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1. Introduction

Along with the use of classical reagents (Li, Na, Mg, Zn acetylides, and alkynylsi-
lanes) in organic synthesis for the introduction of an alkyne fragment into various sub-
strates [1,2], considerable attention is paid to the development and study of the reactivity of
new non-classical alkynylating reagents and new protocols for the use of well-known
reagents. Variants of applying calcium carbide in organic synthesis for ethynylation
of different substrates [3–5], including boron [6–9] and aluminum [10] alkynylides, 5-
(alkynyl)dibenzothiophenium salts [11,12], alkynylbenziodoxolones [13,14], and sulfonyl
acetylenes [15] are shown (Figure 1).
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Figure 1. Examples of non-classical alkynylating reagents.

Tin alkynylides, which within more than half a century proved to be reliable
reagents [16–19], continue to be used in organic synthesis; however, they have two signifi-
cant disadvantages: first, they are highly toxic and, second, these compounds do not meet
atom-sparing requirements and considerably reduce the reaction mass efficiency [20] due
to a large ballast moiety (Bu3Sn and Me3Sn). We are developing a methodology for the use
of easily available tin tetraalkynylides in organic synthesis [21], which have been found to
be convenient reagents for the alkynylation of haloaromatic substrates under conditions
of the Stille reaction [22], carbonyl compounds [23], and acyl chlorides under the Lewis
catalysis [24] (Scheme 1).
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Scheme 1. Examples of various alkynylation substrates with tin tetraalkynylides.

Continuing this research trend, it seemed interesting to study whether tetra
(phenylethynyl)tin could be used for the alkynylation of imines. Alkynylation of imines
is an important reaction affording propargylamines, which are valuable building blocks
for the synthesis of different bioactive compounds [25]. Current synthesis protocols for
propargylamines mostly reduce to a ternary reaction, A3-coupling [26,27], and numerous
versions of a catalytic alkynylation reaction of imines [28–30].

2. Results and Discussion

Screening for reaction conditions was carried out on a model reaction of tetra
(phenylethynyl)tin 1 with (2,2-dimethylpropylidene)aniline 2a using an equimolar amount
of alkynylating reagent, varying Lewis acid, solvent and its amount, reaction time, and tem-
perature. The course of the reaction was controlled by chromatography–mass spectrometry
(Scheme 2, Table 1). ZnCl2 (Entry 2) showed the best catalytic activity in the reaction using
a solvent with the highest yield of 92% being observed at the minimum solvent amount
(100 µL per 0.19 mmol 1), which favored more efficient stirring of the reaction mixture. An
increase in the solvent amount led to a dramatic decrease in the yield of 3a to 7% (400 µL
per 0.19 mmol 1) (Entry 2**). The catalytic activity of aluminum and indium(III) chlorides
(Entry 3, 4) and boron trifluoride etherates (Entry 5) was far less efficient. Among solvents,
toluene was found to be the optimum medium. The yield of 3a dramatically decreased in
1,2-dichloroethane (Entry 6), and only traces of the product formed using dichloromethane.
1,4-Dioxane strongly coordinating with a Lewis acid is not suitable (Entry 8). The reaction
features the possibility of being carried out in a solvent-free manner: the best conversion
(98%) to the product was achieved by using ZnCl2 (Entry 9); in this case, the reaction
proceeded in a melt of reagents. Other Lewis acids were also less efficient when used
without a solvent (Entries 10–12).
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Table 1. The effect of Lewis acid, solvent, and time on the yields 3a *.

Entry Lewis Acid
(10 mol %) Solvent Temp, ◦C Time, h Yield 3a,%

(GS/MS)

1 ZnCl2 PhMe 100 3 36
2 ZnCl2 PhMe 100 9 92 (7 **)
3 InCl3 PhMe 100 9 58
4 AlCl3 PhMe 100 9 17
5 BF3·OEt2 PhMe 100 9 52
6 ZnCl2 DCE 80 9 30
7 ZnCl2 DCM 30 9 3
8 ZnCl2 1,4-dioxane 100 9 -
9 ZnCl2 - 100 12 98

10 InBr3 - 100 9 25
11 Sc(OTf)3 - 100 9 9
12 Cu(OTf)2 - 100 9 18

* 0.19 mmol 1, 0.77 mmol 2a, 0.0077 mmol Lewis acid and 0.1 mL solvent; ** 0.4 mL solvent.

