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Abstract: In this work, a new compound, 2-(N-allylsulfamoyl)-N-propylbenzamide, has been synthe-
sized via a tandem one-pot reaction under sonication. The rotational orientations of the allylsulfamoyl
and the amide groups in the title molecule, C13H18N2O3S, are partly determined by an intramolecular
N—H···O hydrogen bond. In the crystal, a layer structure is generated by N—H···O and C—H···O
hydrogen bonds plus C—H···π (ring) interactions. A Hirshfeld surface analysis indicates that the
most important contributions to crystal packing are from H···H (59.2%), H···O/O···H (23.5%), and
H···C/C···H (14.6%) interactions. The optimized structure calculated using density functional theory
at the B3LYP/6–311 G (d,p) level is compared with the experimentally determined structure in the
solid state. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy gap is 5.3828 eV.

Keywords: crystal structure; DFT; secondary sulfonamide; hydrogen bond; Hirshfeld surface analysis;
ultrasound cavitation

1. Introduction

Sulfonamides are a very interesting class of drugs because of their many pharma-
cological properties [1], including their ability to inhibit carbonic anhydrase “CA” and
their diuretic [2,3], anticancer [4], hypoglycemic [5], antiviral [6], antibacterial [7], and
metalloprotease inhibitory effects [8]. Although they were discovered in the 1930s as
chemotherapeutic agents for their antibacterial properties, they have recently attracted
increasing interest due to the discovery of new pharmacological properties [9]. Recent
studies have shown that secondary sulfonamides have significant potential, not only for
their ability to selectively inhibit “CA” isozymes but also for their beneficial properties in
the treatment of cancer and for glutamate carboxypeptidase II inhibition [10].

The reaction that combines amino compounds with sulfonyl chlorides is the most
common method for synthesizing secondary sulfonamide derivatives. This method requires
difficult synthetic conditions, multiple steps, and long reaction times and results in the
production of undesirable chemicals and toxic byproducts [11]. Therefore, finding a green
and efficient source for the synthesis of secondary sulfonamide derivatives should be
a priority. Our research group has recently developed the synthesis of a new series of
heterocyclic units bearing secondary sulfonamides using an eco-friendly protocol under
ultrasound cavitation [12,13].

Theoretical calculations, besides measuring the activity of molecules, give important
information about many properties of these molecules [14]. Owing to the wide range of ap-
plications mentioned above, the title compound 2-(N-allylsulfamoyl)-N-propylbenzamide

Molbank 2023, 2023, M1678. https://doi.org/10.3390/M1678 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1678
https://doi.org/10.3390/M1678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0002-9996-4963
https://orcid.org/0000-0003-3488-1945
https://doi.org/10.3390/M1678
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1678?type=check_update&version=1


Molbank 2023, 2023, M1678 2 of 11

was synthesized and characterized spectroscopically. The three-dimensional structure was
determined by a single-crystal X-ray diffraction analysis. The intermolecular interactions
and the hydrogen bonds were studied by a Hirshfeld surface analysis and supplemented by
density functional theory (DFT) calculations to establish the optimized molecular structural
parameters of the compound, HOMO–LUMO energies, and thermodynamic parameters.
The chemical properties of the molecule were investigated using Gaussian calculations,
applying B3LYP methods with the 6–311 g(d,p) basis set.

2. Results
2.1. Synthesis

We started our one pot three-component tandem reaction with the N-allylation reaction
using saccharin 1 (1 equivalent), allyl bromide 2 (1.1 equivalents) and K2CO3 (1.2 equiva-
lents) as a base in water as the solvent under ultrasonic cavitation at 25 ◦C. The reaction
was completed in a very short time and monitored by thin-layer chromatography (TLC) to
confirm the formation of N-allyl saccharin as the expected intermediate. This compound
was then reacted in situ with propylamine 3 (2 equivalents) to give 2-(N-allylsulfamoyl)-
N-propylbenzamide 4 by intermolecular N-C-σ-saccharin ring cleavage under ultrasonic
cavitation. The reaction exhibited an excellent yield, with 94% of the desired product
4 (Scheme 1). The structure of 4 was fully characterized by IR, 13C, 1H NMR, and LCMS
spectra, and confirmed by single-crystal X-ray diffraction.
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2.2. Crystal Structure Determination

The crystal was kept at 150(2) K during data collection which proceeded under control
by APEX4 [15] software. The structure was solved with the SHELXT [16] structure solu-
tion program using Intrinsic Phasing and refined with the SHELXL [17] refinement pack-
age using full-matrix, least-squares methods. 2-(N-allylsulfamoyl)-N-propylbenzamide
crystallizes in the monoclinic space group P21/c with one molecule in the asymmetric
unit (Figure 1).
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 Figure 1. The title molecule with labeling scheme and 50% probability ellipsoids. An intramolecular
hydrogen bond is depicted by a dashed line. Only the major component of the disorder is shown.

