All Bats Yinpterochiroptera Yangochiroptera

α b P(1) R2 α b P(1) R2 α b P(1) R2

aspect ratio 0.084 −8.089 0.000 0.058 0.281 −7.379 0.001 0.017 0.148 −7.793 0.000 0.051
diet breadth 0.547 0.600 0.646 0.037 0.509 0.881 0.707 0.104 0.557 0.401 0.599 0.010
endemism 0.099 1.643 0.838 0.139 0.133 1.035 0.738 0.067 0.243 1.942 0.875 0.138

forearm length 0.160 3.902 0.980 0.054 0.246 4.695 0.991 0.095 0.678 −2.353 0.087 0.005
litter size 0.082 −23.657 0.000 0.050 0.592 −10.664 0.000 0.010 0.404 −4.755 0.009 0.052

litters per year 0.240 −9.702 0.000 0.062 0.502 −10.511 0.000 0.141 0.448 −2.591 0.070 0.050
mass 0.266 1.574 0.828 0.074 0.517 1.461 0.812 0.153 0.345 −0.011 0.497 0.000
range 0.020 −1.462 0.188 0.468 0.138 −1.284 0.217 0.405 0.028 −1.774 0.145 0.527

range abbr. 0.021 −1.109 0.248 0.264 0.032 −0.903 0.288 0.221 0.039 −1.270 0.219 0.261
wing loading 0.336 −0.584 0.358 0.001 0.293 −0.394 0.403 −0.003 0.413 −0.881 0.293 0.002

range × endemism 0.019 0.964 0.724 0.493 0.052 1.017 0.734 0.469 0.029 0.550 0.634 0.537
range × mass 0.020 0.129 0.532 0.373 0.031 0.085 0.521 0.396 0.033 −0.759 0.319 0.340

mass × endemism 0.056 −0.066 0.484 0.123 0.539 0.902 0.711 0.188 0.354 1.319 0.789 0.120
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3.2. Models for Predicting Extinction Risk

The best fit predictor-rich model featured geographic range, body mass, diet breadth, trophic level,
and island endemism as relevant variables (Table 3A, Table S2A). The second-best model according
to AIC included an additional predictor (clade designation), but this did not substantially improve
the fit to the data (∆AIC < 2). The best fit model explained nearly half the variation in extinction risk
with a sample size of 345 species (R2 = 49%). The very slow estimated rate of switching between
high and low risk (α = 0.024) indicated that closely related species have very similar extinction risk
designations, and thus risk exhibited strong phylogenetic signal. We report results from models that
excluded species that are categorized as threatened on the Red List owing to Criteria B alone (i.e., small
geographic range size) in the Supplementary Materials (Tables S3 and S4).

Table 3. Details of the best-fit models. Regression coefficients (b) are bolded for variables significant
at p ≤ 0.05 according to a Wald test. A. The predictor-rich model (n = 345). B. The taxon-rich model
(n = 649).

A.

Variable b

range −2.292
mass 0.546

diet breadth 1.499
trophic level (omnivore) −2.131
trophic level (carnivore) 0.817

endemism −7.516
range × endemism 1.196

B.

Variable b

range −1.875
endemism −5.463

clade 1.346
range × endemism 0.956

range × clade −0.345

Owing to limited species trait data, extinction risk could not be estimated for most species in our
phylogeny under the predictor-rich model, which led to us fitting a “taxon-rich” model. This resulted
in a sample size of 649 species, 82 percent more bats than the predictor-rich model. The best-fit
taxon-rich model indicated that geographic range, island endemism, clade (Yangochiroptera versus
Yinpterochiroptera), and the interaction between geographic range and both island endemism and
clade were the strongest predictors of extinction risk (Table 3B, Table S2B). The best fit taxon-rich
model explained the same amount of variation as the best predictor-rich model (R2 = 48%) despite
the taxon-rich model having fewer trait variables and exhibiting a strong phylogenetic signal in
extinction risk (α = 0.018). We note that the second-best model, according to AIC, included a clade by
endemic interaction, as opposed to a range by endemic interaction. However, for the remainder of the
manuscript, we focus solely on the overall best taxon-rich model.

3.3. Validating Our Predictions of Extinction Risk

When estimating the extinction risk using the parameter estimates of the predictor-rich model,
our measure strongly agreed with the threat statuses provided by the Red List (MSE = 0.061). Of the
345 species used in the simulation, two percent (eight bats) had overestimated extinction risk (i.e.,
species predicted to be threatened, but are not designated as threatened on the Red List) and four
percent (13 bats) had underestimated extinction risk (i.e., species predicted not to be threatened, but
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are designated threatened on the Red List). The species that had underestimated risk were generally
small bodied, had ranges greater than 20,000 km2, and were not considered island endemic.