The preparative-scale reaction was carried out with imines 2a–c (Scheme 3). The effect
of donor substituents in the benzene ring of the imine leads to a decrease in the yield of
propargylamines, and 3b and 3c were synthesized in preparative yields of 44% and 38%,
respectively. The target product, 3a–c, was purified by flash chromatography. The structure
of product 3a–c was confirmed by 1H, 13C NMR, IR spectroscopy, and mass spectrometry.
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Scheme 3. Reaction of tetra(phenylethynyl)tin 1 with imines.

When tetra(phenylethynyl)tin was replaced tetrakis(phenylethynyl)silane, the yield
of 3a decreased to 7%. Tetrakis(phenylethynyl)germanium (IV) did not react with imine
under the above-mentioned conditions.

In conclusion, a new approach is proposed to obtain propargylamines by the solvent-
free ZnCl2-catalyzed alkynylation of imines with tetra(phenylethynyl)tin.

3. Materials and Methods

The reactions were monitored by GC/MS recorded on a GCMS−QP2010Plus (Shi-
madzu, Kyoto, Japan) and in EI ionization mode (70 eV and ionization chamber temperature
25 ◦C). The 1H-NMR, 13C-NMR spectra were acquired on ECA400 (JEOL, Tokyo, Japan)
(400 and 100 MHz, respectively), spectrometers in CDCl3 were at room temperature. The
chemical shifts δ were measured in ppm with reference to the residual solvent resonances
(1H: CDCl3, δ = 7.25 ppm and 13C: CDCl3, δ = 77.2 ppm). The splitting patterns are referred
to as s, singlet; d, doublet; t, triplet; and m, multiplet. Coupling constants (J) are given in
hertz. IR spectra were recorded on an IR Prestige (Shimadzu, Kyoto, Japan), using tablets
of samples with KBr. High-resolution and accurate mass measurements were carried out
using a MaXis Impact (Bruker, Bremen,·Germany) (electrospray ionization/time of flight).
The melting points were determined on a Stuart SMP30 apparatus and left uncorrected. Col-
umn chromatography was performed using silica 60 (40–63 µm, Mecherey-Nagel, Düren,
Germany).
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The commercial reagents employed in the synthesis were pivalaldehyde (96%, Aldrich,
St. Louis, MO, USA), aniline, p-toluidine, o-anisidine (99%, ABCR GmbH & Co. KG).
Imines 2a–c were synthesized from the anilines and pivalaldehyde in benzene medium.
Their constants and parameters of the NMR spectra accorded to published data [31–33].
Tetra(phenylethynyl)tin, tetrakis(phenylethynyl)silane, and tetrakis(phenylethynyl)
germanium (IV) were synthesized by previously described methods [21,34,35].

General Procedure for the Synthesis of Propargylamine

Lewis acid (0.077 mmol), solvent (0.1–0.4 mL), imine 2a 0.126 g (0.77 mmol) (0.135 g
2b and 0.147 g 3c), and 0.1 g (0.19 mmol) tetraphenylethynyltin were placed in a reaction
vial. The reaction mixture was vigorously stirred at 30–100 ◦C for 3–12 h. Reactions were
monitored by GC/MS. After the complete reaction, 1 mL of chloroform and 3 mL of water
were added, the organic layer was separated, and the aqueous layer was extracted with
chloroform (3 × 1 mL). The propargylamines 3a–c were purified by flash chromatography
on silica gel using hexane—ethyl acetate (1:1) as the eluent.

N-(4,4-dimethyl-1-phenylpent-1-yn-3-yl)aniline 3a. Yield 0,126 g (62%); light yellowish
crystals; and mp 82 ◦C. IR (KBr): ν = 3396 (NH), 3084, 3055, 3018 (Csp2-H), 2976, 2960,
2931, 2897, 2866 (Csp3-H), 1604, 1504 (Csp2-Csp2), 1489, 1431, 1363, 1313, 1253, 1105, 1070,
1028, 974, 920, and 871 cm−1 (SI, Figure S1). 1H NMR (CDCl3, 399.78 MHz): δ = 1.14 (s,
9H, CH3), 3.74 (br. s, 1H, NH), 4.02 (s, 1H, CH), 6.73–6.76 (m, 3H, CH), 7.17–7.22 (m, 2H,
CH), 7.23–7.26 (m, 3H, CH), and 7.32–7.36 (m, 2H, CH) (SI, Figure S2). 13C NMR (CDCl3,
100.5 MHz): δ = 26.5 (CH3), 35.6 (C), 56.3 (CH), 83.6 (Csp), 89.2 (Csp), 114.1 (CH), 118.2
(CH), 123.2 (C), 127.9 (CH), 128.1 (CH), 129.1 (CH), 131.6 (CH), and 147.5 (C) (SI, Figure S3).
MS (EI, 70 eV), m/z (Irel, %): 263 [M+] (3), 248 (1), 206 (100), 178 (2), 128 (4), 115 (3), and 104
(8) (SI, Figure S4). HRMS ESI TOF: m/z = 264,1746 [M + H]+ (264,1747 calcd for C19H21N)
(SI, Figure S3). The compound is described earlier [36].

