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Abstract: A novel single crystal of (3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl)methyl benzenesul-
fonate has been synthetized via a one-pot sequential strategy under sonication. The single crystal has
been investigated using X-ray diffraction analysis. Hydrogen bonding between C–H···O and C–H···N
produces a layer structure in the crystal. According to a Hirshfeld surface analysis, interactions H···H
(28.9%), H···O/O···H (26.7%) and H···C/C···H (15.8%) make the largest contributions to crystal
packing. The optimized structure and the solid-state structure that was obtained through experiments
are compared using density functional theory at the B3LYP/6-311 G + (d,p) level. The computed
energy difference between the lowest unoccupied molecular orbital (LUMO) and highest occupied
molecular orbital (HOMO) is 4.6548 eV.

Keywords: green strategy; one-pot reaction; isoxazoline sulfonate; ultrasound cavitation; X-ray
analysis; hydrogen bond; Hirshfeld surface; DFT

1. Introduction

Compounds bearing an isoxazoline moiety are considered a significant class of nitro-
gen and oxygen atom-containing heterocyclic products, attracting attention from organic
and medicinal chemists due to their large spectrum of biological properties such as an-
tibacterial [1,2], antimicrobial [3], anti-inflammatory [4], anticancer [5,6], antidiabetic [7]
and anti-Alzheimer effects [8]. Moreover, isoxazoline derivatives are also known by their
agrochemical properties as herbicidal [9], insecticidal [10–12] and acaricidal agents [13]. On
the other hand, sulfonic esters are clearly identified for their crucial role in the synthesis of
organic compounds and have shown interesting pharmacological properties in the past
decade [14–16]. Accordingly, the synthesis of molecules containing both isoxazoline and
sulfonate ester scaffolds provide easy access to a range of well-defined bioactive com-
pounds for complete chemical, biochemical and pharmacological research [17,18]. To this
end, several methods have been reported for the preparation of isoxazoline systems [19,20].
However, 1,3-dipolar cycloaddition which involves alkene as a dipolarophile and nitrile ox-
ide as a dipole remains as one the most attractive route to prepare this aza-heterocycle [21].
As for the sulfonate ester synthesis, the most common protocol for its preparation is the
reaction of sulfonyl chlorides with alcohols using a base [22]. In this study, we described
the preparation and structural determination of a new isoxazoline-linked sulfonate com-
pound utilizing an efficient and green protocol in water under ultrasound cavitation, which
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emerges as a suitable alternative to previously reported methods for organic synthesis
laboratories [23,24].

In addition to evaluating a molecule’s activity, theoretical calculations provide valu-
able knowledge on a variety of the molecule’s characteristics [25]. With the development
of technology, the calculation of results has become more precise and faster [25]. Consid-
ering the variety of uses mentioned above, the title compound [3-(4-chlorophenyl)-4,5-
dihydroisoxazol-5-yl]methyl benzenesulfonate was prepared and identified spectroscop-
ically. The three-dimensional structure was resolved by single-crystal X-ray diffraction
investigations. To determine the compound’s optimal molecular structure characteris-
tics, HOMO-LUMO energies, thermodynamic parameters, Hirshfeld surface analysis
and density functional theory (DFT) computations were used to study the intermolec-
ular interactions and hydrogen bonds. In this study, the chemical properties of the
molecules were investigated employing a 6-311 + g(d,p) basis set and B3LYP techniques
with Gaussian calculations.

2. Results
2.1. Synthesis

Inspired by our previous works [26,27], the one-pot synthesis of our product (5) started
with the sulfonylation of equimolar equivalents of allylic alcohol (1) and benzene sulfonyl
chloride (2) in water with NaOH as a base at 25 ◦C under sonication to produce the
corresponding dipolarophile (3) in situ. Subsequently, in the second step, the alkene
sulfonate (3) reacted with p-chlorobenzaldoxime (4) via 1,3-dipolar cycloaddition using
NaCl as a precatalyst generated from the first step and oxone as a terminal oxidant to
successfully generate the expected (3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl)methyl
benzenesulfonate (5) as white crystals at a 85% yield (Scheme 1).
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Scheme 1. One-pot synthesis of compound 5.