The taxon-rich model prediction also strongly agreed with the threat statuses provided by the
Red List (MSE = 0.092). Of the 649 species used for the taxon-rich model, four percent (29 bats) had
overestimated extinction risk and five percent (31 bats) had underestimated extinction risk relative
to the corresponding Red List designations. In the case of overestimated risk, three species had
geographic ranges less than 20,000 km2, whereas all of the bats with underestimated risk had ranges
greater than 20,000 km2 and most were not island endemics.

3.4. Species Most at Risk of Extinction

According to median estimates provided by our model simulation, the ten bat species most at
risk of extinction, according to the predictor-rich model, included eight species already categorized as
threatened on the Red List (Table 4A). Moreover, risk is especially high for Pteropodids, with six of
the species belonging to this family. However, six prediction intervals overlap 0.5 (i.e., delineation of
threatened versus not threatened), demonstrating the relatively high uncertainty of extinction risk.

Table 4. Information for the top ten species at risk of extinction according to simulations. 95% prediction
intervals are shown. The median estimate is bold if it is above 0.5 (i.e., a threatened prediction), and bold
and italic if the lower estimate is above 0.5. A. Predictor-rich model. B. Taxon-rich model.

A.

Rank Family Species IUCN
Status

Lower
Estimate

Median
Estimate

Upper
Estimate

1 Craseonycteridae Craseonycteris thonglongyai VU 0.891 0.981 1.000
2 Pteropodidae Pteropus mariannus EN 0.853 0.961 1.000
3 Pteropodidae Aproteles bulmerae CR 0.566 0.833 0.953
4 Pteropodidae Eidolon dupreanum VU 0.445 0.798 0.977
5 Pteropodidae Pteropus conspicillatus LC 0.539 0.795 0.950
6 Pteropodidae Pteropus rodricensis CR 0.383 0.775 0.965
7 Emballonuridae Coleura seychellensis CR 0.399 0.764 0.973
8 Hipposideridae Hipposideros halophyllus EN 0.523 0.760 0.922
9 Vespertilionidae Myotis vivesi VU 0.453 0.690 0.860
10 Pteropodidae Pteropus dasymallus NT 0.000 0.655 0.934

B.

Rank Family Species IUCN
Status

Lower
Estimate

Median
Estimate

Upper
Estimate

1 Vespertilionidae Eptesicus dimissus DD 0.996 1.000 1.000
2 Molossidae Otomops wroughtoni DD 0.992 1.000 1.000
3 Vespertilionidae Myotis annamiticus DD 0.990 0.998 1.000
4 Phyllostomidae Artibeus incomitatus CR 0.963 0.996 1.000
5 Vespertilionidae Myotis anjouanensis DD 0.969 0.994 1.000
6 Pteropodidae Latidens salimalii EN 0.949 0.986 1.000
7 Phyllostomidae Micronycteris matses DD 0.946 0.986 1.000
8 Vespertilionidae Arielulus cuprosus DD 0.914 0.981 0.998
9 Craseonycteridae Craseonycteris thonglongyai VU 0.932 0.977 0.998
10 Pteropodidae Pteropus voeltzkowi VU 0.932 0.977 0.998

Of the ten bat species most at risk of extinction, according to the predictions made by our
taxon-rich model, four species are categorized as threatened on the Red List (in all cases, the prediction
intervals excluded 0.5; Table 4B). The remaining six bat species are all Data Deficient. Four of
these species are within the family Vespertilionidae, and another was the single representative
of Craseonycteridae (Craseonycteris thonglongyai), which was also found in the top ten under the
predictor-rich model.
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Interestingly, the predicted extinction risk from the predictor-rich and taxon-rich models was
highly congruent (Figure 2). Of the 351 species that had extinction risk simulated by both models,
we identified only four percent (13 species) disagreement for estimated extinction risk. For eight of
those species, the predictor-rich model concurred with the threat status given by the Red List, whereas
the taxon-rich model did not. Conversely, the remaining five species had underestimated risk given the
predictor-rich model, but the threat status given by the Red List concurred with the taxon-rich model.
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Figure 2. Comparison of 95% prediction intervals given extinction risk estimates of the predictor-rich
(blue) and taxon-rich (red) model simulations. The prediction interval is based on summarizing
1000 simulations of extinction risk using our phylogenetic logistic regression model. A species was
considered threatened if its median proportion of times it simulated to have high risk was greater than
or equal to 0.50. Prediction intervals that overlap 0.5, demonstrate uncertainty of threat status given
the model. IUCN Red List designations as follows: (A) Critically Endangered (CR), (B) Endangered
(EN), (C). Vulnerable (VU).