N-(4,4-dimethyl-1-phenylpent-1-yn-3-yl)-4-methylaniline 3b. Yield 0.094 g (44%); light
yellowish oil; and IR (KBr): ν = 3379, 3363 (NH), 3099, 3076, 3059, 3016 (Csp2-H), 2958,
2924, 2864 (Csp3-H), 2164 (Csp-Csp), 1612, 1516 (Csp2-Csp2), 1489, 1475, 1440, 1367, 1319,
1292, 1244, 1126, 1085, 1031, 808, and 756 (SI, Figure S6). 1H NMR (CDCl3, 399.78 MHz):
δ = 1.15 (s, 9H, CH3), 2.26 (s, 3H, CH3), 3.61 (br. s, 1H, NH), 3.98 (s, 1H, CH), 6.68–6.72
(m, 2H, CH), 7.01–7.05 (m, 2H, CH), 7.24–7.28 (m, 3H, CH), and 7.33–7.37 (m, 2H, CH) (SI,
Figure S7). 13C NMR (CDCl3, 100.5 MHz): δ = 20.4 (CH3) 26.5 (CH3), 35.6 (C), 57.1 (CH),
83.6 (Csp), 89.4 (Csp), 114.4 (CH), 123.4 (C), 127.4 (C), 127.8 (CH), 128.1 (CH), 129.6 (CH),
131.6 (CH), and 145.3 (C) (SI, Figure S8). MS (EI, 70 eV), m/z (Irel, %): 277 [M+] (3), 220
(100), 204 (3), 118 (18), 102 (3), and 91 (33) (SI, Figure S9). HRMS ESI TOF: m/z = 278,1907
[M + H]+ (278,1903 calcd for C20H23N) (SI, Figure S10).

N-(4,4-dimethyl-1-phenylpent-1-yn-3-yl)-2-methoxyaniline 3c. Yield 0.086 g (38%); light
yellowish oil; and IR (KBr): ν = 3431 (NH), 3059 (Csp2-H), 2997, 2958, 2904, 2866, 2833
(Csp3-H), 1600, 1510 (Csp2-Csp2), 1489, 1458, 1427, 1392, 1363, 1313, 1246, 1220, 1176, 1126,
1051, and 1028. (SI, Figure S11). 1H NMR (CDCl3, 399.78 MHz): δ = 1.18 (s, 9H, CH3),
3.86 (s, 3H, CH3O), 4.03 (s, 1H, CH), 4.47 (br. s, 1H, NH), 6.68–6.72 (m, 1H, CH), 6.78–6.85
(m, 2H, CH), 6.88–6.92 (m, 1H, CH), 7.23–7.27 (m, 3H, CH), and 7.34–7.37 (m, 2H, CH) (SI,
Figure S12). 13C NMR (CDCl3, 100.5 MHz): δ = 26.5 (CH3), 35.7 (C), 55.6 (CH3O), 56.0 (CH),
83.3 (Csp), 89.4 (Csp), 109.7 (CH), 111.2 (CH), 116.9 (CH), 121.2 (CH), 123.4 (C), 127.8 (CH),
128.1 (CH), 131.7 (CH), 137.5 (C), and 147.2 (C) (SI, Figure S13). MS (EI, 70 eV), m/z (Irel,
%): 293 [M+] (4), 236 (100), 220 (4), 193 (3), 134 (21), and 115 (6) (SI, Figure S14). HRMS
ESI TOF: m/z = 294,1853 [M + H]+ (294,1852 calcd for C20H23NO) (SI, Figure S15). The
compound is described earlier [37].

Supplementary Materials: Figure S1: IR-spectrum of 3a; Figure S2: 1H NMR of 3a; Figure S3: 13C
NMR of 3a; Figure S4: MS of 3a; Figure S5: HRMS of 3a; Figure S6: IR-spectrum of 3b; Figure S7: 1H
NMR of 3b; Figure S8: 13C NMR of 3b; Figure S9: MS of 3b; Figure S10: HRMS of 3b; Figure S11:
IR-spectrum of 3c; Figure S12: 1H NMR of 3c; Figure S13: 13C NMR of 3c; Figure S14: MS of 3c; and
Figure S15: HRMS of 3c.
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