The rotational orientations of the two substituents on the C1···C6 ring are partly
determined by the intramolecular N1---H1···O3 hydrogen bond (Table 1 and Figure 2).
These orientations can be appreciated by the C1---C2---C10---O3 and C2---C1---S1---N1
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torsion angles which are, respectively, −56.67 (16) and 72.94 (10)◦. The sum of the angles
about N2 is 360 (1)◦, indicating participation of the lone pair in N-C···π bonding. This is
largely with C10 (N2-C10 = 1.3335(15) Å) because of the presence of the carbonyl group.
In the crystal, inversion dimers are generated by N2---H2A···O2 hydrogen bonds and
C12---H12A···Cg1 interactions (Table 1 and Figure 2). With the major orientation of the
disordered allyl group constituting 92% of positions of this group throughout the crystal,
the great majority of the packing can be described as the dimers being connected by
C9---H9B···O4 hydrogen bonds (Table 2) to form layers of molecules parallel to (204)
(Figure 2). The layers are stacked along the direction of the normal to (204) (Figure 3).

Table 1. Hydrogen bond geometry (Å, ◦) for 2-(N-allylsulfamoyl)-N-propylbenzamide. Cg1 is the
centroid of the C1···C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O3 0.853 (18) 2.108 (18) 2.8759 (14) 149.5 (15)

N2—H2A···O2 i 0.855 (16) 2.175 (16) 2.9818 (13) 157.4 (14)
C9—H9B···O1 ii 0.95 2.55 3.480 (6) 165

C12—H12A···Cg1 i 0.99 2.76 3.6902 (15) 156
Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) x−1, −y + 3/2, z − 1/2.
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Table 2. Comparison (X-ray and density functional theory) of selected bond lengths and angles (Å, ◦).

X-ray B3LYP/6–311 G(d,p)

S1-N1 1.6238 (10) 1.6711
S1-C1 1.7769 (11) 1.8111
S1-O1 1.4327 (9) 1.4619
N1-C7 1.4816 (16) 1.4674
C10-O3 1.2353 (14) 1.2265
C10-N2 1.3335 (15) 1.3557
N2-C11 1.4614 (14) 1.4616
S1-O2 1.4382 (8) 1.4651

C1-S1-O1 107.19 (5) 108.2414
O1-S1-N1 107.83 (5) 106.6917
S1-N1-C7 116.25 (9) 118.1819
N1-C7-C8 108.95 (13) 111.869
C6-C1-S1 118.00 (9) 116.7889
C2-C1-S1 121.07 (8) 121.8659

C2-C10-O3 120.14 (10) 121.6204
C2-C10-N2 116.03 (10) 114.9641
C10-N2-C11 121.61 (10) 121.9677
N2-C11-C12 113.69 (10) 113.0569

C1-S1-O2 107.73 (5) 106.7981
O3-C10-N2 123.75 (10) 123.3388
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To visualize the intermolecular interactions of 2-(N-allylsulfamoyl)-N-propylbenzamide,
a Hirshfeld surface (HS) analysis [18,19] was carried out by using Crystal Explorer 17.5 [20].
In the HS plotted over dnorm (Figure 4a), the white surface indicates contacts with distances
equal to the sum of van der Waals radii, and the red and blue colors indicate distances
shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively.
The most important red spots and the corresponding interactions are shown in Figure 5.
The shape index (Figure 4b) generated in the range of −1 to 1 Å reveals that there are no
π–π interactions, normally indicated by adjacent red and blue triangles. The electrostatic
potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on
the Hirshfeld surface over the range of ±0.05 a.u. clearly shows the positions of close
intermolecular contacts in the compound (Figure 4c). The positive electrostatic potential
(blue region) over the surface indicates hydrogen donor potential, whereas the hydrogen
bond acceptors are represented by a negative electrostatic potential (red region).
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dnorm in the range of −0.4420 to 1.2928 a.u., (b) mapped over shape index. (c) Electrostatic potential
energy in the range of −0.05 to 0.05 a.u., calculated using the STO-3 G basis set at the Hartree–Fock
level of theory.

The three-dimensional dnorm surface shows the presence of several bright red spots
which correspond to hydrogen bonding interactions, as shown in Figure 5.