The structure of isoxazoline sulfonate (5) was fully characterized by FT-IR, 1H NMR,
13C NMR and ESI+-MS spectroscopies, and confirmed by single-crystal X-ray diffraction
(See Figures S1–S4 in Supplementary Materials (SM) Section). As illustrated in Figure 1,
the 1H NMR spectrum of (5) showed two doublets of doublets at 3.47 and 3.12 ppm corre-
sponding to the two protons of the CH2-isoxazolinic as well as two doublets of doublets
at 4.14 and 4.19 ppm for the O-CH2 protons. Furthermore, we detected the presence of
a multiplet centered at 4.92 ppm illustrating the H-isoxazolinic proton. Then, the region
between 7.47 and 7.88 ppm showed the signals of the different aromatic protons. The
13C NMR spectrum exhibited three blinded signals at 36.6, 71.6 and 78.5 ppm, correspond-
ing to CH2-isoxazoline, O-CH2 and CH-isoxazoline and signals at 156.3, 135.5, 135.3, 135.0,
130.3 (2C), 129.4 (2C), 128.9 (2C), 128.3 and 128.2 (2C), attributed to all the aromatic carbons.

2.2. X-ray Analysis

X-ray intensity data were collected at 150 (2) K. Using APEX4 [28], the structure was
solved via Intrinsic Phasing in the SHELXT [29] structure solution program and refined
using the Least Squares minimization in the SHELXL [30] refinement package. With
one molecule in the asymmetric unit, [3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl]methyl
benzenesulfonate crystallizes in the orthorhombic space group Pbca (Figure 2).

The molecules are linked by a small C–H···O contact (Figure S5, see SM) and by short
C–H···N contacts to form a long chain along the a-axis (Figure S6, see SM). The molecules
are linked in crystallographic symmetry in a unit cell by eight molecules forming four pairs
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by connection through short C–H···O contacts (represented by blue dotted lines). Each
pair will form a long chain along the a-axis through the C–H···N interactions (not shown).
The four long chains interact with each other through C–H···π (ring) and C–O···π (ring)
interactions, which are represented by black dotted lines (with centroids shown as of pink
spheres) (Figure S7 and Table S1, see SM).
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Figure 2. The title molecule with labeling scheme and 50% probability ellipsoids.

These molecules form four pairs through connections by C–H···O short contacts
(depicted as blue dashed lines). Each pair will form a long chain along the a-axis through
C–H···N interactions (not shown). The four long chains interact with each other through
C–H···π (ring) and C–O···π (ring) interactions, which are depicted as black dashed lines
(with centroids displayed as pink spheres).

Crystal Explorer 17.5 [31–33] was used to conduct a Hirshfeld surface (HS) analysis in
order to see how [3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl]methyl benzenesulfonate
interacts with other molecules in the crystal. As shown in Figure 3a, the blue- and red-
colored surfaces in the HS plotted over dnorm denote contacts with distances that are
longer (distinct contact) or shorter (in close contact), respectively, whereas the white color
denotes connections with distances equal to the sum of the van der Waals radii. The
most important red spots and the corresponding interactions are shown in Figure S8 (See
SM). The shape-index (Figure 3b) generated in the range of −1 to 1 Å shows that there
are no π–π interactions, normally indicated by adjacent blue and red triangles. The sites
of intimate intermolecular contacts in the compound are clearly visible in the potential
electrostatic calculated utilizing the STO-3G basis, which are mapped on the Hirshfeld
surface throughout the range of 0.05 a.u. and set at the Hartree–Fock level of theory
(Figure 3c). Positive potential electrostatic (blue zone) over the surface denotes hydrogen-
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donor potential, whereas negative electrostatic potential (red region) denotes hydrogen-
bond acceptors.
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Figure 3. View of the Hirshfeld surface of [3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl]methyl
benzenesulfonate mapped (a) over dnorm in the range -0.2185 to 1.3206 a.u., (b) over shape-index
map. (c) Electrostatic potential energy in the range −0.05 to 0.05 a.u. measured using the STO-3 G
basis set at the theoretical level of Hartree–Fock.

Figure S8 (See SM) depicts the existence of multiple brilliant red spots on the three-
dimensional dnorm surfaces of the crystal structure, which are hydrogen bonding interactions.