For the 60 species without Red List assessments (i.e., either NE or DD), six bats had enough trait
data to simulate extinction risk using the predictor-rich model, and, surprisingly all were predicted to
be not threatened (Figure 3A). Sixty bats were analyzed using the taxon-rich model, for which roughly
33 percent (20 species) were predicted to be at risk of extinction (Figure 3B). Accordingly, at least
10 percent of all bats designated Data Deficient on the Red List (203 total DD) are estimated to be
threatened by extinction.
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status given the model. (A) Species designate Not Evaluated (NE), and (B) species designated Data
Deficient (DD) on the Red List.

4. Discussion

The precautionary principle compels conservation biologists to treat all species with unknown
risk as if they were threatened by extinction [37]. However, limited conservation resources necessitate
approaches that can estimate extinction risk with some certainty. Our results provide easily
interpretable prediction intervals to assess extinction risk for 60 bat species not assessed by the
IUCN. We suggest that species with prediction intervals above 0.5 (i.e., delineation of threatened
versus not threatened) should be considered high priority for further study, and species with median
values of risk above 0.5 but have overlapping prediction intervals should, at the very least, receive
more research focus.

Our study demonstrates how phylogenetically-based, comparative methods can provide quick
predictions of extinction risk. However, we caution that the estimates of extinction risk presented here
should not be the sole source of information used to inform conservation decisions because the trait
data available for DD and NE species is often incomplete. For example, the range of Eptesicus dimissus
(ranked first on Table 4B) was reportedly very small at the time of data compilation [21], but new
research suggests that the species occurs more widely [38], which might result in the species receiving
a Least Concern category during future IUCN assessments. Moreover, we found that our models
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underestimated extinction risk more than they overestimated it, suggesting that some of these species
are threatened owing to reasons not necessarily reflected in the traits we used. For instance, both
models underestimated extinction risk for Myotis sodalis because the bat is small, eats only insects (i.e.,
narrow diet breadth), and has a wide range. The Red List, however, designated M. sodalis as threatened
owing to reduced numbers of known populations [39].

We do note, however, that assessments of extinction risks for bats can be achieved with relatively
few trait variables. Comparing simulations of risk between the predictor-rich (high complexity, but low
species coverage) and taxon-rich (low complexity, but high species coverage) models, we identified
only four percent (13 species) disagreement between estimates, indicating that the taxon-rich model
serves as a surrogate model for predicting extinction risk in the case of limited data. Still, we were
unable to consider about 30 percent of unassessed bats because we were not able to match them to a
GenBank entry or they did not have geographic range data. Accordingly, we urge bat researchers to
prioritize the collection of range data. It is important to emphasize that sequences currently deposited
in GenBank reflect the collective effort of many different laboratory groups from around the world
for use in a variety of purposes (e.g., genomics, systematics, barcoding, etc.). While these efforts have
succeeded in providing a fairly well-sampled phylogeny of bats at random, future sequencing efforts
should, perhaps, specifically target the remaining bat species missing sequence data entirely.

With respect to the strongest predictors of risk, similar to the study of Jones et al. (2003) [18],
as well as others [40], geographic range size had the greatest effect size of all the variables we examined.
After accounting for its interaction with island endemism, geographic range remained a significant
predictor for bats overall and for Yinpterochiroptera specifically. Approximately 25 percent of bats
are island endemics, and the family Pteropodidae (a member of Yinpterochiroptera) has a higher
proportion of island endemic species than other bat families [41]. A small range size is already a
consideration of the IUCN when assessing extinction risk, and our results reiterate the significance of
range size by using it to estimate extinction risk of data deficient species. Contrary to Jones et al. [18]
and Safi and Kerth [42], we did not find aspect ratio to be a significant predictor of extinction risk in
bats overall or within clades, although the relationship showed a similar trend. Bats with low aspect
ratio generally are considered habitat specialists and poor dispersers [43], making them susceptible
to habitat loss. Our results might differ from previous studies because we had smaller sample sizes,
or because previous studies have relied on the same, poorly resolved phylogenetic tree to conduct
their analyses.

The central aim of conservation biology is to understand factors that forecast species vulnerability
and identify species most at risk of extinction. Here, we combined contemporary data and an
evolutionary approach to identify species of conservation concern. This method could be readily
applied to other taxa that contain large proportions of data deficient species. While phylogenetic
comparative methods provide important windows into the past, they can also provide insights into
the future trajectories of species, which is paramount to conservation. Indeed, our modeling approach
can be used as a quick, first-pass prioritization for conservation action, and can enhance Red List
assessments when only expert knowledge is available, or, importantly, when funding resources
are limited.
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