The overall two-dimensional fingerprint plot [21] is shown in Figure 6a, while those delin-
eated into H···H, H···O/O···H, H···C/C···H, H···N/N···H, C···O/O···C, O···O, N···O/O···N,
O···O, and S···H/H···S contacts are illustrated in Figure 6b–g, respectively, together with
their relative contributions to the Hirshfeld surface (HS). The most important interaction is
H···H, contributing 59.2% to the overall crystal packing, which is reflected in Figure 6b as
widely scattered points of high density due to the large hydrogen content of the molecule,
with the tip at de = di = 1.10 Å. In the presence of O–H interactions, the pair of characteristic
wings in the fingerprint plot delineated into H···O/O···H contacts (23.5% contribution to
the HS), Figure 6c, has tips at de + di = 2 Å. The pair of scattered points of spikes in the
fingerprint plot delineated into C···H/H···C, Figure 6d (14.6%), has tips at de + di = 2.66 Å.
The N···H/H···N contacts, Figure 6e (1.6%), have tips at de + di = 3.29 Å. The O···C/C···O
contacts, Figure 6f, contribute 0.6% to the HS and appear as a pair of scattered points of
spikes with tips at de + di = 3.17 Å. The N···O/O···N contacts, Figure 6g, contribute 0.2%
to the HS and appear as a pair of scattered points of spikes with tips at de + di = 3.34 Å.
The O···O contacts, Figure 6h, contribute 0.2% to the HS and appear as a pair of scattered
points of spikes with a tip at de + di = 3.26 Å. Finally, the S···H/H···S contacts, Figure 6i,
make only a 0.1% contribution to the HS and have a low-density distribution of points.
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2.3. Density Functional Theory Calculations

The structure in the gas phase of 2-(N-allylsulfamoyl)-N-propylbenzamide was op-
timized by means of density functional theory. The density functional theory calculation
was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis set, which is
based on Becke’s model [22] and considers a mixture of exact (Hartree–Fock) and density
functional theory exchange using the B3 functional, together with the LYP correlation
functional [23]. After obtaining the converged geometry, the harmonic vibrational frequen-
cies were calculated at the same theoretical level to confirm that the number of imaginary
frequencies is zero for the stationary point. Both the geometry optimization and harmonic
vibrational frequency analysis of the title compound were performed with the GAUSSIAN
09 program [24]. As a result of these calculations, many quantum chemical parameters
were found. Each parameter describes a different chemical property of a molecule [25]. The
theoretical and experimental results related to bond lengths and angles are summarized in
Table 2. Calculated numerical values for the title compound including electronegativity
(χ), hardness (η), ionization potential (I), dipole moment (µ), electron affinity (A), elec-
trophilicity (ω), and softness (σ) are collated in Table 3. Among the calculated parameters
of the molecules, the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) parameters are more important than the others [26,27]. The
electron transition from the HOMO to the LUMO energy level is shown in Figure 7. The
green and brown regions of the figure represent molecular orbitals with completely opposite
phases. The positive phase of the molecule is shown in green and the negative phase in
brown. The HOMO and LUMO are localized in the plane extending over the whole 2-(N-
allylsulfamoyl)-N-propylbenzamide system. The energy band gap [∆E = ELUMO-EHOMO]
of the molecule is 5.3828 eV, and the frontier molecular orbital energies, EHOMO and
ELUMO, are −6.9656 and −1.5828 eV, respectively.
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Table 3. Calculated energies.

Molecular Energy Title Compound

Total energy TE (eV) −33,735.8573
EHOMO (eV) −6.9656
ELUMO (eV) −1.5828

Gap, ∆E (eV) 5.3828
Dipole moment, µ (Debye) 4.6564
Ionization potential, I (eV) 6.9656

Electron affinity, A 1.5828
Electronegativity, χ 4.2742

Hardness, η 2.6914
Electrophilicity indexω 3.3939

Softness, σ 0.3716
Fraction of electron transferred, ∆N 0.5064
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3. Experimental Section
3.1. Materials and Methods

NMR spectra were recorded on a Bruker AC 200 spectrometer (Bruker Biospin, Rhein-
stetten, Germany) at 200 MHz for 1H NMR and 50 MHz for 13C NMR in dry CDCl3 solvent.
Mass spectral analyses (ESI-MS) were recorded on an Agilent Technologies 1260 Infinity II
LC/MSD (Agilent Technologies, Santa Clara, CA, USA) and the samples were diluted in
acetonitrile. Melting points were determined on a Munz Köfler Bench System. Analytical
thin-layer chromatography (TLC) was performed on precoated with silica gel 60 GF254
(Merck, Darmstadt, Germany) and visualization was performed using a UV lamp at 254
and 360 nm. Ultrasound-assisted reactions were performed in a Vibra-Cell™ Model 75022
Ultrasonic Processor (Sonics & Materials Inc., Newtown, CT, USA) using a 4 mm titanium
alloy Ti-6Al 4V probe (20 kHz, 130 W) with a 4 mm tip diameter. The reactions were
performed at 60% Pmax using a 10–50 mL pear-shaped flask with the sonotrode immersed
in the solution for maximum energy.