Figure S9a (See SM) displays the entire two-dimensional fingerprint pattern [34],
while those divided into H···O/O···H, H···H, H···C/C···H, H···Cl/Cl···H, H···N/N···H,
C···C, Cl···O/O···Cl and O···C/C···O contacts are illustrated in Figure S9b–i (See SM),
respectively, along with their relative contributions to the Hirshfeld surface (HS). Given
the high hydrogen content of the molecule and its significant contribution of 28.9% to the
total crystal packing, the most significant interaction is HH, which is depicted in Figure
S9b as widely scattered points of high density with a tip at de = di = 1.28 Å. The tips of the
pair of distinctive wings in the fingerprint plot demarcated into H···O/O···H interactions
(26.7%), Figure S9c, are at de + di = 2.22 Å when O–H interactions are present. The tips of
the two distributed points of spikes in Figure S9d (15.28%), the fingerprint plot demarcated
into C···H/H···C, are at de + di = 2.74 Å. The Cl···H/H···Cl contacts, Figure S9e (12.8%),
have the tips at de + di = 2.73 Å. The N···H/H···N connections, Figure S9f, appear as
scattered dots with spikes at de + di = 2.42 Å and contribute to 6.3% of the HS. The C···C
contacts, Figure S9g, are a pair of distributed spike points with tips at de + di = 3.31 Å
and contribute to 6.2% of the HS. The Cl···O/O···Cl connections, Figure S9h, are a pair of
scattered spike tips that emerge with a tip at de + di = 3.42 Å and contribute to 1.9% of the
HS. The O···C/C···O contacts, Figure S9i, have a low point density and only contribute to
0.7% of the total points of the HS.

2.3. Theoretical Calculation Details

DFT was used to optimize the structure of [3-(4-chlorophenyl)-4,5-dihydroisoxazol-
5-yl]methyl benzenesulfonate in the gas phase. The 6-311 G + (d,p) basis-set and the
hybrid B3LYP method, which are built on the model of Becke [35] and take into account
a combination of the exact (Hartree-Fock) and using the B3 functional DFT exchange, as
well as the LYP correlation functional [36], were used to calculate the DFT. The harmonic
frequencies of vibration were estimated after obtaining the converged geometry at the
same theoretical level to verify that the stationary point has no imaginary frequencies.
The GAUSSIAN 09 program was used to optimize the shape and analyze the harmonic
vibrational frequency of [3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl]methyl benzenesul-
fonate [37]. Numerous quantum chemical parameters have been discovered as a result
of these studies. Each parameter describes a particular molecule’s chemical character-
istics [38]. Table S2 (See SM) provides an overview of the experimental and theoretical
findings regarding angles and bond lengths. Table S3 (See SM) summarizes the results for
the title compound, which include hardness (η), electronegativity (χ), ionization potential
(I), electron affinity (A), dipole moment (µ), softness (σ) and electrophilicity (ω). The high-
est occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)
properties of the molecules are more significant than the others [39]. Figure S10 (See SM)
depicts the electron’s change in energy level from HOMO to LUMO. The figure’s brown
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and green areas correspond to molecular orbitals with diametrically opposed phases. The
molecule’s positive phase is depicted in green, and its negative phase in brown. In the
plane that spans the entire [3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl]methyl benzene-
sulfonate system, the LUMO and HOMO are localized. The molecule’s energy band gap is
4.6548 eV [∆E = ELUMO − EHOMO], and the frontier molecular orbital energies, ELUMO and
EHOMO, are −1.9053 and −6.5601 eV, respectively.

3. Experimental Section
3.1. Materials and Methods

All reactions were followed by thin-layer chromatography (precoated sheets, Silica gel
60 F254, E. Merck), and chromatograms were viewed using UV lights at 254 and 360 nm,
1H and 13C NMR spectra were run in dry deuterated dimethylsulfoxide (DMSO-d6) on
a JNM-ECZ 500 spectrometer at 500 MHz for 1H NMR and 126 MHz for 13C NMR. The
samples were diluted in CH3CN, then mass spectra (ESI+-MS) were determined on an
Agilent Technologies 1260 Infinity II LC/MSD. Melting points were measured using Köfler
Bench equipment. The reactions were sonicated using a Vibra-Cell™ ultrasonic processor
model 75,022 with a Titanium alloy Ti6Al-4 V probe (20 kHz, 130 W) with a 4 mm diameter
tip, and used 60% of Pmax. The sonotrode was submerged into the solution in a conical
bottom flask of 25 mL in order to obtain the most energy.