3.2. Synthesis of Compound 4

In a pear-shaped flask, a mixture of saccharin 1 (1 mmol), allyl bromide 2 (1.1 mmol),
and K2CO3 (1.2 mmol) in H2O (8 mL) was sonicated at 25 ◦C for 4 min using the ultrasonic
probe. After completion of the reaction (monitored by TLC), a propylamine solution
(2 mmol) was added. After sonication for 2 min, the crude mixture was filtered and
the filtrate was extracted with CH2Cl2 (10 mL × 3). The organic phase was washed
with saturated brine solution (10 mL × 2) and water (15 mL), dried over MgSO4, and
concentrated under vacuum. The residue was purified by recrystallization from EtOH to
give pure single crystals of 2-(N-allylsulfamoyl)-N-propylbenzamide 4.

White crystals, yield 94%, m.p. 125–127 ◦C (EtOH), TLC (cyclohexane/AcOEt, 6/4,
v/v) Rf = 0.70; FTIR (ATR, cm−1): 1645 (C=O), 3385 (NHamidic); 1H NMR (200 MHz,
Chloroform-d) δ 7.93–7.83 (m, 1H, 1HAr), 7.63–7.42 (m, 3H, 2HAr, 1NH), 6.44–6.23 (m, 2H,
1NH, 1HAr), 5.81–5.56 (m, 1H, Hallylic),), 5.15 (dd, J = 17.1, 1.5 Hz, 1H, Hallylic),), 5.03 (dd,
J = 10.2, 1.4 Hz, 1H, Hallylic), 3.55 (m, J = 5.9, 1.5 Hz, 2H, N-CH2), 3.37 (q, J = 6.1 Hz, 2H,
CH2), 1.77–1.54 (m, 2H, CH2), 0.99 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (50 MHz, CDCl3) δ
169.5 (C=O), 137.9 (C-S), 135.5, 132.9, 132.5, 130.0, 129.3, 128.3, 117.3, 46.2(C-NHsulfonamidic),
42.1 (C-NHamidic), 22.5 (CH2), 11.4 (CH3); MS (ESI+): m/z = 283.0 [M + H]+.

The Figures S1–S4 containing 1H, 13C NMR, mass, and IR spectra of the synthesized
compound 4.

3.3. X-ray Data of Crystal Structure

Crystal data, data collection, and structure refinement details are given in Table 4.
Refinement of F2 against ALL reflections. H atoms attached to carbon were placed in
calculated positions (C—H = 0.95–0.99 Å) and were included as riding contributions
with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. Those
attached to nitrogen were placed in locations derived from a difference map and refined
independently. The allyl group is disordered over two sites in a 0.920 (3)/0.080 (3) refined
ratio and the components were refined with SAME, SADI, and EADP restraints so that
their geometries and displacement parameters would be comparable.

Table 4. Experimental details.

Crystal Data

Empirical formula C13H18N2O3S
Formula weight 282.35
Temperature/K 150

Crystal system, space group Monoclinic, P21/c
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Table 4. Cont.

Crystal Data

a, b, c (Å) 8.2659 (3), 21.4034 (8), 8.3357 (3)
β (◦) 106.366 (1)

Volume (Å3) 1414.98 (9)
Z 4

Radiation type Cu Kα
µ (mm−1) 2.09

Crystal size (mm) 0.23 × 0.13 × 0.13
Data collection
Diffractometer Bruker D8 Venture Photon 3 CPAD

Absorption correction Multi-scan SadabsBruker, (Bruker, Karlsruher,
Germany) [28]

Tmin, Tmax 0.72, 0.78
No. of measured, independent, and

observed [I > 2σ(I)] reflections 44,247, 2834, 2811

Rint 0.024
(sin θ/λ)max (Å−1) 0.625

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04

No. of reflections 2834
No. of parameters 191
No. of restraints 4

H atom treatment H atoms treated by a mixture of independent
and constrained refinement

∆ρmax, ∆ρmin (e Å−3) 0.37, −0.33
Computer programs: APEX4 [15], SAINT [15], SHELXT [16], SHELXL [17], DIAMOND [29], SHELXTL [15].

4. Conclusions

A new heterocycle containing allylsulfamoyl and propylbenzamide moieties has been
synthesized. The procedure used was simple and the yield obtained was high. Nuclear
magnetic resonance and X-ray diffraction were used to establish the structure of the newly
synthesized heterocycle. The intra- and inter-molecular interactions have been elabo-
rated via the study of the Hirshfeld surface and a comparative theoretical study has also
been described.

Supplementary Materials: The following supporting materials, containing 1H, 13C NMR, mass,
and IR spectra (see Supplementary Materials Figures S1–S4) of the synthesized compound 4 can be
downloaded online.
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