3.2. Preparation of Compound 5

In a conical bottom flask, allylic alcohol (1 mmol) was introduced to a basic solution
of sodium hydroxide (1 mmol) with water (15 mL) and then benzene sulfonyl chloride
(1 mmol) was added dropwise. The reaction was activated by sonication for 10 min at
room temperature. Subsequently, after the completion of the sulfonylation reaction as
monitored by TLC, the p-chlorobenzaldoxime (1.2 mmol), oxone (2 mmol) and sodium
hydroxide (1 mmol) were added to the solution mixture at the same temperature to obtain
the corresponding cycloadduct after 30 min of US irradiation (with TLC monitoring). The
organic layer was extracted with DCM (3 × 10 mL) and then dried over sodium sulfate,
filtered and concentrated in a vacuum. Recrystallization was employed to purify the crude
product in hot ethanol and provide the desired (3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-
yl)methyl benzenesulfonate at a high purity.

Yield 85%, Mp 121–123 ◦C (ethanol), TLC (cyclohexane 90%/ethylacetate 10%) Rf = 0.6;
FT-IR (ATR, cm−1): 1660 (C=N), 1190 (O=S=O), 906 (N–O); 1H NMR (500 MHz, DMSO-
d6) δ 7.88 (d, J = 7.2 Hz, 2H, Har), 7.76 (t, J = 7.5 Hz, 1H, Har), 7.64 (t, J = 7.9 Hz, 2H,
Har), 7.59 (d, J = 8.6 Hz, 2H, Har), 7.47 (d, J = 8.6 Hz, 2H, Har), 4.95–4.89 (m, 1H, C5H-
isoxazoline), 4.19 (dd, J = 11.1, 3.1 Hz, 1H, O–CH), 4.14 (dd, J = 11.1, 5.9 Hz, 1H, O–
CH), 3.47 (dd, J = 17.3, 11.2 Hz, 1H, C4H-isoxazoline), 3.12 (dd, J = 17.3, 7.1 Hz, 1H,
C4H-isoxazoline). 13C NMR (126 MHz, DMSO-d6) δ 156.3, 135.5, 135.3, 135.0, 130.3 (2C),
129.4 (2C), 128.9 (2C), 128.3, 128.2 (2C), 78.5 (CH-isoxazoline), 71.6 (O–CH2), 36.6 (CH2-
isoxazoline). MS (ESI+): m/z = 352.3 [M + H]+, 725.7 [M + Na]+.

3.3. X-ray Crystal Structure Data

Table S4 (See SM) provides the data collection, crystal data and refined structural
information. F2 has been improved to combat ALL reflections. The traditional R-factors
based on F, were calculated with F set to zero for negative F2, and the weighted R-factor
wR and goodness of fit S were based on F2. The selection of reflections for refinement
was unrelated to expression at a threshold of F2 > 2 sigma (F2), which is utilized solely
for computing R-factors (gt), etc. R-factors based on F2 will be statistically even larger
than those based on F, which are statistically nearly twice as large. With the determined
positions (C–H = 0.95 − 0.99 Å) and using contributions with isotropic displacement values
1.2–1.5 times that of the linked atoms, H-atoms connected to carbon were positioned in the
correct positions.
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4. Conclusions

In summary, we proposed an efficient and facile route to synthesize (3-(4-chlorophenyl)-
4,5-dihydroisoxazol-5-yl)methyl benzenesulfonate 5 in water using an environmentally
friendly protocol involving a one-pot strategy combined with ultrasound cavitation. The
desired product (5) was obtained at a good yield and high purity, and its structure was de-
termined by 1H, 13C NMR, ESI+-MS and IR spectroscopies and confirmed by single-crystal
X-ray diffraction. The Hirshfeld surface was used to elaborate on the research of intra- and
intermolecular interactions, and a comparative theoretical analysis was also detailed.

Supplementary Materials: The following supporting materials, containing 1H, 13C NMR, mass
spectra and IR spectra (Figures S1–S4) of the synthesized compound (5), Figures S5–S10 and Tables S1–
S4 can be downloaded online [28–30,40,41].
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